CSE 632: Analysis of Algorithms II: Combinatorial Optimization and Linear Programming (Fall 2020)

Matroid and Submodular Optimization

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
1 Motivation: Maximum Weight Spanning Tree

2 Introduction to Matroid
 • Analysis of Greedy Algorithm

3 Examples of Matroids
Maximum Weight Spanning Tree

Input: connected graph with edge weights (weights = profits)

Output: the maximum weight spanning tree (or a sub-graph without cycles)
Maximum Weight Spanning Tree

Input: connected graph with edge weights (weights = profits)

Output: the maximum weight spanning tree (or a sub-graph without cycles)
Kruskal’s Algorithm for Maximum Weight Spanning Tree

1: \(F \leftarrow \emptyset \)
2: \textbf{while} \(F \) is not a spanning tree \textbf{do}
3: \quad \text{find the most profitable edge} \ e \ \epsilon \ E \setminus F \text{ such that} \ F \cup \{e\} \text{ does not contain a cycle}
4: \quad F \leftarrow F \cup \{e\}
Kruskal’s Algorithm for Maximum Weight Spanning Tree

1: \(F \leftarrow \emptyset \)
2: \textbf{while} \(F \) is not a spanning tree \textbf{do}
3: \quad find the most profitable edge \(e \in E \setminus F \) such that \(F \cup \{e\} \) does not contain a cycle
4: \quad \(F \leftarrow F \cup \{e\} \)
Kruskal’s Algorithm for Maximum Weight Spanning Tree

1: \(F \leftarrow \emptyset \)
2: \textbf{while} \(F \) is not a spanning tree \textbf{do}
3: \quad find the most profitable edge \(e \in E \setminus F \) such that \(F \cup \{e\} \) does not contain a cycle
4: \quad \(F \leftarrow F \cup \{e\} \)
Kruskal’s Algorithm for Maximum Weight Spanning Tree

1: \(F \leftarrow \emptyset \)
2: \textbf{while} \(F \) is not a spanning tree \textbf{do}
3: \hspace{1em} find the most profitable edge \(e \in E \setminus F \) such that \(F \cup \{e\} \) does not contain a cycle
4: \hspace{1em} \(F \leftarrow F \cup \{e\} \)
Kruskal’s Algorithm for Maximum Weight Spanning Tree

1: \(F \leftarrow \emptyset \)
2: \textbf{while} \(F \) is not a spanning tree \textbf{do}
3: \quad \text{find the most profitable edge} \(e \in E \setminus F \) such that \(F \cup \{e\} \) does not contain a cycle
4: \quad \(F \leftarrow F \cup \{e\} \)
Kruskal’s Algorithm for Maximum Weight Spanning Tree

1: $F \leftarrow \emptyset$
2: while F is not a spanning tree do
3: find the most profitable edge $e \in E \setminus F$ such that $F \cup \{e\}$ does not contain a cycle
4: $F \leftarrow F \cup \{e\}$
Kruskal’s Algorithm for Maximum Weight Spanning Tree

1: \(F \leftarrow \emptyset \)
2: \textbf{while} \(F \) is not a spanning tree \textbf{do}
3: \hspace{1em} find the most profitable edge \(e \in E \setminus F \) such that \(F \cup \{e\} \) does not contain a cycle
4: \hspace{1em} \(F \leftarrow F \cup \{e\} \)
Kruskal’s Algorithm for Maximum Weight Spanning Tree

1: \(F \leftarrow \emptyset \)
2: \textbf{while} \(F \) is not a spanning tree \textbf{do}
3: \quad \text{find the most profitable edge} \(e \in E \setminus F \) \text{ such that} \(F \cup \{e\} \) does not contain a cycle
4: \quad \(F \leftarrow F \cup \{e\} \)
Kruskal’s Algorithm for Maximum Weight Spanning Tree

1: \(F \leftarrow \emptyset \)
2: while \(F \) is not a spanning tree do
3: find the most profitable edge \(e \in E \setminus F \) such that \(F \cup \{ e \} \) does not contain a cycle
4: \(F \leftarrow F \cup \{ e \} \)
Proof of Correctness of Kruskal’s Algorithm

Def. We say a set $F \subseteq E$ of edges is a failure if there is no optimum solution S such that $F \subseteq S$. That is, F is a failure if it is not a subset of any optimum solution.
Proof of Correctness of Kruskal’s Algorithm

Def. We say a set $F \subseteq E$ of edges is a failure if there is no optimum solution S such that $F \subseteq S$. That is, F is a failure if it is not a subset of any optimum solution.

Obs. If F becomes a failure during the algorithm, then algorithm does not give the optimum solution.
Proof of Correctness of Kruskal’s Algorithm

Def. We say a set $F \subseteq E$ of edges is a **failure** if there is no optimum solution S such that $F \subseteq S$. That is, F is a failure if it is not a subset of any optimum solution.

Obs. If F becomes a failure during the algorithm, then algorithm does not give the optimum solution.

Obs. If algorithm does not give an optimum solution, then there is a first iteration in which the algorithm constructed a failure F.
Def. We say a set $F \subseteq E$ of edges is a failure if there is no optimum solution S such that $F \subseteq S$. That is, F is a failure if it is not a subset of any optimum solution.
Proof of Correctness of Kruskal’s Algorithm

Def. We say a set \(F \subseteq E \) of edges is a **failure** if there is no optimum solution \(S \) such that \(F \subseteq S \). That is, \(F \) is a failure if it is not a subset of any optimum solution.

- assume towards contradiction, algorithm does not produce optimum solution
Def. We say a set \(F \subseteq E \) of edges is a failure if there is no optimum solution \(S \) such that \(F \subseteq S \). That is, \(F \) is a failure if it is not a subset of any optimum solution.

- assume towards contradiction, algorithm does not produce optimum solution
- consider first iteration \(i^* \) which constructed a failure
Proof of Correctness of Kruskal’s Algorithm

Def. We say a set $F \subseteq E$ of edges is a **failure** if there is no optimum solution S such that $F \subseteq S$. That is, F is a failure if it is not a subset of any optimum solution.

- assume towards contradiction, algorithm does not produce optimum solution
- consider first iteration i^* which constructed a failure
- F: chosen edges **before** iteration i^* (So, F is not a failure)
Def. We say a set \(F \subseteq E \) of edges is a **failure** if there is no optimum solution \(S \) such that \(F \subseteq S \). That is, \(F \) is a failure if it is not a subset of any optimum solution.

- \(e^* \): the edge algorithm chooses in iteration \(i^* \)
Proof of Correctness of Kruskal’s Algorithm

Def. We say a set $F \subseteq E$ of edges is a failure if there is no optimum solution S such that $F \subseteq S$. That is, F is a failure if it is not a subset of any optimum solution.

- e^*: the edge algorithm chooses in iteration i^*
- red edges: the optimum solution S containing F.

![Diagram showing connected components and edges in F]
Proof of Correctness of Kruskal’s Algorithm

Def. We say a set $F \subseteq E$ of edges is a **failure** if there is no optimum solution S such that $F \subseteq S$. That is, F is a failure if it is not a subset of any optimum solution.

- e^*: the edge algorithm chooses in iteration i^*
- Red edges: the optimum solution S containing F.
- $S \cup \{e^*\}$ contains a cycle
Def. We say a set $F \subseteq E$ of edges is a failure if there is no optimum solution S such that $F \subseteq S$. That is, F is a failure if it is not a subset of any optimum solution.

- e': another edge on cycle
Def. We say a set $F \subseteq E$ of edges is a failure if there is no optimum solution S such that $F \subseteq S$. That is, F is a failure if it is not a subset of any optimum solution.

- e': another edge on cycle
- swapping e^* and e' gives another optimum solution
Proof of Correctness of Kruskal’s Algorithm

Def. We say a set $F \subseteq E$ of edges is a **failure** if there is no optimum solution S such that $F \subseteq S$. That is, F is a failure if it is not a subset of any optimum solution.

- e': another edge on cycle
- swapping e^* and e' gives another optimum solution
- contradiction with that $F \cup \{e^*\}$ is a failure
A Generic Problem

Input: \(E \): ground set, non-negative weights \(w \) on \(E \)
\(\mathcal{I} \): an implicitly given downward-closed family of subsets of \(E \)

Output: a maximum weight subset \(F \in \mathcal{I} \)
A Generic Problem

Input: E: ground set, non-negative weights w on E

I: an implicitly given downward-closed family of subsets of E

Output: a maximum weight subset $F \in I$

Def. I is downward-closed if for every $S \in I$ and $S' \subseteq S$, we have $S' \in I$.
A Generic Problem

Input: E: ground set, non-negative weights w on E

I: an implicitly given downward-closed family of subsets of E

Output: a maximum weight subset $F \in I$

Def. I is downward-closed if for every $S \in I$ and $S' \subseteq S$, we have $S' \in I$.

