
CSE 632 (Fall 2019): Analysis of Algorithms II : Randomized Algorithms

Lecture 6-7 (9/13/2019, 9/18/2019): Hashing
Lecturer: Shi Li Scriber: Kairui Wang, Xian Zhou

1 Pseudo randomness

• Computers can not really produce true random numbers. So how can we design a randomized
algorithm if we do not have an access to a source of randomness?

• “Randomness is in the eyes of the beholder”: Whether the outcome of an experiment is random
or not depends on the power of the person who sees it.

• We use “pseudo-randomness” in our program. Almost all the algorithms we shall design are not
powerful enough to tell the difference between a true randomness and a pseudo-randomness.
Thus they will behave the same as if they are given the true randomness.

2 Hashing

The problem of consideration is the following. We have a dictionary of words, and each word is
associated with a record. Given a word, how can we locate its record as fast as possible? We assume
these words come from a large universe U (e.g., strings of length at most 50), and there is a small
set S ⊆ U of size n = |S| and n� |U |. In an application S can be static or dynamic (in which case
elements can be added to and deleted from S and we assume we always have |S| ≤ n).

Assuming all words have O(1)-length. There are three data structures we can use to solve the
problem.

• (Self-Balancing) Binary Search Tree

– The drawback of using BST is that it takes O(log n) time for accessing a record.

• Prefix Tree (Trie)

– It takes O(1) time to look up a word. However, a drawback of using a trie is that
adding/removing/search for a record is slow when the structure in stored in an external
memory.

• Hash map

– O(1) insertion/deletion/searching time

– easy to implement and fast even when the data structure is stored in an external memory.

Here is the idea of designing the hash map data structure. We define a “hash function” h : U →
[m]. For every word u ∈ S ⊆ U , we store u and its record at the location indexed by h[u]. Hopefully
m = O(n) so that the memory we use is not so big.

If u 6= v ∈ S, but h(u) = h(v), both their records will be stored at the same location and thus
there might be a conflict. There are many ways to address this issue. But for this lecture, we use m
linked lists of records (instead of m records), where the i-th linked list stores the records for all u ∈ S
with h(u) = i. We can perform the following operations: looking up u, inserting u and deleting u.
For all the operations, we first compute i = h(u). For the lookup operation, we scan the i-th linked
list to check if u is there. For the insertion operation, we add u to the beginning of the i-th linked
list. For the deletion operation, we scan the i-th linked list and delete u once we find it. The worst
case running time for lookup and insertion operations is linear in the length of the i-th linked list.

To make sure that the linked list has small length, we use a random hash function h. Hopefully,
the linked lists will be short in expectation.

1

3 Universal Hashing

One can try to choose h randomly from the set of all functions from U to [m]. This is equivalent to
give every element u ∈ U a random hash value h(u) in [m], independent of all the other elements.
This perfect distribution for h will guarantee that all the linked lists will have small expected length.
However, the big issue is storing the function h takes Θ(|U |) words, which is too big. Indeed, we
shall show for the linked lists to be short in expectation, it suffices that h comes from a universal
hash distribution.

Definition 1. A distribution H of hash functions h : u → {1, 2, . . . m} is said to be universal if
for every u 6= v ∈ U , we have

Pr
h∼H

[h(u) = h(u)] =
1

m
.

Notice that the uniform distribution over all functions from U to [m] satisfies the above property
and thus is a universal hash distribution. We first show that if h is randomly chosen from a universal
hash distribution, then a linked list is short in expectation.

Lemma 2. Let H be a universal hash distribution with m = 2n. Let h be a random hash function
from h. Then for every u ∈ S, we have

E[length of h(u)-th linked list] ≤ 1.5.

Proof.

E[length of h(u)-th linked list] = E[|{v ∈ S : h(u) = h(v)}|]

=
∑
v∈S

E
[
1h(u)=h(v)

]
=
∑
v∈S

Pr[h(u) = h(v)] = 1 +
∑

v∈S\{u}

Pr[h(u) = h(v)]

= 1 + (|S| − 1)
1

m
≤ 1.5.

This finishes the proof of the lemma.

3.1 A Universal Hash Distribution

One method for constructing a hash family is based on the following simple observation: If we have
two vectors x ∈ {0, 1}n and y ∈ {0, 1}n, and x 6= y, and we randomly choose a vector r ∈ {0, 1}n,
then

Pr [〈r, x〉 mod 2 = 〈r, y〉 mod 2] = Pr [〈r, x⊕ y〉 mod 2 = 0] =
1

2
.

