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1 Conditional Expectation

Definition 1. Given an event E and a random variable X, the expectation of X conditioned on E
is defined as

E[X|E] : ZP = z|E) -

In this case, it’s like we now have a new probability space which only contain the situation when
FE happened.

Example 1. When we roll a fair dice, and we only count for the even outcome, which is £ =
{2,4,6}. In this case, each outcome has a 3 probability to show up. That is, P(X = 2|E) = P(X =
4B) = P(X = 6|E) =

Suppose we have another random variable Y and a value y that Y can take, then we have

EX|Y =y] = ZP =z|lY =y) -z

Above, we treat Y = y as an event. However, often we use shortcut notion E[X Y], which seems
to be not well-defined. We should think of it as E[X|Y = Y], where the first Y is the random variable
Y and the second Y is a value that that the random variable can take and thus the expectation is
a function of the second Y. So, E[X|Y] is a function of Y.

Example 2. We have 4 balls, and each of them has their color and weight.

Color | Weight
Ball 1 | “Red” 3
Ball 2 | “Red” 5
Ball 3 | “Blue” 2
Ball 4 | “Blue” 7

We randomly pick a ball, use X to refer to the weight of ball and Y for the color of ball.

1 1
E[X|Y = “Red’] = 3 x5+ 5 x3=4

1 1
E[X|Y = “Blue”] = 2 x 24 5 x 7= 4.5

E[X|¥] = 4 if Y = “Red”
)45 ifY = “Blue”

So, E[X|Y] is a function of Y that maps “Red” to 4 and “Blue” to 4.5.

2 Variance

Example 3. If we have two bank accounts both have 1000 dollars. One of them can either be
added or decreased by 1 dollar each month, and the other one can be added or decreased by 500
dollars each month. We use X; and X5 to represent the money in each account after one month.

999 with probability
X; =

N = N =

1001 with probability



500 with probability
Xy =
1500 with probability

N = Do =

E[X;] = E[Xs] = 1000. However X5 is more risky, since it is more likely to deviate from the
expectation.

Suppose we have a randomized variable X with p = E[X]. One way to capture the deviation of
X from its expectation is to use E[|X — u|]. However, absolute value function makes the definition
hard to use in many cases since it does not have a continuous derivative at X = u. So instead we
use:

Definition 2 (Variance). The variance of a random variable X, denoted as Var[X] is defined as
Var[X] := E[(X — E[X])?].

In the former example, Var[X;] = 12 = 1, and Var[Xz] = 500% = 2500. However, the squaring
changed the unit. To get a quantity with the same unit as X, we define the standard deviation:

Definition 3 (Standard Deviation). The standard deviation of a random variable X is defined as
Var[X].

Often, we use o to denote the standard deviation of a random variable.

Example 3. We have a biased coin toss

1 with probability p
0 with probability 1 —p

The expectation for X is E[X] = p, and the variance for X is
Var[X] = p(1—p)+(1-p)(0-p)°
= p(1-=pI[(1—-p)+pl
= p(l—p).
Standard deviation of X is: o[X] = +/p(1 — p).

Lemma 4.

Var[X] = E[X?] — (E[X])?.
Proof.

Var[X] = E

[
[
= E[X? —E[2uX] +E[n?]
= E[X?] - 2E[uX] +
= E[X?] - 2uE[X] + p?
= E[X?] - 247 + 2
= E[X?] -
= E[X?] - (E[X])® O
For the basic coin toss example, we have:
Var[X] = E[X?]-p?
= p-P+(1-p)-0*-p?
= p(1-p)

Definition 5. Definition of conditional variance:

Var[X|E] = E[(X — E[X|E])?|E]



3 Common Distributions

3.1 Bernoulli distribution
Bernoulli distribution is the formal name of the bais coin toss example we showed above.

Definition 6. Then the Bernoulli distribution with parameter p € [0,1] is defined as

¥ — 1 with probability p
0 with probability 1 —p

3.2 Binomial distribution

Definition 7. The binomial distribution X with parameters n € Z~q and p € [0,1] is the sum of n
independent Bernoulli random variables with parameter p. Then, for every i € {0,1,2,--- ,n}, we

have
n

P(X=1)= (i)pi(l -p)"
The expectation of the above random variable X is E[X] = np.

Proof. X =" | X;, where X; is the result of the i-th coin toss. For every i, E[X;] = p,

A generalization of the following lemma gives that Var[X] = >, Var[X;] = np(1 — p).

Lemma 8. If X and Y are independent random variables, then we have Var[X + Y] = Var[X] +
Var[Y].
Proof. Suppose ux = E[X], and py = E[Y]

VarlX +¥] = E[(X+Y) - px — ]’
= E[(X — px)? +E[(Y — py)*] + E2(X — px)(Y — py)]
= Var[X]+ Var[Y] + 2E[X — pux]E[Y — uy]
= Var[X] + Var[Y]. O

The first and the third equalities used the definition of variance. The second equality used the
linearity of expectation.

3.3 Geometric distribution

The geometric distribution with parameter p € (0, 1] is the distribution on the number of Bernoulli
trials with parameter p needed in order to get 1 success. Then, let X be the random variable from
the distribution, we have

Pr[X =i] = (1 —p)~!p, Vi=1,2 3, ....

As we already showed, we have E[X] = %. The variance of X is Var[X] = 152,

4 Birthday Paradox

There are 365 different possibility for a person’s birthday, and now we have n people in the classroom,
each person will have a birthday that’s uniformly distributed over 365 days. What is the smallest
number n such that the probability that 2 people in the room have the same birthday?

To solve this problem, we first solve a slightly different problem. Let us consider the expected
number of collision pairs: A collision pair is a pair of people with the same birthday. We are



interested in how big should n be in order for the expectation to be at least 1. For a pair u # v of
people, define Xy, ,1 =1 if v and v is a collision pair and 0 otherwise. Then,

. . 1 n n2
E[number of collision pairs] = E {Z} Xiuo) | = {Z}]E [X{um}} = P 365 = % R g

In order for the number to be at least 1, we need n = /365 x 2 = V730 =~ 27.

We can also try to compute the threshold n for which the collision probability exceeds 50%. But
there is also a way to approximate the threshold for the first problem. For the sake of simplicity
and generalization, let us define M = 365. Then the probability that there is no collision is exactly

M M-1 M-2 M-n+1 1 2 n—1

7T X X i _1><(1—M)><(1—M)><~--><(1— M)

This holds since the first person has M choices to avoid a collision, the second person has M — 1
choices to avoid a collision, and so on. Notice that if 1 —x ~ e~" for x very close to

0
. If n is much smaller than M, then the above quantity can be approximated by

O s o UM ¢ g=2/M o .\ o—(n=1)/M _ ,—n(n—1)/(2M)

So for the probability to be at most 50%, we need n(n — 1)/(2M) to be In2. As before, we also
get that it suffices for n to be of order v M.