- I: family of valid solutions.
A Generic Problem

Input: E: ground set, non-negative weights w on E

\(\mathcal{I}\): an implicitly given **downward-closed** family of subsets of E

Output: a maximum weight subset $F \in \mathcal{I}$

Def. \mathcal{I} is downward-closed if for every $S \in \mathcal{I}$ and $S' \subseteq S$, we have $S' \in \mathcal{I}$.

- \mathcal{I}: family of valid solutions.
- \mathcal{I} is downward-closed: a subset of a valid solution is also valid.
A Generic Problem

Input: E: ground set, non-negative weights w on E

I: an implicitly given downward-closed family of subsets of E

Output: a maximum weight subset $F \in I$

Def. I is downward-closed if for every $S \in I$ and $S' \subseteq S$, we have $S' \in I$.

- I: family of valid solutions.
- I is downward-closed: a subset of a valid solution is also valid.
- typical assumption for maximization problems.
A Generic Problem

Input: \(E \): ground set, non-negative weights \(w \) on \(E \)
\(\mathcal{I} \): an *implicitly* given downward-closed family of subsets of \(E \)

Output: a maximum weight subset \(F \in \mathcal{I} \)

Def. \(\mathcal{I} \) is downward-closed if for every \(S \in \mathcal{I} \) and \(S' \subseteq S \), we have \(S' \in \mathcal{I} \).

- \(\mathcal{I} \): family of valid solutions.
- \(\mathcal{I} \) is downward-closed: a subset of a valid solution is also valid.
- typical assumption for maximization problems.

- *implicitly-given*: we do not list all the sets in \(\mathcal{I} \) in the input. Instead, there is an efficient oracle which, given \(S \subseteq E \), decides if \(S \in \mathcal{I} \).
A Generic Problem

Input: \(E \): ground set, non-negative weights \(w \) on \(E \)
\(\mathcal{I} \): an implicitly given downward-closed family of subsets of \(E \)

Output: a maximum weight subset \(F \in \mathcal{I} \)

Maximum Weight Spanning Tree
A Generic Problem

Input: E: ground set, non-negative weights w on E
I: an implicitly given downward-closed family of subsets of E

Output: a maximum weight subset $F \in I$

Maximum Weight Spanning Tree

- E: set of edges in a graph $G = (V, E)$
A Generic Problem

Input: E: ground set, non-negative weights w on E

I: an implicitly given downward-closed family of subsets of E

Output: a maximum weight subset $F \in I$

Maximum Weight Spanning Tree

- E: set of edges in a graph $G = (V, E)$
- I: family of forests in G. That is, a set $S \subseteq E$ is in I if and only if S does not contain a cycle of G
A Generic Problem

Input: E: ground set, non-negative weights w on E
I: an implicitly given downward-closed family of subsets of E

Output: a maximum weight subset $F \in I$

Maximum Weight Spanning Tree

- E: set of edges in a graph $G = (V, E)$
- I: family of forests in G. That is, a set $S \subseteq E$ is in S if and only if S does not contain a cycle of G
- I is downward-closed: if S does not contain a cycle, then removing edges from S can not create a cycle
A Generic Problem

Input: E: ground set, non-negative weights w on E
I: an implicitly given downward-closed family of subsets of E

Output: a maximum weight subset $F \in I$

Maximum Weight Spanning Tree

- E: set of edges in a graph $G = (V, E)$
- I: family of forests in G. That is, a set $S \subseteq E$ is in S if and only if S does not contain a cycle of G
- I is downward-closed: if S does not contain a cycle, then removing edges from S can not create a cycle
- we do not list all forests; instead, there is an efficient oracle to check if S is a forest or not
A Generic Problem

Input: \(E \): ground set, non-negative weights \(w \) on \(E \)
\(\mathcal{I} \): an implicitly given downward-closed family of subsets of \(E \)

Output: a maximum weight subset \(F \in \mathcal{I} \)

A Natural Generic Greedy Algorithm

1. \(F \leftarrow \emptyset \)
2. **while** \(\exists e \in E \setminus F \) such that \(F \cup \{e\} \in \mathcal{I} \) **do**
3. find the \(e^* \in E \setminus F, F \cup \{e^*\} \in \mathcal{I} \) with maximum \(w_{e^*} \)
4. \(F \leftarrow F \cup \{e^*\} \)

- For maximum-weight spanning tree, the generic algorithm becomes Kruskal’s algorithm.
Q: When does the greedy algorithm give an optimum solution?

- when the problem is maximum-weight spanning tree, algorithm is optimum
- there are cases where algorithm is not optimum

Example:

\[E = \{a, b, c\}, w_a = 10, w_b = 9, w_c = 9\]

\[I = \{\emptyset, \{a\}, \{b\}, \{c\}, \{b, c\}\}\]

Greedy algorithm will choose \(a\), which has weight 10. Optimum solution \(\{b, c\}\) has weight 18.
Q: When does the greedy algorithm give an optimum solution?

- when the problem is maximum-weight spanning tree, algorithm is optimum
- there are cases where algorithm is not optimum

Example:

- $E = \{a, b, c\}, w_a = 10, w_b = 9, w_c = 9,$
- $\mathcal{I} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{b, c\}\}$
Q: When does the greedy algorithm gives an optimum solution?

- when the problem is maximum-weight spanning tree, algorithm is optimum
- there are cases where algorithm is not optimum

Example:

- \(E = \{a, b, c\}, w_a = 10, w_b = 9, w_c = 9 \),
- \(\mathcal{I} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{b, c\}\} \)
- greedy algorithm will choose \(a \), which has weight 10
Q: When does the greedy algorithm gives an optimum solution?

- when the problem is maximum-weight spanning tree, algorithm is optimum
- there are cases where algorithm is not optimum

Example:

\[E = \{a, b, c\}, w_a = 10, w_b = 9, w_c = 9, \]
\[\mathcal{I} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{b, c\}\} \]

- greedy algorithm will choose \(a \), which has weight 10
- optimum solution \(\{b, c\} \) has weight 18.
Q: When does the greedy algorithm gives an optimum solution?
Q: When does the greedy algorithm gives an optimum solution?

A: when the valid solutions form a matroid.
Outline

1 Motivation: Maximum Weight Spanning Tree

2 Introduction to Matroid
 • Analysis of Greedy Algorithm

3 Examples of Matroids
Def. A matroid M is a pair (E, \mathcal{I}), where E is a finite set, and \mathcal{I} is a family of subsets of E such that
Def. A matroid M is a pair (E, \mathcal{I}), where E is a finite set, and \mathcal{I} is a family of subsets of E such that

- $\emptyset \in \mathcal{I}$.
Def. A matroid M is a pair (E, \mathcal{I}), where E is a finite set, and \mathcal{I} is a family of subsets of E such that

- $\emptyset \in \mathcal{I}$.
- \mathcal{I} is downward-closed: if $A \in \mathcal{I}$ and $A' \subseteq A$, then $A' \in \mathcal{I}$.

E is called the ground set of M. Every set in \mathcal{I} is called an independent set of M. So, \mathcal{I} is the set of independent sets of M.
Def. A matroid M is a pair (E, \mathcal{I}), where E is a finite set, and \mathcal{I} is a family of subsets of E such that

- $\emptyset \in \mathcal{I}$.
- \mathcal{I} is downward-closed: if $A \in \mathcal{I}$ and $A' \subseteq A$, then $A' \in \mathcal{I}$.

- E is called the **ground set** of M.

Exchange property:

If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

E is called the ground set of **M**.
Def. A matroid M is a pair (E, \mathcal{I}), where E is a finite set, and \mathcal{I} is a family of subsets of E such that

- $\emptyset \in \mathcal{I}$.
- \mathcal{I} is downward-closed: if $A \in \mathcal{I}$ and $A' \subseteq A$, then $A' \in \mathcal{I}$.

E is called the ground set of M.
Every set in \mathcal{I} is called an independent set of M.
So, \mathcal{I} is the set of independent sets of M.
Def. A matroid M is a pair (E, I), where E is a finite set, and I is a family of subsets of E such that

- $\emptyset \in I$.
- I is downward-closed: if $A \in I$ and $A' \subseteq A$, then $A' \in I$.
- (exchange property) If $A, B \in I$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in I$.

- E is called the ground set of M.
- Every set in I is called an independent set of M.
- So, I is the set of independent sets of M.
Def. A matroid M is a pair (E,\mathcal{I}), where E is a finite set, and \mathcal{I} is a family of subsets of E such that

- $\emptyset \in \mathcal{I}$.
- \mathcal{I} is downward-closed: if $A \in \mathcal{I}$ and $A' \subseteq A$, then $A' \in \mathcal{I}$.
- (exchange property) If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

Def. A matroid M is a pair (E, I), where E is a finite set, and I is a family of subsets of E such that

- $\emptyset \in I$.
- I is downward-closed: if $A \in I$ and $A' \subseteq A$, then $A' \in I$.
- (exchange property) If $A, B \in I$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in I$.