It would be convenient to use the field F2. Recall that the field contains two elements 0 and 1,
and the “+” and “×” operations are defined as follows:

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

The “-” operation will be the same as “+” operation for F2.
Thus, the observation can be simple as follows:

Lemma 3. Let x, y ∈ Fn
2 and x 6= y. Then,

Pr
r∼RFn

2

[〈r, x〉 = 〈r, y〉] =
1

2
.

2

We will use the above lemma to define our hash function distribution. Let us assume U =
Fu
2 ,m = 2b. We then randomly choose b vectors z1, z2, · · · , zb ∈ Fu

2 . For simplicity let us define the
matrix Z ∈ Fb×u

2 as

Z =

zT1
zT2
...
zTb

 ∈ Fb×u
2 .

Then, we define the hash function h as follows: for every x ∈ U = Fu
2 , we have

h(x) =

〈z1, x〉
〈z2, x〉

...
〈zb, x〉

 = Zx.

Lemma 4. For every x 6= y ∈ U = Fu
2 , we have

Pr[h(x) = h(y)] =
1

2b
=

1

m
.

Proof. To have h(x) = h(y), we must have 〈zi, x〉 = 〈zi, y〉 for every i ∈ [b]. By Lemma 3, this
happens with probability exactly 1

2b
= 1

m .

So the hash distribution H we constructed is universal. Notice that we only need to store the
matrix Z in order to store a randomly sampled function h from the distribution H. So, we only
need ub bits to describe the function h.

4 Perfect Hashing

The universal hashing scheme gives a randomized structure where every linked list is short in ex-
pectation. However, it may be the case that with very large probability, some linked list will be
long (say, of order ω(1)). That is, some element will require ω(1) lookup time. The question of this
section is the following: suppose the set S of interesting words is static, can we design a hashing
scheme where every u ∈ S has O(1) colliding elements?

Indeed, we can achieve an even stronger property: there are no collision pairs in the hash function
scheme. First, we show that if m is much bigger than n, with large probability there is no collision
pairs.

Lemma 5. Let H be a universal hashing distribution with m = n2. Then, we have

Pr
h

[
∀u 6= v ∈ S, h (u) 6= h (v)

]
≥ 1

2
.

Proof. For every u, v ∈ S, define same(u, v) =

{
1 h (u) = h (v)

0 h (u) 6= h (v)
. Then,

E
[
| {{u, v} : u 6= v ∈ S, h (u) = h (v)} |

]
= E

∑
{u,v}

same (u, v)

=
∑
{u,v}

E [same (u, v)] =
∑
{u,v}

1

m
=

1

m

(
n

2

)
≤ 1

2
.

We used the linearity of expectation in the second equality.
Now we use Markov Inequality: Given a non-negative random variable X with µ = E[X], we

have that Pr [X ≥ tu] ≤ 1
t for every t ≥ 1. Thus, with probability at most 1/2, the number of {u, v}

pairs with h(u) = h(v) is at least 1. This means with probability at least 1/2, there are no collision
pairs.

3

We can repeatedly choose the hash function h from H until we see no collisions. By the ex-
pectations of geometric distributions, we need to sample h twice in expectation. Thus, we have
constructed a hash scheme without collisions. However, a big issue with this approach is that the
memory needed is still Θ

(
n2
)
, since we need to keep so many heads of linked lists.

4.1 A Two-Level Hashing Scheme

To address the above issue, we use two levels of hash functions. For the first level, we use a universal
hash distribution H with m = 2n. Then every element u ∈ S is supposed to be stored in the h(u)-th
set. However, if there are ni ≥ 2 elements u ∈ S with h(u) = i, we shall use a second-level universal
hashing distribution H〉 with range size mi = n2i for the ni elements. As showed by Lemma 5, we
can guarantee that there are no collisions between the ni elements, if we repeatedly select hi from
H〉. Since we apply the procedure for every i ∈ [m] with ni ≥ 2, there are no collisions in the overall
two-level scheme.

It remains to bound the memory we need to use for the scheme. For the i-th set, we use mi = n2i
and thus the memory we need is O

(∑m
i=1 n

2
i

)
. We show that this is small in expectation:

E
[∑m

i=1
n2i

]
= E

[∣∣ {(u, v) : u, v ∈ S, h (u) = h (v)}
∣∣] = n+

n (n− 1)

m
≤ 1.5n.

We used the linearity of expectation for the second equality: for every u = v ∈ S, we have Pr[h(u) =
h(v)] = 1 and for every u 6= v ∈ S, we have Pr[h(u) = h(v)] = 1

m .
Using Markov inequality again, we have

Pr

[
m∑
i=1

n2i ≥ 3n

]
≤ 1

2
.

We can repeatedly choose the first level hash function h from H until the above equality holds;
again, we only need to sample h twice in expectation.

4

