Problem 1 (30 points). Consider the procedure of throwing \(m \) balls into \(n \) bins, where each ball is thrown into 1 of the \(n \) bins, uniformly at random independently of the other balls. For any integer \(f \), let \(E_f \) be the event that some bin contains at least \(f \) balls. We are interested in the following question: how big should \(f \) be so that \(\Pr[E_f] \leq 0.1 \)? Prove the following statements for three different values of \(m \):

- If \(m = n \), then for some \(f = O\left(\frac{\log n}{\log \log n}\right) \), we have \(\Pr[E_f] \leq 0.1 \).
- If \(m = n \log_2 n \) (assuming \(\log_2 n \) is an integer), then for some \(f = O(\log n) \), we have \(\Pr[E_f] \leq 0.1 \).
- If \(m = n^2 \), then for some \(f = n + O(\sqrt{n} \log_2 n) \), we have \(\Pr[E_f] \leq 0.1 \).

Problem 2 (20 points). Suppose we have an array \(A \) of \(n \) distinct integers. We say an integer in \(A \) is an approximate median, if its rank in \(A \) is between \(0.4n \) and \(0.6n \) (the rank of \(x \) is the number of integers in \(A \) that are smaller than or equal to \(x \)). Consider the following algorithm for finding the approximate median of \(A \):

1. \textbf{for} \(i \leftarrow 1 \) to \(m \) \textbf{do}
2. \hspace{1em} let \(B[i] \) be a number chosen uniformly at random from the array \(A \)
3. \hspace{1em} output the median of array \(B \)

Show that for the algorithm to succeed with probability at least \(1 - 1/n^2 \), it suffices to choose \(m = O(\log n) \). (Thus, the running time to find an approximate median is much smaller than the running time to find the (exact) median.)

Problem 3 (10 points). Consider the following game.

1. put \(a \) white balls and \(b \) black balls into a bin
2. \textbf{repeat} \(n \) times:
3. \hspace{1em} randomly pick a ball from the bin
4. \hspace{1em} put the picked ball back and additionally add another ball of the same color to the bin

So at the end of the game, we have in total \(a + b + n \) balls.

For every \(i = 1, \cdots, n \), let \(Y_i \) be the fraction of black balls in the bin after the \(i \)-th iteration of the loop. Show that \(Y_1, Y_2, \cdots, Y_i \) is a martingale sequence.