![Diagram showing the exchange property](image)
Def. A matroid M is a pair (E, \mathcal{I}), where E is a finite set, and \mathcal{I} is a family of subsets of E such that

- $\emptyset \in \mathcal{I}$.
- \mathcal{I} is downward-closed: if $A \in \mathcal{I}$ and $A' \subseteq A$, then $A' \in \mathcal{I}$.
- (exchange property) If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

![Diagram](image_url)
Def. A matroid M is a pair (E, I), where E is a finite set, and I is a family of subsets of E such that

- $\emptyset \in I$.
- I is downward-closed: if $A \in I$ and $A' \subseteq A$, then $A' \in I$.
- (exchange property) If $A, B \in I$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in I$.

![Diagram of a matroid](image)
Def. Let $G = (V, E)$ be a connected undirected graph. Let \mathcal{I} be the family of subsets of edges that form a forest in G. Then, (E, \mathcal{I}) is called a graphic matroid.

- $E = \{e_1, e_2, e_3, e_4, e_5\}$
- $\mathcal{I} = \{\emptyset, \{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_5\}, \{e_1, e_2\}, \{e_1, e_3\}, \{e_1, e_4\}, \{e_1, e_5\}, \{e_2, e_3\}, \{e_2, e_4\}, \{e_2, e_5\}, \{e_3, e_4\}, \{e_3, e_5\}, \{e_4, e_5\}, \{e_1, e_2, e_4\}, \{e_1, e_2, e_5\}, \{e_1, e_3, e_4\}, \{e_1, e_3, e_5\}, \{e_1, e_4, e_5\}, \{e_2, e_3, e_4\}, \{e_2, e_3, e_5\}, \{e_2, e_4, e_5\}\}$
- (E, \mathcal{I}) is a graphic matroid.
A Graphic Matroid is Indeed a Matroid

- $G = (V, E)$
- \mathcal{I} is the family of forests in G

3 Properties to Check

- $\emptyset \in \mathcal{I}$.
- \mathcal{I} is downward-closed: if $A \in \mathcal{I}$ and $A' \subseteq A$, then $A' \in \mathcal{I}$.
- **(exchange property)** If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

First two properties are trivial.

Forest B has $n - |B|$ connected components.

Forest A has $n - |A| < n - |B|$ connected components.

some $e \in A$ must connect two different components of B.

$e / \in B$ and $B \cup \{e\}$ is also a forest.
A Graphic Matroid is Indeed a Matroid

- \(G = (V, E) \)
- \(\mathcal{I} \) is the family of forests in \(G \)

3 Properties to Check

- \(\emptyset \in \mathcal{I} \).
- \(\mathcal{I} \) is downward-closed: if \(A \in \mathcal{I} \) and \(A' \subseteq A \), then \(A' \in \mathcal{I} \).
- (exchange property) If \(A, B \in \mathcal{I} \) and \(|A| > |B| \), then there exists \(x \in A \setminus B \) such that \(B \cup \{x\} \in \mathcal{I} \).

- First two properties are trivial.
A Graphic Matroid is Indeed a Matroid

- $G = (V, E)$
- \mathcal{I} is the family of forests in G

3 Properties to Check

- $\emptyset \in \mathcal{I}$.
- \mathcal{I} is downward-closed: if $A \in \mathcal{I}$ and $A' \subseteq A$, then $A' \in \mathcal{I}$.
- (exchange property) If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

- First two properties are trivial.
A Graphic Matroid is Indeed a Matroid

- $G = (V, E)$
- \mathcal{I} is the family of forests in G

3 Properties to Check

- $\emptyset \in \mathcal{I}$.
- \mathcal{I} is downward-closed: if $A \in \mathcal{I}$ and $A' \subseteq A$, then $A' \in \mathcal{I}$.
- **(exchange property)** If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

- First two properties are trivial.
- Forest B has $n - |B|$ connected components
A Graphic Matroid is Indeed a Matroid

- $G = (V, E)$
- \mathcal{I} is the family of forests in G

3 Properties to Check

- $\emptyset \in \mathcal{I}$.
- \mathcal{I} is downward-closed: if $A \in \mathcal{I}$ and $A' \subseteq A$, then $A' \in \mathcal{I}$.
- **(exchange property)** If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

- First two properties are trivial.
- Forest B has $n - |B|$ connected components
- Forest A has $n - |A| < n - |B|$ connected components
A Graphic Matroid is Indeed a Matroid

- $G = (V, E)$
- \mathcal{I} is the family of forests in G

3 Properties to Check

- $\emptyset \in \mathcal{I}$.
- \mathcal{I} is downward-closed: if $A \in \mathcal{I}$ and $A' \subseteq A$, then $A' \in \mathcal{I}$.
- **(exchange property)** If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

- First two properties are trivial.
- Forest B has $n - |B|$ connected components
- Forest A has $n - |A| < n - |B|$ connected components
- some $e \in A$ must connect two different components of B
A Graphic Matroid is Indeed a Matroid

- $G = (V, E)$
- \mathcal{I} is the family of forests in G

3 Properties to Check

- $\emptyset \in \mathcal{I}$.
- \mathcal{I} is downward-closed: if $A \in \mathcal{I}$ and $A' \subseteq A$, then $A' \in \mathcal{I}$.
- **(exchange property)** If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

- First two properties are trivial.
- Forest B has $n - |B|$ connected components
- Forest A has $n - |A| < n - |B|$ connected components
- some $e \in A$ must connect two different components of B
- $e \notin B$ and $B \cup \{e\}$ is also a forest
Now go back to the counter example.

Example:

- \(E = \{a, b, c\}, w_a = 10, w_b = 9, w_c = 9 \),
- \(\mathcal{I} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{b, c\}\} \)
- greedy algorithm will choose \(a \), which has weight 10
- optimum solution \(\{b, c\} \) has weight 18.

- \((E, \mathcal{I})\) is not a matroid since it does not satisfy the exchange property:
- \(\{a\} \in \mathcal{I}, \{b, c\} \in \mathcal{I}, \) but \(\{a, b\} \notin \mathcal{I}, \{a, c\} \notin \mathcal{I} \).
Outline

1. Motivation: Maximum Weight Spanning Tree
2. Introduction to Matroid
 - Analysis of Greedy Algorithm
3. Examples of Matroids
Maximum Weighted Independent Set of a Matroid

Input: A matroid \((E, \mathcal{I})\), weights \(w \in \mathbb{R}^E_{\geq 0}\)

Output: A set \(S \in \mathcal{I}\) (i.e., an independent set of the matroid) with the maximum \(\sum_{e \in S} w_e\)

Greedy Algorithm

1. \(F \leftarrow \emptyset\)
2. **while** \(\exists e \in E \setminus F\) such that \(F \cup \{e\} \in \mathcal{I}\) **do**
3. find the \(e^* \in E \setminus F, F \cup \{e^*\} \in \mathcal{I}\) with maximum \(w_{e^*}\)
4. \(F \leftarrow F \cup \{e^*\}\)

Theorem The greedy algorithm gives an optimum solution to the maximum weight independent set problem in a matroid.
exchange property: If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.
circle exchange property: If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

Lemma Let $F \subsetneq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

indeed, lemma \iff exchange property name "exchange property" is more suitable for the property in the lemma: when two sets in \mathcal{I} cross, we can "exchange" two elements to make the resulting set in \mathcal{I}.

- exchange property: If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

Lemma Let $F \subseteq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.
- **exchange property**: If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

Lemma Let $F \subsetneq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

![Diagram](image_url)
exchange property: If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

Lemma Let $F \subseteq S \in \mathcal{I}$, $e^* \not\in S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.
exchange property: If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

Lemma Let $F \subsetneq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

indeed, lemma \iff exchange property
exchange property: If \(A, B \in \mathcal{I} \) and \(|A| > |B|\), then there exists \(x \in A \setminus B \) such that \(B \cup \{x\} \in \mathcal{I} \).

Lemma Let \(F \subsetneq S \in \mathcal{I} \), \(e^* \notin S \) and \(F \cup \{e^*\} \in \mathcal{I} \). Then there exists some \(e' \in S \setminus F \) such that \(S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I} \).

