1 Conditional Expectation

Definition 1. Given an event E and a random variable X, the expectation of X conditioned on E is defined as

$$E[X|E] := \sum_x P(X = x|E) \cdot x$$

In this case, it’s like we now have a new probability space which only contain the situation when E happened.

Example 1. When we roll a fair dice, and we only count for the even outcome, which is $E = \{2, 4, 6\}$. In this case, each outcome has a $\frac{1}{3}$ probability to show up. That is, $P(X = 2|E) = P(X = 4|E) = P(X = 6|E) = \frac{1}{3}$.

Suppose we have another random variable Y and a value y that Y can take, then we have

$$E[X|Y = y] = \sum_x P(X = x|Y = y) \cdot x.$$

Above, we treat $Y = y$ as an event. However, often we use shortcut notion $E[X|Y]$, which seems to be not well-defined. We should think of it as $E[X|Y = Y]$, where the first Y is the random variable Y and the second Y is a value that the random variable can take and thus the expectation is a function of the second Y. So, $E[X|Y]$ is a function of Y.

Example 2. We have 4 balls, and each of them has their color and weight.

<table>
<thead>
<tr>
<th></th>
<th>Color</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball 1</td>
<td>“Red”</td>
<td>3</td>
</tr>
<tr>
<td>Ball 2</td>
<td>“Red”</td>
<td>5</td>
</tr>
<tr>
<td>Ball 3</td>
<td>“Blue”</td>
<td>2</td>
</tr>
<tr>
<td>Ball 4</td>
<td>“Blue”</td>
<td>7</td>
</tr>
</tbody>
</table>

We randomly pick a ball, use X to refer to the weight of ball and Y for the color of ball.

$$E[X|Y = “Red”] = \frac{1}{2} \times 5 + \frac{1}{2} \times 3 = 4$$

$$E[X|Y = “Blue”] = \frac{1}{2} \times 2 + \frac{1}{2} \times 7 = 4.5$$

$$E[X|Y] = \begin{cases} 4 & \text{if } Y = “Red” \\ 4.5 & \text{if } Y = “Blue” \end{cases}$$

So, $E[X|Y]$ is a function of Y that maps “Red” to 4 and “Blue” to 4.5.

2 Variance

Example 3. If we have two bank accounts both have 1000 dollars. One of them can either be added or decreased by 1 dollar each month, and the other one can be added or decreased by 500 dollars each month. We use X_1 and X_2 to represent the money in each account after one month.

$$X_1 = \begin{cases} 999 & \text{with probability } \frac{1}{2} \\ 1001 & \text{with probability } \frac{1}{2} \end{cases}$$
\[X_2 = \begin{cases}
500 & \text{with probability } \frac{1}{2}, \\
1500 & \text{with probability } \frac{1}{2}.
\end{cases} \]

\(\mathbb{E}[X_1] = \mathbb{E}[X_2] = 1000. \) However \(X_2 \) is more risky, since it is more likely to deviate from the expectation.

Suppose we have a randomized variable \(X \) with \(\mu = \mathbb{E}[X] \). One way to capture the deviation of \(X \) from its expectation is to use \(\mathbb{E}[|X - \mu|] \). However, absolute value function makes the definition hard to use in many cases since it does not have a continuous derivative at \(X = \mu \). So instead we use:

Definition 2 (Variance). *The variance of a random variable \(X \), denoted as \(\text{Var}[X] \) is defined as*

\[
\text{Var}[X] := \mathbb{E}[(X - \mathbb{E}[X])^2].
\]

In the former example, \(\text{Var}[X_1] = 1^2 = 1 \), and \(\text{Var}[X_2] = 500^2 = 2500 \). However, the squaring changed the unit. To get a quantity with the same unit as \(X \), we define the standard deviation:

Definition 3 (Standard Deviation). *The standard deviation of a random variable \(X \) is defined as \(\sqrt{\text{Var}[X]} \).*

Often, we use \(\sigma \) to denote the standard deviation of a random variable.

Example 3. We have a biased coin toss

\[
X = \begin{cases}
1 & \text{with probability } p, \\
0 & \text{with probability } 1 - p.
\end{cases}
\]

The expectation for \(X \) is \(\mathbb{E}[X] = p \), and the variance for \(X \) is

\[
\]

Standard deviation of \(X \) is: \(\sigma[X] = \sqrt{p(1 - p)} \).

Lemma 4.

\[
\text{Var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.
\]

Proof.

\[
\text{Var}[X] = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2 - 2\mu X + \mu^2] = \mathbb{E}[X^2] - 2\mathbb{E}[\mu X] + \mathbb{E}[\mu^2] = \mathbb{E}[X^2] - 2\mu\mathbb{E}[X] + \mu^2 = \mathbb{E}[X^2] - 2\mu^2 + \mu^2 = \mathbb{E}[X^2] - \mu^2 = \mathbb{E}[X^2] - (\mathbb{E}[X])^2. \quad \Box
\]

For the basic coin toss example, we have:

\[
\text{Var}[X] = \mathbb{E}[X^2] - p^2 = p \cdot 1^2 + (1 - p) \cdot 0^2 - p^2 = p(1 - p)
\]

Definition 5. *Definition of conditional variance:*

\[
\text{Var}[X|E] = \mathbb{E}[(X - \mathbb{E}[X|E])^2|E]
\]
3 Common Distributions

3.1 Bernoulli distribution

Bernoulli distribution is the formal name of the biased coin toss example we showed above.

