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1 Conditional Expectation

Definition 1. Given an event E and a random variable X, the expectation of X conditioned on E
is defined as

E[X|E] :=
∑
x

P (X = x|E) · x

In this case, it’s like we now have a new probability space which only contain the situation when
E happened.

Example 1. When we roll a fair dice, and we only count for the even outcome, which is E =
{2, 4, 6}. In this case, each outcome has a 1

3 probability to show up. That is, P (X = 2|E) = P (X =
4|E) = P (X = 6|E) = 1

3 .
Suppose we have another random variable Y and a value y that Y can take, then we have

E[X|Y = y] =
∑
x

P (X = x|Y = y) · x.

Above, we treat Y = y as an event. However, often we use shortcut notion E[X|Y ], which seems
to be not well-defined. We should think of it as E[X|Y = Y ], where the first Y is the random variable
Y and the second Y is a value that that the random variable can take and thus the expectation is
a function of the second Y . So, E[X|Y ] is a function of Y .

Example 2. We have 4 balls, and each of them has their color and weight.

Color Weight
Ball 1 “Red” 3
Ball 2 “Red” 5
Ball 3 “Blue” 2
Ball 4 “Blue” 7

We randomly pick a ball, use X to refer to the weight of ball and Y for the color of ball.

E[X|Y = “Red”] =
1

2
× 5 +

1

2
× 3 = 4

E[X|Y = “Blue”] =
1

2
× 2 +

1

2
× 7 = 4.5

E[X|Y ] =

{
4 if Y = “Red”

4.5 if Y = “Blue”
.

So, E[X|Y ] is a function of Y that maps “Red” to 4 and “Blue” to 4.5.

2 Variance

Example 3. If we have two bank accounts both have 1000 dollars. One of them can either be
added or decreased by 1 dollar each month, and the other one can be added or decreased by 500
dollars each month. We use X1 and X2 to represent the money in each account after one month.

X1 =


999 with probability

1

2

1001 with probability
1

2

.
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X2 =


500 with probability

1

2

1500 with probability
1

2

.

E[X1] = E[X2] = 1000. However X2 is more risky, since it is more likely to deviate from the
expectation.

Suppose we have a randomized variable X with µ = E[X]. One way to capture the deviation of
X from its expectation is to use E[|X − µ|]. However, absolute value function makes the definition
hard to use in many cases since it does not have a continuous derivative at X = µ. So instead we
use:

Definition 2 (Variance). The variance of a random variable X, denoted as Var[X] is defined as

Var[X] := E[(X − E[X])2].

In the former example, Var[X1] = 12 = 1, and Var[X2] = 5002 = 2500. However, the squaring
changed the unit. To get a quantity with the same unit as X, we define the standard deviation:

Definition 3 (Standard Deviation). The standard deviation of a random variable X is defined as√
Var[X].

Often, we use σ to denote the standard deviation of a random variable.

Example 3. We have a biased coin toss

X =

{
1 with probability p

0 with probability 1− p
.

The expectation for X is E[X] = p, and the variance for X is

Var[X] = p(1− p) + (1− p)(0− p)2

= p(1− p)[(1− p) + p]

= p(1− p).

Standard deviation of X is: σ[X] =
√
p(1− p).

Lemma 4.
Var[X] = E[X2]− (E[X])2.

Proof.

Var[X] = E[(X − µ)2]

= E[X2 − 2µX + µ2]

= E[X2]− E[2µX] + E[µ2]

= E[X2]− 2E[µX] + µ2

= E[X2]− 2µE[X] + µ2

= E[X2]− 2µ2 + µ2

= E[X2]− µ2

= E[X2]− (E[X])2.

For the basic coin toss example, we have:

Var[X] = E[X2]− p2

= p · 12 + (1− p) · 02 − p2

= p(1− p)

Definition 5. Definition of conditional variance:

Var[X|E] = E[(X − E[X|E])2|E]
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3 Common Distributions

3.1 Bernoulli distribution

Bernoulli distribution is the formal name of the bais coin toss example we showed above.

Definition 6. Then the Bernoulli distribution with parameter p ∈ [0, 1] is defined as

X =

{
1 with probability p

0 with probability 1− p
.

3.2 Binomial distribution

Definition 7. The binomial distribution X with parameters n ∈ Z>0 and p ∈ [0, 1] is the sum of n
independent Bernoulli random variables with parameter p. Then, for every i ∈ {0, 1, 2, · · · , n}, we
have

P (X = i) =

(
n

i

)
pi(1− p)n−i.

The expectation of the above random variable X is E[X] = np.

Proof. X =
∑n

i=1Xi, where Xi is the result of the i-th coin toss. For every i, E[Xi] = p,

E[X] = E[

n∑
i=1

Xi] =

n∑
i=1

E[Xi] = np.

A generalization of the following lemma gives that Var[X] =
∑n

i+1 Var[Xi] = np(1− p).

Lemma 8. If X and Y are independent random variables, then we have Var[X + Y ] = Var[X] +
Var[Y ].

Proof. Suppose µX = E[X], and µY = E[Y ]

Var[X + Y ] = E[(X + Y )− µX − µY ]2

= E[(X − µX)2 + E[(Y − µY )2] + E[2(X − µX)(Y − µY )]

= Var[X] + Var[Y ] + 2E[X − µX ]E[Y − µY ]

= Var[X] + Var[Y ].

The first and the third equalities used the definition of variance. The second equality used the
linearity of expectation.

3.3 Geometric distribution

The geometric distribution with parameter p ∈ (0, 1] is the distribution on the number of Bernoulli
trials with parameter p needed in order to get 1 success. Then, let X be the random variable from
the distribution, we have

Pr[X = i] = (1− p)i−1p, ∀ i = 1, 2, 3, . . . .

As we already showed, we have E[X] = 1
p . The variance of X is Var[X] = 1−p

p2 .

4 Birthday Paradox

There are 365 different possibility for a person’s birthday, and now we have n people in the classroom,
each person will have a birthday that’s uniformly distributed over 365 days. What is the smallest
number n such that the probability that 2 people in the room have the same birthday?

To solve this problem, we first solve a slightly different problem. Let us consider the expected
number of collision pairs: A collision pair is a pair of people with the same birthday. We are
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interested in how big should n be in order for the expectation to be at least 1. For a pair u 6= v of
people, define X{u,v} = 1 if u and v is a collision pair and 0 otherwise. Then,

E[number of collision pairs] = E

∑
{u,v}

X{u,v}

 =
∑
{u,v}

E
[
X{u,v}

]
=
∑
{u,v}

1

365
=

(
n
2

)
365
≈ n2

730
.

In order for the number to be at least 1, we need n ≈
√

365× 2 =
√

730 ≈ 27.
We can also try to compute the threshold n for which the collision probability exceeds 50%. But

there is also a way to approximate the threshold for the first problem. For the sake of simplicity
and generalization, let us define M = 365. Then the probability that there is no collision is exactly

M

M
× M − 1

M
× M − 2

M
× · · · × M − n+ 1

M
= 1× (1− 1

M
)× (1− 2

M
)× · · · × (1− n− 1

M
).

This holds since the first person has M choices to avoid a collision, the second person has M − 1
choices to avoid a collision, and so on. Notice that if 1− x ≈ e−x for x very close to

0

. If n is much smaller than M , then the above quantity can be approximated by

e0 × e−1/M × e−2/M × · · · × e−(n−1)/M = e−n(n−1)/(2M).

So for the probability to be at most 50%, we need n(n− 1)/(2M) to be ln 2. As before, we also
get that it suffices for n to be of order

√
M .
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