Indeed, lemma \(\iff \) exchange property

name “exchange property” is more suitable for the property in the lemma: when two sets in \(\mathcal{I} \) cross, we can “exchange” two elements to make the resulting set in \(\mathcal{I} \)
- exchange property: If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

Lemma Let $F \subset S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.
• exchange property: If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

Lemma Let $F \subsetneq S \in \mathcal{I}$, $e^* \not\in S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

Algorithm for Proof of Lemma Using Exchange Property

1: $B \leftarrow F \cup \{e^*\}$
2: **while** $|B| < |S|$ **do**
3: by exchange property, there is some $x \in S \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$
4: $B \leftarrow B \cup \{x\}$

In the end, $|B| = |S|$ and they differ by exactly 1 element. Thus, $B = S \setminus \{e'\} \cup \{e^*\}$ for some $e' \in S \setminus F$.
exchange property: If \(A, B \in \mathcal{I} \) and \(|A| > |B|\), then there exists \(x \in A \setminus B \) such that \(B \cup \{x\} \in \mathcal{I} \).

Lemma Let \(F \subsetneq S \in \mathcal{I}, \ e^* \notin S \) and \(F \cup \{e^*\} \in \mathcal{I} \). Then there exists some \(e' \in S \setminus F \) such that \(S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I} \).

Algorithm for Proof of Lemma Using Exchange Property

1: \(B \leftarrow F \cup \{e^*\} \)
2: **while** \(|B| < |S|\) **do**
3: by exchange property, there is some \(x \in S \setminus B \) such that \(B \cup \{x\} \in \mathcal{I} \)
4: \(B \leftarrow B \cup \{x\} \)

In the end, \(|B| = |S|\) and they differ by exactly 1 element. Thus, \(B = S \setminus \{e'\} \cup \{e^*\} \) for some \(e' \in S \setminus F \).
exchange property: If \(A, B \in \mathcal{I} \) and \(|A| > |B| \), then there exists \(x \in A \setminus B \) such that \(B \cup \{x\} \in \mathcal{I} \).

Lemma Let \(F \subsetneq S \in \mathcal{I} \), \(e^* \notin S \) and \(F \cup \{e^*\} \in \mathcal{I} \). Then there exists some \(e' \in S \setminus F \) such that \(S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I} \).

Algorithm for Proof of Lemma Using Exchange Property

1: \(B \leftarrow F \cup \{e^*\} \)
2: **while** \(|B| < |S| \) **do**
3: \hspace{1em} by exchange property, there is some \(x \in S \setminus B \) such that \(B \cup \{x\} \in \mathcal{I} \)
4: \(B \leftarrow B \cup \{x\} \)
- **exchange property**: If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

Lemma Let $F \subsetneq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

Algorithm for Proof of Lemma Using Exchange Property

1. $B \leftarrow F \cup \{e^*\}$
2. **while** $|B| < |S|$ **do**
 3. by exchange property, there is some $x \in S \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$
 4. $B \leftarrow B \cup \{x\}$
- **exchange property**: If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

Lemma Let $F \subsetneq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

Algorithm for Proof of Lemma Using Exchange Property

1: $B \leftarrow F \cup \{e^*\}$
2: **while** $|B| < |S|$ **do**
3: by exchange property, there is some $x \in S \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$
4: $B \leftarrow B \cup \{x\}$
- exchange property: If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

Lemma Let $F \subsetneq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \notin \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

Algorithm for Proof of Lemma Using Exchange Property

1: $B \leftarrow F \cup \{e^*\}$
2: while $|B| < |S|$ do
3: by exchange property, there is some $x \in S \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$
4: $B \leftarrow B \cup \{x\}$
- exchange property: If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

Lemma Let $F \subseteq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

Algorithm for Proof of Lemma Using Exchange Property

1. $B \leftarrow F \cup \{e^*\}$
2. **while** $|B| < |S|$ **do**
3. by exchange property, there is some $x \in S \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$
4. $B \leftarrow B \cup \{x\}$

- In the end, $|B| = |S|$ and they differ by exactly 1 element.
• exchange property: If $A, B \in \mathcal{I}$ and $|A| > |B|$, then there exists $x \in A \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$.

Lemma Let $F \subsetneq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

Algorithm for Proof of Lemma Using Exchange Property

1: $B \leftarrow F \cup \{e^*\}$
2: **while** $|B| < |S|$ **do**
3: by exchange property, there is some $x \in S \setminus B$ such that $B \cup \{x\} \in \mathcal{I}$
4: $B \leftarrow B \cup \{x\}$

• In the end, $|B| = |S|$ and they differ by exactly 1 element.
• Thus, $B = S \setminus \{e'\} \cup \{e^*\}$ for some $e' \in S \setminus F$.

$B \in \mathcal{I}$
$S \in \mathcal{I}$

F
Lemma Let $F \subsetneq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.
Lemma Let $F \subsetneq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

Greedy Algorithm

1: $F \leftarrow \emptyset$
2: while $\exists e \in E \setminus F$ such that $F \cup \{e\} \in \mathcal{I}$ do
3: find the $e^* \in E \setminus F$, $F \cup \{e^*\} \in \mathcal{I}$ with maximum w_{e^*}
4: $F \leftarrow F \cup \{e^*\}$
Lemma Let \(F \subseteq S \in \mathcal{I} \), \(e^* \notin S \) and \(F \cup \{e^*\} \in \mathcal{I} \). Then there exists some \(e' \in S \setminus F \) such that \(S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I} \).

Greedy Algorithm

1: \(F \leftarrow \emptyset \)
2: \textbf{while } \exists e \in E \setminus F \text{ such that } F \cup \{e\} \in \mathcal{I} \textbf{ do}
3: \text{ find the } e^* \in E \setminus F, F \cup \{e^*\} \in \mathcal{I} \text{ with maximum } w_{e^*}
4: \(F \leftarrow F \cup \{e^*\} \)

Analysis of Greedy Algorithm
Lemma Let $F \subseteq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

Greedy Algorithm

1: $F \leftarrow \emptyset$
2: while $\exists e \in E \setminus F$ such that $F \cup \{e\} \in \mathcal{I}$ do
3: find the $e^* \in E \setminus F$, $F \cup \{e^*\} \in \mathcal{I}$ with maximum w_{e^*}
4: $F \leftarrow F \cup \{e^*\}$

Analysis of Greedy Algorithm

- show the algorithm will never encounter a failure F (recall F is a failure if it is not a subset of any optimum solution),
Lemma Let \(F \subsetneq S \in \mathcal{I}, e^* \notin S \) and \(F \cup \{e^*\} \in \mathcal{I} \). Then there exists some \(e' \in S \setminus F \) such that \(S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I} \).

Greedy Algorithm

1: \(F \leftarrow \emptyset \)
2: \(\textbf{while } \exists e \in E \setminus F \text{ such that } F \cup \{e\} \in \mathcal{I} \textbf{ do} \)
3: \(\quad \text{find the } e^* \in E \setminus F, F \cup \{e^*\} \in \mathcal{I} \text{ with maximum } w_{e^*} \)
4: \(\quad F \leftarrow F \cup \{e^*\} \)

Analysis of Greedy Algorithm

- show the algorithm will never encounter a failure \(F \) (recall \(F \) is a failure if it is not a subset of any optimum solution),
- \(F = \emptyset \) is not a failure initially
Lemma Let $F \subsetneq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

Greedy Algorithm

1: $F \leftarrow \emptyset$
2: while $\exists e \in E \setminus F$ such that $F \cup \{e\} \in \mathcal{I}$ do
3: find the $e^* \in E \setminus F$, $F \cup \{e^*\} \in \mathcal{I}$ with maximum w_{e^*}
4: $F \leftarrow F \cup \{e^*\}$

Analysis of Greedy Algorithm

- show the algorithm will never encounter a failure F (recall F is a failure if it is not a subset of any optimum solution),
- $F = \emptyset$ is not a failure initially
- assume F is not a failure at the beginning of some iteration. i.e, there is an optimum solution S such that $F \subseteq S$,.
Lemma Let $F \subsetneq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

Greedy Algorithm

1: $F \leftarrow \emptyset$
2: while $\exists e \in E \setminus F$ such that $F \cup \{e\} \in \mathcal{I}$ do
3: find the $e^* \in E \setminus F$, $F \cup \{e^*\} \in \mathcal{I}$ with maximum w_{e^*}
4: $F \leftarrow F \cup \{e^*\}$

Analysis of Greedy Algorithm

- show the algorithm will never encounter a failure F (recall F is a failure if it is not a subset of any optimum solution),
- $F = \emptyset$ is not a failure initially
- assume F is not a failure at the beginning of some iteration. i.e, there is an optimum solution S such that $F \subseteq S$, e^*: the element chosen in the iteration
Lemma Let $F \subsetneq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

