1 Pseudo randomness

- Computers cannot really produce true random numbers. So how can we design a randomized algorithm if we do not have an access to a source of randomness?
- “Randomness is in the eyes of the beholder”: Whether the outcome of an experiment is random or not depends on the power of the person who sees it.
- We use “pseudo-randomness” in our program. Almost all the algorithms we shall design are not powerful enough to tell the difference between a true randomness and a pseudo-randomness. Thus they will behave the same as if they are given the true randomness.

2 Hashing

The problem of consideration is the following. We have a dictionary of words, and each word is associated with a record. Given a word, how can we locate its record as fast as possible? We assume these words come from a large universe \(U \) (e.g., strings of length at most 50), and there is a small set \(S \subseteq U \) of size \(n = |S| \) and \(n \ll |U| \). In an application \(S \) can be static or dynamic (in which case elements can be added to and deleted from \(S \) and we assume we always have \(|S| \leq n \)).

Assuming all words have \(O(1) \)-length. There are three data structures we can use to solve the problem.

- (Self-Balancing) Binary Search Tree
 - The drawback of using BST is that it takes \(O(\log n) \) time for accessing a record.
- Prefix Tree (Trie)
 - It takes \(O(1) \) time to look up a word. However, a drawback of using a trie is that adding/removing/search for a record is slow when the structure is stored in an external memory.
- Hash map
 - \(O(1) \) insertion/deletion/searching time
 - easy to implement and fast even when the data structure is stored in an external memory.

Here is the idea of designing the hash map data structure. We define a “hash function” \(h : U \rightarrow [m] \). For every word \(u \in S \subseteq U \), we store \(u \) and its record at the location indexed by \(h(u) \). Hopefully \(m = O(n) \) so that the memory we use is not so big.

If \(u \neq v \in S \), but \(h(u) = h(v) \), both their records will be stored at the same location and thus there might be a conflict. There are many ways to address this issue. But for this lecture, we use \(m \) linked lists of records (instead of \(m \) records), where the \(i \)-th linked list stores the records for all \(u \in S \) with \(h(u) = i \). We can perform the following operations: looking up \(u \), inserting \(u \) and deleting \(u \). For all the operations, we first compute \(i = h(u) \). For the lookup operation, we scan the \(i \)-th linked list to check if \(u \) is there. For the insertion operation, we add \(u \) to the beginning of the \(i \)-th linked list. For the deletion operation, we scan the \(i \)-th linked list and delete \(u \) once we find it. The worst case running time for lookup and insertion operations is linear in the length of the \(i \)-th linked list.

To make sure that the linked list has small length, we use a random hash function \(h \). Hopefully, the linked lists will be short in expectation.
3 Universal Hashing

One can try to choose h randomly from the set of all functions from U to $[m]$. This is equivalent to give every element $u \in U$ a random hash value $h(u)$ in $[m]$, independent of all the other elements. This perfect distribution for h will guarantee that all the linked lists will have small expected length. However, the big issue is storing the function h takes $\Theta(|U|)$ words, which is too big. Indeed, we shall show for the linked lists to be short in expectation, it suffices that h comes from a universal hash distribution.

Definition 1. A distribution H of hash functions $h : u \rightarrow \{1, 2, \ldots, m\}$ is said to be universal if for every $u \neq v \in U$, we have

$$\Pr_{h \sim H}[h(u) = h(v)] = \frac{1}{m}.$$

Notice that the uniform distribution over all functions from U to $[m]$ satisfies the above property and thus is a universal hash distribution. We first show that if h is randomly chosen from a universal hash distribution, then a linked list is short in expectation.

Lemma 2. Let H be a universal hash distribution with $m = 2^n$. Let h be a random hash function from H. Then for every $u \in S$, we have

$$E[\text{length of } h(u)\text{-th linked list}] \leq 1.5.$$

Proof.

$$E[\text{length of } h(u)\text{-th linked list}] = E[|\{v \in S : h(u) = h(v)\}|]$$

$$= \sum_{v \in S} E[1_{h(u) = h(v)}]$$

$$= \sum_{v \in S} Pr[h(u) = h(v)] = 1 + \sum_{v \in S \setminus \{u\}} Pr[h(u) = h(v)]$$

$$= 1 + (|S| - 1) \frac{1}{m}$$

$$\leq 1.5.$$

This finishes the proof of the lemma. \qed

3.1 A Universal Hash Distribution

One method for constructing a hash family is based on the following simple observation: If we have two vectors $x \in \{0, 1\}^n$ and $y \in \{0, 1\}^n$, and $x \neq y$, and we randomly choose a vector $r \in \{0, 1\}^n$, then

$$Pr[(r, x) \mod 2 = (r, y) \mod 2] = Pr[(r, x \oplus y) \mod 2 = 0] = \frac{1}{2}.$$

It would be convenient to use the field \mathbb{F}_2. Recall that the field contains two elements 0 and 1, and the “+” and “×” operations are defined as follows:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>×</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The “−” operation will be the same as “+” operation for \mathbb{F}_2.