Definition 6. Then the Bernoulli distribution with parameter \(p \in [0, 1] \) is defined as

\[
X = \begin{cases}
1 & \text{with probability } p \\
0 & \text{with probability } 1 - p.
\end{cases}
\]

3.2 Binomial distribution

Definition 7. The binomial distribution \(X \) with parameters \(n \in \mathbb{Z} > 0 \) and \(p \in [0, 1] \) is the sum of \(n \) independent Bernoulli random variables with parameter \(p \). Then, for every \(i \in \{0, 1, 2, \ldots, n\} \), we have

\[
P(X = i) = \binom{n}{i} p^i (1 - p)^{n-i}.
\]

The expectation of the above random variable \(X \) is \(E[X] = np \).

Proof. \(X = \sum_{i=1}^{n} X_i \), where \(X_i \) is the result of the \(i \)-th coin toss. For every \(i \), \(E[X_i] = p \),

\[
E[X] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = np.
\]

A generalization of the following lemma gives that \(\text{Var}[X] = \sum_{i=1}^{n} \text{Var}[X_i] = np(1 - p) \).

Lemma 8. If \(X \) and \(Y \) are independent random variables, then we have \(\text{Var}[X + Y] = \text{Var}[X] + \text{Var}[Y] \).

Proof. Suppose \(\mu_X = E[X] \), and \(\mu_Y = E[Y] \)

\[
\text{Var}[X + Y] = \text{E}[(X + Y) - \mu_X - \mu_Y]^2 = \text{E}[(X - \mu_X)^2 + (Y - \mu_Y)^2] + \text{E}[2(X - \mu_X)(Y - \mu_Y)] = \text{Var}[X] + \text{Var}[Y] + 2 \text{E}[X - \mu_X] \text{E}[Y - \mu_Y] = \text{Var}[X] + \text{Var}[Y].
\]

The first and the third equalities used the definition of variance. The second equality used the linearity of expectation.

3.3 Geometric distribution

The geometric distribution with parameter \(p \in (0, 1) \) is the distribution on the number of Bernoulli trials with parameter \(p \) needed in order to get 1 success. Then, let \(X \) be the random variable from the distribution, we have

\[
\text{Pr}[X = i] = (1 - p)^{i-1} p, \quad \forall \ i = 1, 2, 3, \ldots
\]

As we already showed, we have \(E[X] = \frac{1}{p} \). The variance of \(X \) is \(\text{Var}[X] = \frac{1-p}{p^2} \).

4 Birthday Paradox

There are 365 different possibility for a person’s birthday, and now we have \(n \) people in the classroom, each person will have a birthday that’s uniformly distributed over 365 days. What is the smallest number \(n \) such that the probability that 2 people in the room have the same birthday?

To solve this problem, we first solve a slightly different problem. Let us consider the expected number of collision pairs: A collision pair is a pair of people with the same birthday. We are
interested in how big should n be in order for the expectation to be at least 1. For a pair $u \neq v$ of people, define $X_{\{u,v\}} = 1$ if u and v is a collision pair and 0 otherwise. Then,

$$E[\text{number of collision pairs}] = E\left[\sum_{\{u,v\}} X_{\{u,v\}} \right] = \sum_{\{u,v\}} E[X_{\{u,v\}}] = \sum_{\{u,v\}} \frac{1}{365} = \frac{\binom{n}{2}}{365} \approx \frac{n^2}{730}.$$

In order for the number to be at least 1, we need $n \approx \sqrt{365 \times 2} = \sqrt{730} \approx 27$.

We can also try to compute the threshold n for which the collision probability exceeds 50%. But there is also a way to approximate the threshold for the first problem. For the sake of simplicity and generalization, let us define $M = 365$. Then the probability that there is no collision is exactly

$$\frac{M}{M} \times \frac{M-1}{M} \times \frac{M-2}{M} \times \cdots \times \frac{M-n+1}{M} = 1 \times (1 - \frac{1}{M}) \times (1 - \frac{2}{M}) \times \cdots \times (1 - \frac{n-1}{M}).$$

This holds since the first person has M choices to avoid a collision, the second person has $M - 1$ choices to avoid a collision, and so on. Notice that if $1 - x \approx e^{-x}$ for x very close to 0.

If n is much smaller than M, then the above quantity can be approximated by

$$e^0 \times e^{-1/M} \times e^{-2/M} \times \cdots \times e^{-(n-1)/M} = e^{-n(n-1)/(2M)}.$$

So for the probability to be at most 50%, we need $n(n-1)/(2M)$ to be $\ln 2$. As before, we also get that it suffices for n to be of order \sqrt{M}.