Greedy Algorithm

1: $F \leftarrow \emptyset$
2: while $\exists e \in E \setminus F$ such that $F \cup \{e\} \in \mathcal{I}$ do
3: find the $e^* \in E \setminus F$, $F \cup \{e^*\} \in \mathcal{I}$ with maximum w_{e^*}
4: $F \leftarrow F \cup \{e^*\}$

Analysis of Greedy Algorithm

- if $e^* \in S$, then $F \cup \{e^*\}$ is not a failure
Lemma Let $F \subsetneq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

Greedy Algorithm

1: $F \leftarrow \emptyset$
2: while $\exists e \in E \setminus F$ such that $F \cup \{e\} \in \mathcal{I}$ do
3: find the $e^* \in E \setminus F$, $F \cup \{e^*\} \in \mathcal{I}$ with maximum w_{e^*}
4: $F \leftarrow F \cup \{e^*\}$

Analysis of Greedy Algorithm

- if $e^* \in S$, then $F \cup \{e^*\}$ is not a failure
- if $e^* \notin S$, there is $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$
Lemma Let $F \subsetneq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

Greedy Algorithm

1: $F \leftarrow \emptyset$
2: while $\exists e \in E \setminus F$ such that $F \cup \{e\} \in \mathcal{I}$ do
3: find the $e^* \in E \setminus F$, $F \cup \{e^*\} \in \mathcal{I}$ with maximum w_{e^*}
4: $F \leftarrow F \cup \{e^*\}$

Analysis of Greedy Algorithm

- if $e^* \in S$, then $F \cup \{e^*\}$ is not a failure
- if $e^* \notin S$, there is $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$
- S is valid $\rightarrow F \cup \{e'\}$ is valid
Lemma Let $F \subsetneq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

Greedy Algorithm

1: $F \leftarrow \emptyset$
2: while $\exists e \in E \setminus F$ such that $F \cup \{e\} \in \mathcal{I}$ do
3: find the $e^* \in E \setminus F$, $F \cup \{e^*\} \in \mathcal{I}$ with maximum w_{e^*}
4: $F \leftarrow F \cup \{e^*\}$

Analysis of Greedy Algorithm

- if $e^* \in S$, then $F \cup \{e^*\}$ is not a failure
- if $e^* \notin S$, there is $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$
- S is valid $\rightarrow F \cup \{e'\}$ is valid
- by the way we choose e^*: $w_{e'} \leq w_{e^*}$
Lemma. Let $F \subsetneq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

Greedy Algorithm

1: $F \leftarrow \emptyset$
2: while $\exists e \in E \setminus F$ such that $F \cup \{e\} \in \mathcal{I}$ do
3: find the $e^* \in E \setminus F$, $F \cup \{e^*\} \in \mathcal{I}$ with maximum w_{e^*}
4: $F \leftarrow F \cup \{e^*\}$

Analysis of Greedy Algorithm

- if $e^* \in S$, then $F \cup \{e^*\}$ is not a failure
- if $e^* \notin S$, there is $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$
- S is valid \rightarrow $F \cup \{e'\}$ is valid
- by the way we choose e^*: $w_{e'} \leq w_{e^*}$
- $S \setminus \{e'\} \cup \{e^*\}$ is also optimum
Lemma Let $F \subseteq S \in \mathcal{I}$, $e^* \notin S$ and $F \cup \{e^*\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^*\} \in \mathcal{I}$.

Greedy Algorithm

1: $F \leftarrow \emptyset$
2: while $\exists e \in E \setminus F$ such that $F \cup \{e\} \in \mathcal{I}$ do
3: find the $e^* \in E \setminus F$, $F \cup \{e^*\} \in \mathcal{I}$ with maximum w_{e^*}
4: $F \leftarrow F \cup \{e^*\}$

Analysis of Greedy Algorithm

- $S \setminus \{e'\} \cup \{e^*\}$ is also optimum
Lemma Let $F \subsetneq S \in \mathcal{I}$, $e^{*} \notin S$ and $F \cup \{e^{*}\} \in \mathcal{I}$. Then there exists some $e' \in S \setminus F$ such that $S \setminus \{e'\} \cup \{e^{*}\} \in \mathcal{I}$.

Greedy Algorithm

1: $F \leftarrow \emptyset$
2: while $\exists e \in E \setminus F$ such that $F \cup \{e\} \in \mathcal{I}$ do
3: find the $e^{*} \in E \setminus F$, $F \cup \{e^{*}\} \in \mathcal{I}$ with maximum $w_{e^{*}}$
4: $F \leftarrow F \cup \{e^{*}\}$

Analysis of Greedy Algorithm

- $S \setminus \{e'\} \cup \{e^{*}\}$ is also optimum
- thus $F \cup \{e^{*}\}$ is not a failure.
1 Motivation: Maximum Weight Spanning Tree

2 Introduction to Matroid
 • Analysis of Greedy Algorithm

3 Examples of Matroids
Uniform Matroid

\[\mathcal{I} = \{ X \subseteq E : |X| \leq k \}, \text{ where } k \geq 1 \text{ is an integer.} \]
Uniform Matroid

\[\mathcal{I} = \{ X \subseteq E : |X| \leq k \}, \text{ where } k \geq 1 \text{ is an integer.} \]

Example:

\[E = \{a, b, c, d\}, \quad k = 2 \]

\[\mathcal{I} = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\} \} \]
Uniform Matroid

\[\mathcal{I} = \{ X \subseteq E : |X| \leq k \} \], where \(k \geq 1 \) is an integer.

Example:

\[E = \{ a, b, c, d \}, k = 2 \]

\[\mathcal{I} = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\} \} \]

- Exchange property holds trivially.
Uniform Matroid

\[\mathcal{I} = \{ X \subseteq E : |X| \leq k \}, \text{ where } k \geq 1 \text{ is an integer.} \]

Example:

\[E = \{a, b, c, d\}, \quad k = 2 \]

\[\mathcal{I} = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\} \} \]

- Exchange property holds trivially.
- Greedy algorithm is optimum trivially.
Partition Matroid

- \(E \): ground set
Partition Matroid

- E: ground set
- E is partitioned into disjoint sets E_1, E_2, \cdots, E_ℓ
Partition Matroid

- E: ground set
- E is partitioned into disjoint sets E_1, E_2, \cdots, E_ℓ
- k_1, k_2, \cdots, k_ℓ are non-negative integers.
Partition Matroid

- E: ground set
- E is partitioned into disjoint sets E_1, E_2, \cdots, E_ℓ
- k_1, k_2, \cdots, k_ℓ are non-negative integers.
- $\mathcal{I} = \{X \subseteq E : |X \cap E_i| \leq k_i, \forall i = 1, 2, \cdots, \ell\}$
Partition Matroid

- E: ground set
- E is partitioned into disjoint sets E_1, E_2, \cdots, E_ℓ
- k_1, k_2, \cdots, k_ℓ are non-negative integers.
- $\mathcal{I} = \{ X \subseteq E : |X \cap E_i| \leq k_i, \forall i = 1, 2, \cdots, \ell \}$
- That is, $X \subseteq E$ is independent if it contains at most k_i elements in E_i, for every $i \in \{1, 2, \cdots, \ell\}$.
Partition Matroid

Example

- $E = \{1, 2, 3, 4, 5\} \text{ is partitioned into } E_1 = \{1, 2\} \text{ and } E_2 = \{3, 4, 5\}$
- $k_1 = 1 \text{ and } k_2 = 2$
 \[
 I = \{\emptyset, \{3\}, \{4\}, \{5\}, \{3, 4\}, \{3, 5\}, \{4, 5\}, \{1\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{1, 3, 4\}, \{1, 3, 5\}, \{1, 4, 5\}, \{2\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{2, 3, 4\}, \{2, 3, 5\}, \{2, 4, 5\}\}
 \]
- (E, I) is a partition matroid.
Proof of Exchange property

Assume $A \in I$, $B \in I$, and $|A| > |B|$. Then there must be some i such that $|A \cap E_i| > |B \cap E_i|$.

Let $x \in E_i$ be an item in A but not in B. Then $B \cup \{x\} \in I$.

A partition matroid is indeed a matroid

Proof of Exchange property

Assume $A \in \mathcal{I}$, $B \in \mathcal{I}$ and $|A| > |B|$. Then there must be some i such that $|A \cap E_i| > |B \cap E_i|$.

Let $x \in E_i$ be an item in A but not in B. Then $B \cup \{x\} \notin \mathcal{I}$.
A partition matroid is indeed a matroid

Proof of Exchange property

- Assume $A \in \mathcal{I}, B \in \mathcal{I}$ and $|A| > |B|
- Then there must be some i such that $|A \cap E_i| > |B \cap E_i|$.
A partition matroid is indeed a matroid

Proof of Exchange property

- Assume $A \in \mathcal{I}, B \in \mathcal{I}$ and $|A| > |B|$
- Then there must be some i such that $|A \cap E_i| > |B \cap E_i|$.
- Let $x \in E_i$ be an item in A but not in B
A partition matroid is indeed a matroid

Proof of Exchange property

1. Assume $A \in I$, $B \in I$ and $|A| > |B|$.
2. Then there must be some i such that $|A \cap E_i| > |B \cap E_i|$.
3. Let $x \in E_i$ be an item in A but not in B.
4. $B \cup \{x\} \in I$.