Thus, the observation can be simple as follows:

Lemma 3. Let $x, y \in \mathbb{F}_2^n$ and $x \neq y$. Then,

$$Pr_{r \sim \mathbb{F}_2^n}[\langle r, x \rangle = \langle r, y \rangle] = \frac{1}{2}.$$

We will use the above lemma to define our hash function distribution. Let us assume $U = \mathbb{F}_2^u, m = 2^k$. We then randomly choose b vectors $z_1, z_2, \ldots, z_b \in \mathbb{F}_2^u$. For simplicity let us define the matrix $Z \in \mathbb{F}_2^{b \times u}$ as

$$Z = \begin{pmatrix} z_1^T \\ z_2^T \\ \vdots \\ z_b^T \end{pmatrix} \in \mathbb{F}_2^{b \times u}.$$

Then, we define the hash function h as follows: for every $x \in U = \mathbb{F}_2^u$, we have

$$h(x) = \begin{pmatrix} \langle z_1, x \rangle \\ \langle z_2, x \rangle \\ \vdots \\ \langle z_b, x \rangle \end{pmatrix} = Zx.$$

Lemma 4. For every $x \neq y \in U = \mathbb{F}_2^u$, we have

$$\Pr[h(x) = h(y)] = \frac{1}{2^b} = \frac{1}{m}.$$

Proof. To have $h(x) = h(y)$, we must have $\langle z_i, x \rangle = \langle z_i, y \rangle$ for every $i \in [b]$. By Lemma 3, this happens with probability exactly $\frac{1}{2^b} = \frac{1}{m}$.

So the hash distribution \mathcal{H} we constructed is universal. Notice that we only need to store the matrix Z in order to store a randomly sampled function h from the distribution \mathcal{H}. So, we only need ub bits to describe the function h.

4 Perfect Hashing

The universal hashing scheme gives a randomized structure where every linked list is short in expectation. However, it may be the case that with very large probability, some linked list will be long (say, of order $\omega(1)$). That is, some element will require $\omega(1)$ lookup time. The question of this section is the following: suppose the set S of interesting words is static, can we design a hashing scheme where every $u \in S$ has $O(1)$ colliding elements?

Indeed, we can achieve an even stronger property: there are no collision pairs in the hash function scheme. First, we show that if m is much bigger than n, with large probability there is no collision pairs.

Lemma 5. Let \mathcal{H} be a universal hashing distribution with $m = n^2$. Then, we have

$$\Pr_h[\forall u \neq v \in S, h(u) \neq h(v)] \geq \frac{1}{2}.$$

Proof. For every $u, v \in S$, define $\text{same}(u, v) = \begin{cases} 1 & h(u) = h(v) \\ 0 & h(u) \neq h(v) \end{cases}$. Then,

$$\mathbb{E} \left[| \{ u, v \} : u \neq v \in S, h(u) = h(v) \} \right] = \mathbb{E} \left[\sum_{\{u, v\}} \text{same}(u, v) \right] = \sum_{\{u, v\}} \mathbb{E}[\text{same}(u, v)] = \sum_{\{u, v\}} \frac{1}{m} = \frac{m(n \choose 2)}{m} \leq \frac{1}{2}.$$

We used the linearity of expectation in the second equality.

Now we use Markov Inequality: Given a non-negative random variable X with $\mu = \mathbb{E}[X]$, we have that $\Pr[X \geq tu] \leq \frac{1}{t}$ for every $t \geq 1$. Thus, with probability at most $1/2$, the number of $\{u, v\}$ pairs with $h(u) = h(v)$ is at least 1. This means with probability at least $1/2$, there are no collision pairs.

3
We can repeatedly choose the hash function \(h \) from \(\mathcal{H} \) until we see no collisions. By the expectations of geometric distributions, we need to sample \(h \) twice in expectation. Thus, we have constructed a hash scheme without collisions. However, a big issue with this approach is that the memory needed is still \(\Theta(n^2) \), since we need to keep so many heads of linked lists.

4.1 A Two-Level Hashing Scheme

To address the above issue, we use two levels of hash functions. For the first level, we use a universal hash distribution \(\mathcal{H} \) with \(m = 2n \). Then every element \(u \in S \) is supposed to be stored in the \(h(u) \)-th set. However, if there are \(n_i \geq 2 \) elements \(u \in S \) with \(h(u) = i \), we shall use a second-level universal hashing distribution \(\mathcal{H}_i \) with range size \(m_i = n_i^2 \) for the \(n_i \) elements. As showed by Lemma 5, we can guarantee that there are no collisions between the \(n_i \) elements, if we repeatedly select \(h_i \) from \(\mathcal{H}_i \). Since we apply the procedure for every \(i \in [m] \) with \(n_i \geq 2 \), there are no collisions in the overall two-level scheme.

It remains to bound the memory we need to use for the scheme. For the \(i \)-th set, we use \(m_i = n_i^2 \) and thus the memory we need is \(O\left(\sum_{i=1}^{m} n_i^2\right) \). We show that this is small in expectation:

\[
\mathbb{E}\left[\sum_{i=1}^{m} n_i^2\right] = \mathbb{E}\left[\left|\{(u,v): u,v \in S, h(u) = h(v)\}\right|\right] = n + \frac{n(n-1)}{m} \leq 1.5n.
\]

We used the linearity of expectation for the second equality: for every \(u = v \in S \), we have \(\Pr[h(u) = h(v)] = 1 \) and for every \(u \neq v \in S \), we have \(\Pr[h(u) = h(v)] = \frac{1}{m} \).

Using Markov inequality again, we have

\[
\Pr\left[\sum_{i=1}^{m} n_i^2 \geq 3n\right] \leq \frac{1}{2}.
\]

We can repeatedly choose the first level hash function \(h \) from \(\mathcal{H} \) until the above equality holds; again, we only need to sample \(h \) twice in expectation.