\[P_{r} \left[\sum_{i=1}^{k} Y_i \geq (1+s)c \right] \leq \left(\frac{e^s}{(1+s)^{1+s}} \right)^c \]

\[s = \frac{2 \log N}{\log \log N} \]

\[f = \left(\frac{2 \log N}{\log \log N} \right)^{2 \log N / \log \log N} \]

\[= \log N \cdot \frac{\log N}{\log \log N} = N \]

Q: for what \(s \), do we have \(f^s = N \)
\[f = \frac{\log N}{\log \log N} \]

\[f^* = \left(\frac{\log N}{\log \log N} \right)^{\frac{\log N}{\log \log N}} \]

\[\leq \left(\log N \right)^{\frac{\log N}{\log \log N}} \]

\[= N. \]

A: \[f = \Theta \left(\frac{\log N}{\log \log N} \right) \]

if we set \(f = \Theta \left(\frac{\log n}{\log \log n} \right) \) to be big enough,

then we have

\[\Pr \left[\sum_{i=1}^{k} Y_i \geq (1+\varepsilon)c \right] \leq \frac{1}{2^m} \]

the congestion of \(e \) is at least \(c(1+\varepsilon)c \).
If we consider all edges, using union bound:

\[\Pr \left[\exists e \in E, \text{ congestion of } e \text{ is at least } (1+\delta)C \right] \leq \frac{1}{2m} \cdot m = \frac{1}{2} \]

\[\Pr \left[\forall e \in E, \text{ congestion of } e \text{ is less than } (1+\delta)C \right] \geq 1 - \frac{1}{2} = \frac{1}{2} \]

Weight vertex cover:

\[G = (V, E), \ w \in \mathbb{R}_{\geq 0}^V \]

Goal: find a vertex cover \(S \) with minimum \(\sum_{v \in S} w_v \).

Vertex cover:

2-approximation

1. LP rounding
2. Greedy algorithm
① can be easily extended to weighted vertex cover.

② cannot.

Today: more general greedy algorithm that gives a 2-approximation for weighted vertex cover.

Technique: primal-dual algorithm:

Construct a solution for the problem, and a dual solution for the dual LP, so that we can bound the cost of solution.
Primal: \[\min \sum_{v \in V} w_v x_v \]
\[x_u + x_v \geq 1, \forall (u,v) \in E \]
\[x_u \geq 0, \forall u \in V \]

Dual: \[\max \sum_{e \in E} y_e \]
\[\sum_{e \in \delta(v)} y_e \leq w_v, \forall v \in V \]
\[y_e \geq 0, \forall e \in E \]

How should we interpret the dual variables \((y_e)_{e \in E}\)?

\(y_e\): the price that \(e\) is willing to pay to get covered.
\(y_e \leftarrow 0 \ \forall e \in E \)

\(S \leftarrow \emptyset \)

while \(\exists (u, v) \in E \) that is not covered by \(S \): increase \(y_e \) until

\[\sum_{e' \in S(u)} y_{e'} = Wu, \ OR \]

\[\sum_{e' \in S(v)} y_{e'} = Wv. \]

add \(u \), and/or \(v \) to \(S \), depending on whether constraints are tight.

always maintain \(S \) is the set of tight vertices:

a vertex \(u \) is tight if

\[\sum_{e \in S(u)} y_e = Wu. \]
Analysis of the primal-dual algorithm:

1. S is a valid vertex cover when the algorithm terminates.
2. Algorithm runs in polynomial time.
3. Need to prove algorithm is a 2-approximation.

$S = \{a, b, d\}$

$y = (3, 0, 1, 0, 2)$

If all weights are 1, algorithm is the greedy algorithm.
(3a) y is a valid dual solution.

(3b)

$$\sum_{vw} w_{vw} \leq \sum_{v \in S} e_{v} \leq \sum_{v \in S} y \cdot e_{v} \leq 2 \cdot \sum_{e \in E} y \cdot e \leq 2 \cdot (\text{dual value}) \leq 2 \cdot (\text{optimum cost})$$

$$\text{D} \leq p \leq \text{I}$$

Value of dual LP

Value of primal LP

Value of integer program