Q: What is the next generalization?
Q: What is the next generalization?

A: A laminar matroid.
Def. Given a ground set E, a family \mathcal{E} of subsets of E is called a laminar family if for every two distinct subsets $X, Y \in \mathcal{E}$, we have either $X \subsetneq Y$, or $Y \subsetneq X$, or $X \cap Y = \emptyset$.
Def. Given a ground set E, a family \mathcal{E} of subsets of E is called a laminar family if for every two distinct subsets $X, Y \in \mathcal{E}$, we have either $X \subseteq Y$, or $Y \subseteq X$, or $X \cap Y = \emptyset$.

\[\begin{array}{c}
9 \\
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
10 \\
\end{array} \]

\[\begin{array}{c}
\text{elements in } E \\
\text{subsets in } \mathcal{E} \\
\end{array} \]
Def. Given a ground set E, a family \mathcal{E} of subsets of E is called a laminar family if for every two distinct subsets $X, Y \in \mathcal{E}$, we have either $X \subseteq Y$, or $Y \subseteq X$, or $X \cap Y = \emptyset$.

\mathcal{E} is a laminar family if no two circles cross each other.
A laminar family of subsets can be organized into nodes of many rooted trees.
A laminar family of subsets can be organized into nodes of many rooted trees.
A laminar family of subsets can be organized into nodes of many rooted trees.

A set $X \in \mathcal{E}$ is a parent of $Y \in \mathcal{E}$ if $Y \subsetneq X$ and there is no $Z \in \mathcal{E}$ with $Y \subsetneq Z \subsetneq X$.
Def. (Laminar Matroid)

E is a ground set.
E is a laminar family of subsets of E.
k is a positive integer.
$I = \{X \subseteq E : |X \cap A| \leq k, \forall A \in E\}$

(E, I) is called a laminar matroid.

Example:

$E = \{1, 2, 3, 4, 5, 6\}$

$E = \{\{1, 2\}, \{3, 4, 5\}, \{1, 2, 3, 4, 5, 6\}\}$

$k \{1, 2\} = 1, k \{3, 4\} = 2, k \{1, 2, 3, 4, 5, 6\} = 3$

Then,
$\{1, 3, 6\} \in I$ since it contains $1 \leq 2$ elements from $\{1, 2\}$, $3 \leq 3$ elements from $\{3, 4, 5\}$ and $3 \leq 3$ elements in total.

$\{1, 2, 6\} \not\in I$ since it contains 2 elements in $\{1, 2\}$.

$\{3, 4, 5\} \not\in I$ since it contains 3 elements in $\{3, 4, 5\}$.
Def. (Laminar Matroid)

- E: ground set

$I = \{X \subseteq E : |X \cap A| \leq k, \forall A \in E\}$

(E, I) is called a laminar matroid.

Example:

$E = \{1, 2, 3, 4, 5, 6\}$

$I = \{\{1, 2\}, \{3, 4, 5\}, \{1, 2, 3, 4, 5, 6\}\}$

- $\{1, 2\} \in I$ since it contains $1 \leq 2$ elements from $\{1, 2\}$,
- $\{3, 4, 5\} \in I$ since it contains $3 \leq 5$ elements from $\{3, 4, 5\}$,
- $\{1, 2, 3, 4, 5, 6\} \in I$ since it contains $6 \leq 6$ elements in total.

$\{1, 2, 6\} \not\in I$ since it contains 2 elements in $\{1, 2\}$.

$\{3, 4, 5\} \not\in I$ since it contains 3 elements in $\{3, 4, 5\}$.
Def. (Laminar Matroid)
- E: ground set
- \mathcal{E}: a laminar family of subsets of E

Example:

$E = \{1, 2, 3, 4, 5, 6\}$

$\mathcal{E} = \{\{1, 2\}, \{3, 4, 5\}, \{1, 2, 3, 4, 5, 6\}\}$

$k = \{1\}$, $k = \{2\}$, $k = \{3\}$

Then, $\{1, 3, 6\} \in I$ since it contains 1 elements from $\{1, 2\}$, 1 ≤ 2 elements from $\{3, 4, 5\}$ and 3 ≤ elements in total.

$\{1, 2, 6\} \notin I$ since it contains 2 elements in $\{1, 2\}$.

$\{3, 4, 5\} \notin I$ since it contains 3 elements in $\{3, 4, 5\}$.
Def. (Laminar Matroid)

- \(E \): ground set
- \(\mathcal{E} \): a laminar family of subsets of \(E \)
- \(k_A : A \in \mathcal{E} \): an positive integer.

\[
\mathcal{I} = \{ X \subseteq E : |X \cap A| \leq k_A, \forall A \in \mathcal{E} \}
\]
Def. (Laminar Matroid)

- E: ground set
- \mathcal{E}: a laminar family of subsets of E
- $k_A : A \in \mathcal{E}$: an positive integer.
- \[\mathcal{I} = \{ X \subseteq E : |X \cap A| \leq k_A, \forall A \in \mathcal{E} \} \]
- (E, \mathcal{I}) is called a laminar matroid.
Def. (Laminar Matroid)

- E: ground set
- \mathcal{E}: a laminar family of subsets of E
- $k_A : A \in \mathcal{E}$: an positive integer.

$$\mathcal{I} = \{ X \subseteq E : |X \cap A| \leq k_A, \forall A \in \mathcal{E} \}$$

- (E, \mathcal{I}) is called a laminar matroid.

Example:
Def. (Laminar Matroid)

- E: ground set
- \mathcal{E}: a laminar family of subsets of E
- $k_A : A \in \mathcal{E}$: an positive integer.

$$\mathcal{I} = \{ X \subseteq E : |X \cap A| \leq k_A, \forall A \in \mathcal{E} \}$$

- (E, \mathcal{I}) is called a laminar matroid.

Example:

- $E = \{1, 2, 3, 4, 5, 6\}$
Def. (Laminar Matroid)

- E: ground set
- \mathcal{E}: a laminar family of subsets of E
- $k_A : A \in \mathcal{E}$: an positive integer.
- $\mathcal{I} = \{X \subseteq E : |X \cap A| \leq k_A, \forall A \in \mathcal{E}\}$
- (E, \mathcal{I}) is called a laminar matroid.

Example:

- $E = \{1, 2, 3, 4, 5, 6\}$
- $\mathcal{E} = \{\{1, 2\}, \{3, 4, 5\}, \{1, 2, 3, 4, 5, 6\}\}$
Def. (Laminar Matroid)

- E: ground set
- \mathcal{E}: a laminar family of subsets of E
- $k_A : A \in \mathcal{E}$: an positive integer.
- \[I = \{ X \subseteq E : |X \cap A| \leq k_A, \forall A \in \mathcal{E} \} \]
- (E, I) is called a laminar matroid.

Example:

- $E = \{1, 2, 3, 4, 5, 6\}$
- $\mathcal{E} = \{\{1, 2\}, \{3, 4, 5\}, \{1, 2, 3, 4, 5, 6\}\}$
- $k_{\{1,2\}} = 1, k_{\{3,4,5\}} = 2, k_{\{1,2,3,4,5,6\}} = 3$
Def. (Laminar Matroid)
- E: ground set
- \mathcal{E}: a laminar family of subsets of E
- $k_A : A \in \mathcal{E}$: an positive integer.
 \[\mathcal{I} = \{ X \subseteq E : |X \cap A| \leq k_A, \forall A \in \mathcal{E} \} \]
- (E, \mathcal{I}) is called a laminar matroid.

Example:
- $E = \{1, 2, 3, 4, 5, 6\}$
- $\mathcal{E} = \{ \{1, 2\}, \{3, 4, 5\}, \{1, 2, 3, 4, 5, 6\} \}$
- $k_{\{1,2\}} = 1, k_{\{3,4,5\}} = 2, k_{\{1,2,3,4,5,6\}} = 3$
- Then, $\{1, 3, 6\} \in \mathcal{I}$ since it contains 1 elements from $\{1, 2\}$, $1 \leq 2$ elements from $\{3, 4, 5\}$ and $3 \leq$ elements in total.
Def. (Laminar Matroid)
- \(E \): ground set
- \(\mathcal{E} \): a laminar family of subsets of \(E \)
- \(k_A : A \in \mathcal{E} \): an positive integer.
 \[
 \mathcal{I} = \{ X \subseteq E : |X \cap A| \leq k_A, \forall A \in \mathcal{E} \}
 \]
- \((E, \mathcal{I})\) is called a laminar matroid.

