b-matching:
Given: bipartite graph
\[G = (U \cup V, E) \]
integer vector
\[b \in \mathbb{Z}_{\geq 0} \]
Goal: find a set \(M \) of edges such that every vertex \(v \in U \cup V \) is incident to at most \(b_v \) edges in \(M \).
Maximize \(|M| \)

variant 0 \(M \) can be a multi-set
variant 1 \(M \) must be a set

1. Reduction to \(s-t \) maximum flow problem

Diagram:
- Graph \(G = (U \cup V, E) \)
- Integer vector \(b \in \mathbb{Z}_{\geq 0} \)
- Maximize \(|M| \)
- Reduction to \(s-t \) maximum flow problem
Assume $\sum_{v \in L} bv = \sum_{v \in R} bv$.

A perfect b-matching is a (multi-)set M of edges, where every vertex $v \in L \cup R$ is incident to exactly b_v edges.

Suppose G does not have a perfect b-matching, what structure can we find in G?

Variant 1: multiset variant.

$X \in N(x)$

Lemma: If G does not have a perfect b-matching, then there exists a $X \subseteq L$, s.t.

$\sum_{u \in N(x)} b_u < \sum_{v \in X} bv$.
suppose there is no perfect b-matching
then size of maximum b-matching

$$\leq \sum_{u \in L} bu$$

\Rightarrow value of maximum flow

$$is \leq \sum_{u \in L} bu$$

\Rightarrow \exists cut of value $\leq \sum_{u \in L} bu$

There are no edges between

SNL and RNT

the value of the cut (S, T)

$$= \sum_{v \in LT} bv + \sum_{v \in VESAR} bv$$

$$< \sum_{v \in LT} bv$$

\Leftrightarrow $\sum_{V \in VESAR} bv \leq \sum_{V \in VELAS} bv$

\Rightarrow variant (2):

$$\begin{array}{c}
2 \\
2
\end{array}$$