Example:
- \(E = \{1, 2, 3, 4, 5, 6\} \)
- \(\mathcal{E} = \{\{1, 2\}, \{3, 4, 5\}, \{1, 2, 3, 4, 5, 6\}\} \)
- \(k_{\{1,2\}} = 1, k_{\{3,4,5\}} = 2, k_{\{1,2,3,4,5,6\}} = 3 \)
- Then, \(\{1, 3, 6\} \in \mathcal{I} \) since it contains 1 elements from \(\{1, 2\} \), 1 \(\leq \) 2 elements from \(\{3, 4, 5\} \) and \(3 \leq \) elements in total.
- \(\{1, 2, 6\} \notin \mathcal{I} \) since it contains 2 elements in \(\{1, 2\} \).
Def. (Laminar Matroid)

- E: ground set
- \mathcal{E}: a laminar family of subsets of E
- $k_A : A \in \mathcal{E}$: an positive integer.
- $I = \{ X \subseteq E : |X \cap A| \leq k_A, \forall A \in \mathcal{E} \}$
- (E, I) is called a laminar matroid.

Example:

- $E = \{1, 2, 3, 4, 5, 6\}$
- $\mathcal{E} = \{ \{1, 2\}, \{3, 4, 5\}, \{1, 2, 3, 4, 5, 6\} \}$
- $k_{\{1,2\}} = 1, k_{\{3,4,5\}} = 2, k_{\{1,2,3,4,5,6\}} = 3$
- Then, $\{1, 3, 6\} \in I$ since it contains 1 elements from $\{1, 2\}$, $1 \leq 2$ elements from $\{3, 4, 5\}$ and $3 \leq$ elements in total.
- $\{1, 2, 6\} \notin I$ since it contains 2 elements in $\{1, 2\}$.
- $\{3, 4, 5\} \notin I$ since it contains 3 elements in $\{3, 4, 5\}$.
Note: some constraints may be redundant.
Note: some constraints may be redundant.

- If $k_{\{2,3,4,5\}} = 3$ but $k_{\{1,2,3,4,5\}} = 2$, then the constraint that $|X \cap \{2, 3, 4, 5\}| \leq 3$ is redundant.
Note: some constraints may be redundant.

- If \(k_{\{2,3,4,5\}} = 3 \) but \(k_{\{1,2,3,4,5\}} = 2 \), then the constraint that \(|X \cap \{2, 3, 4, 5\}| \leq 3 \) is redundant.

- If \(k_{\{1,2,3\}} = 2 \) and \(k_{\{4,5,6\}} = 2 \) and \(k_{\{1,2,3,4,5,6\}} = 4 \), then the constraint that \(|X \cap \{1, 2, 3, 4, 5, 6\}| \leq 4 \) is redundant.
For simplicity, we assume the laminar family \mathcal{E} is complete:
A Laminar Matroid is Indeed a Matroid

- For simplicity, we assume the laminar family \mathcal{E} is complete:
 - The whole set E is in the laminar family
A Laminar Matroid is Indeed a Matroid

- For simplicity, we assume the laminar family \mathcal{E} is complete:
 - The whole set E is in the laminar family
 - Every singleton set $\{e\}$ is in the laminar family.
A Laminar Matroid is Indeed a Matroid

- For simplicity, we assume the laminar family \mathcal{E} is complete:
 - The whole set E is in the laminar family
 - Every singleton set $\{e\}$ is in the laminar family.

![Diagram of laminar matroid]
A Laminar Matroid is Indeed a Matroid

- For simplicity, we assume the laminar family \mathcal{E} is complete:
 - The whole set E is in the laminar family
 - Every singleton set $\{e\}$ is in the laminar family.
A Laminar Matroid is Indeed a Matroid

- For simplicity, we assume the laminar family \mathcal{E} is complete:
 - The whole set E is in the laminar family
 - Every singleton set $\{e\}$ is in the laminar family.
A Laminar Matroid is Indeed a Matroid

- We maintain a set C in the laminar tree and the invariant that $|C \cap A| > |C \cap B|$.

Maintain: $|C \cap A| > |C \cap B|$
A Laminar Matroid is Indeed a Matroid

- We maintain a set C in the laminar tree and the invariant that $|C \cap A| > |C \cap B|$.
- Initially $C = E$ and $|E \cap A| > |E \cap B|$ holds.

Maintain: $|C \cap A| > |C \cap B|$
A Laminar Matroid is Indeed a Matroid

- We maintain a set C in the laminar tree and the invariant that $|C \cap A| > |C \cap B|$.
- Initially $C = E$ and $|E \cap A| > |E \cap B|$ holds.
- While C is not a singleton set, repeat the following:
We maintain a set C in the laminar tree and the invariant that
$|C \cap A| > |C \cap B|$.

Initially $C = E$ and $|E \cap A| > |E \cap B|$ holds.

While C is not a singleton set, repeat the following:

- Consider the children of C in the laminar tree; they form a partition of C.

Maintain: $|C \cap A| > |C \cap B|$
A Laminar Matroid is Indeed a Matroid

- We maintain a set C in the laminar tree and the invariant that $|C \cap A| > |C \cap B|$.
- Initially $C = E$ and $|E \cap A| > |E \cap B|$ holds.
- While C is not a singleton set, repeat the following:
 - Consider the children of C in the laminar tree; they form a partition of C.
 - There must be one child C' such that $|C' \cap A| > |C' \cap B|$.
A Laminar Matroid is Indeed a Matroid

- We maintain a set C in the laminar tree and the invariant that $|C \cap A| > |C \cap B|$.

- Initially $C = E$ and $|E \cap A| > |E \cap B|$ holds.

- While C is not a singleton set, repeat the following:
 - Consider the children of C in the laminar tree; they form a partition of C.
 - There must be one child C' such that $|C' \cap A| > |C' \cap B|$.
 - Let $C = C'$.
A Laminar Matroid is Indeed a Matroid

- We maintain a set C in the laminar tree and the invariant that $|C \cap A| > |C \cap B|$.
- Initially $C = E$ and $|E \cap A| > |E \cap B|$ holds.
- While C is not a singleton set, repeat the following:
 - Consider the children of C in the laminar tree; they form a partition of C.
 - There must be one child C' such that $|C' \cap A| > |C' \cap B|$.
 - Let $C = C'$.
- We maintain a set C in the laminar tree and the invariant that $|C \cap A| > |C \cap B|$.

- Initially $C = E$ and $|E \cap A| > |E \cap B|$ holds.

- While C is not a singleton set, repeat the following:
 - Consider the children of C in the laminar tree; they form a partition of C.
 - There must be one child C' such that $|C' \cap A| > |C' \cap B|$.
 - Let $C = C'$.
Eventually, we have a path of sets

$$E = C_0 ⊇ C_1 ⊇ C_2 ⊇ C_3 \cdots ⊇ C_\ell = \{x\}$$

in the laminar tree, such that for every C_i in the path, $|C_i \cap A| > |C_i \cap B|$
 Eventually, we have a path of sets
\[E = C_0 \supsetneq C_1 \supsetneq C_2 \supsetneq \cdots \supsetneq C_\ell = \{x\} \]
in the laminar tree, such that for every \(C_i \) in the path, \(|C_i \cap A| > |C_i \cap B|\).

\(B \cup \{x\} \) satisfies all the cardinality constraints since for every \(C \in \mathcal{E} \) that contains \(x \), we have \(|B \cap C| < |A \cap C| \leq k_C\), which implies \(|(B \cup \{x\}) \cap C| \leq k_C\).
The constraint that \mathcal{E} is a laminar family is needed.
The constraint that \mathcal{E} is a laminar family is needed.
The following example is not a matroid:

- $X \subseteq \mathcal{E}$ is in I if and only if $|X \cap \{1, 2\}| \leq 1$ and $|X \cap \{2, 3\}| \leq 1$.
- Then $\{1, 3\} \in I$ and $\{2\} \in I$, but $\{1, 2\} \notin I$ and $\{2, 3\} \notin I$.

So the exchange property does not hold.
Thus, laminar matroids are the most general matroids based on cardinality constraints on subsets.
The constraint that \(\mathcal{E} \) is a laminar family is needed.

The following example is not a matroid:

- \(E = \{1, 2, 3\} \).

Then \(\{1, 3\} \in I \) and \(\{2\} \in I \), but \(\{1, 2\} \notin I \) and \(\{2, 3\} \notin I \).

Thus, laminar matroids are the most general matroids based on cardinality constraints on subsets.
The constraint that \mathcal{E} is a laminar family is needed.

The following example is not a matroid:

- $E = \{1, 2, 3\}$.
- $X \subseteq E$ is in \mathcal{I} if and only if $|X \cap \{1, 2\}| \leq 1$ and $|X \cap \{2, 3\}| \leq 1$.

Then $\{1, 3\} \in \mathcal{I}$ and $\{2\} \in \mathcal{I}$, but $\{1, 2\} \notin \mathcal{I}$ and $\{2, 3\} \notin \mathcal{I}$.

So the exchange property does not hold.

Thus, laminar matroids are the most general matroids based on cardinality constraints on subsets.
The constraint that \mathcal{E} is a laminar family is needed.
The following example is not a matroid:

- $E = \{1, 2, 3\}$.
- $X \subseteq E$ is in \mathcal{I} if and only if $|X \cap \{1, 2\}| \leq 1$ and $|X \cap \{2, 3\}| \leq 1$.
- Then $\{1, 3\} \in \mathcal{I}$ and $\{2\} \in \mathcal{I}$, but $\{1, 2\} \notin \mathcal{I}$ and $\{2, 3\} \notin \mathcal{I}$.
 So the exchange property does not hold.
The constraint that E is a laminar family is needed.

The following example is not a matroid:

- $E = \{1, 2, 3\}$.
- $X \subseteq E$ is in \mathcal{I} if and only if $|X \cap \{1, 2\}| \leq 1$ and $|X \cap \{2, 3\}| \leq 1$.
- Then $\{1, 3\} \in \mathcal{I}$ and $\{2\} \in \mathcal{I}$, but $\{1, 2\} \notin \mathcal{I}$ and $\{2, 3\} \notin \mathcal{I}$.

So the exchange property does not hold.

Thus, laminar matroids are the most general matroids based on cardinality constraints on subsets.
Def. Linear Matroid

Let $E = \{v_1, v_2, \ldots, v_n\}$ be a set of vectors in \mathbb{R}^d. A set $X \subseteq E$ is in I, iff the vectors in X are linearly independent.

(E, I) is called a linear matroid.

Recall:

$X = \{u_1, u_2, \ldots, u_k\}$ is linearly independent iff for every k real numbers $\gamma_1, \gamma_2, \ldots, \gamma_k$ that are not all 0's, we have

$$\gamma_1 u_1 + \gamma_2 u_2 + \gamma_3 u_3 + \cdots + \gamma_k u_k \neq 0.$$

Also, $X = \{u_1, u_2, \ldots, u_k\}$ is linearly independent iff $\text{rank}((u_1, u_2, \ldots, u_k)) = k$.
Def. Linear Matroid

- \(E = \{ v_1, v_2, \ldots, v_n \} \): a set of vectors in \(\mathbb{R}^d \)
Def. Linear Matroid

- $E = \{v_1, v_2, \cdots, v_n\}$: a set of vectors in \mathbb{R}^d
- A set $X \subseteq E$ is in \mathcal{I}, iff the vectors in X are linearly independent.
Def. Linear Matroid

- $E = \{v_1, v_2, \cdots, v_n\}$: a set of vectors in \mathbb{R}^d
- a set $X \subseteq E$ is in \mathcal{I}, iff the vectors in X are linearly independent.
- (E, \mathcal{I}) is called a linear matroid.
Def. Linear Matroid

- $E = \{v_1, v_2, \cdots, v_n\}$: a set of vectors in \mathbb{R}^d
- A set $X \subseteq E$ is in \mathcal{I}, iff the vectors in X are linearly independent.
- (E, \mathcal{I}) is called a linear matroid.

Recall: $X = \{u_1, u_2, \cdots, u_k\}$ is linearly independent iff for every k real numbers $\gamma_1, \gamma_2, \cdots, \gamma_k$ that are not all 0’s, we have $\gamma_1 u_1 + \gamma_2 u_2 + \gamma_3 u_3 + \cdots + \gamma_k u_k \neq 0.$
Def. Linear Matroid

- \(E = \{v_1, v_2, \cdots, v_n\}\): a set of vectors in \(\mathbb{R}^d\)
- A set \(X \subseteq E\) is in \(\mathcal{I}\), iff the vectors in \(X\) are linearly independent.
- \((E, \mathcal{I})\) is called a linear matroid.

Recall: \(X = \{u_1, u_2, \cdots, u_k\}\) is linearly independent iff for every \(k\) real numbers \(\gamma_1, \gamma_2, \cdots, \gamma_k\) that are not all 0’s, we have \(\gamma_1 u_1 + \gamma_2 u_2 + \gamma_3 u_3 + \cdots + \gamma_k u_k \neq 0\).

Also, \(X = \{u_1, u_2, \cdots, u_k\}\) is linearly independent iff \(\text{rank}((u_1, u_2, \cdots, u_k)) = k\).
A Linear Matroid is Indeed a Matroid

\[E = \{v_1, v_2, \cdots, v_n\}. \]
A Linear Matroid is Indeed a Matroid

- $E = \{v_1, v_2, \cdots, v_n\}$.
- $A, B \in \mathcal{I}$, i.e, the vectors in A are linearly independently, and the vectors in B are linearly independent.
A Linear Matroid is Indeed a Matroid

- \(E = \{v_1, v_2, \cdots, v_n\} \).
- \(A, B \in \mathcal{I} \), i.e., the vectors in \(A \) are linearly independently, and the vectors in \(B \) are linearly independent.
- \(|A| > |B| \)
A Linear Matroid is Indeed a Matroid

- \(E = \{v_1, v_2, \ldots, v_n\} \).
- \(A, B \in I \), i.e., the vectors in \(A \) are linearly independently, and the vectors in \(B \) are linearly independent.
- \(|A| > |B|\)
- \(\text{span}(B) \) has dimension \(|B|\).
A Linear Matroid is Indeed a Matroid

- $E = \{v_1, v_2, \cdots, v_n\}$.
- $A, B \in I$, i.e., the vectors in A are linearly independently, and the vectors in B are linearly independent.
- $|A| > |B|$
- $\text{span}(B)$ has dimension $|B|$.
- there is at least one vector $v_i \in A$ that is not in $\text{span}(B)$.
A Linear Matroid is Indeed a Matroid

- \(E = \{v_1, v_2, \ldots, v_n\} \).
- \(A, B \in \mathcal{I} \), i.e, the vectors in \(A \) are linearly independently, and the vectors in \(B \) are linearly independent.
- \(|A| > |B| \)
- \(\text{span}(B) \) has dimension \(|B| \).
- There is at least one vector \(v_i \in A \) that is not in \(\text{span}(B) \).
- Vectors in \(B \cup \{v_i\} \) are also linearly independent.
Recall: Graphic Matroid

Def.

\[
G = (V, E) \quad \text{an undirected graph.}
\]

\[
E \quad \text{is the ground set of the matroid.}
\]

\[
F \subseteq E \quad \text{is in } I \iff (V, F) \quad \text{is a forest, i.e,} \quad F \quad \text{does not contain a cycle.}
\]

\[
(E, I) \quad \text{is called a graphic matroid.}
\]
Recall: Graphic Matroid

Def.
- \(G = (V, E) \): an undirected graph. \(E \) is the ground set of the matroid.
Recall: Graphic Matroid

Def.

- $G = (V, E)$: an undirected graph. E is the ground set of the matroid.
- $F \subseteq E$ is in \mathcal{I} iff (V, F) is a forest, i.e, F does not contain a cycle.
Recall: Graphic Matroid

Def.

- $G = (V, E)$: an undirected graph. E is the ground set of the matroid.
- $F \subseteq E$ is in \mathcal{I} iff (V, F) is a forest, i.e., F does not contain a cycle.
- (E, \mathcal{I}) is called a graphic matroid.
Transversal Matroid

Def.

- \(G = (U \uplus V, E) \): a bipartite graph.
- \(U \): ground set of the matroid
- \(A \subseteq U \) is in \(\mathcal{I} \) iff there is a matching in \(G \) that covers \(A \).
Transversal Matroid

Def.

- \(G = (U \uplus V, E) \): a bipartite graph.
- \(U \): ground set of the matroid
- \(A \subseteq U \) is in \(\mathcal{I} \) iff there is a matching in \(G \) that covers \(A \).
Transversal Matroid

Def.

- $G = (U \cup V, E)$: a bipartite graph.
- U: ground set of the matroid
- $A \subseteq U$ is in \mathcal{I} iff there is a matching in G that covers A.

\begin{itemize}
 \item $\{3, 4, 5\} \in \mathcal{I}$ since there is a matching covering them.
\end{itemize}
Transversal Matroid

Def.

- \(G = (U \cup V, E) \): a bipartite graph.
- \(U \): ground set of the matroid
- \(A \subseteq U \) is in \(\mathcal{I} \) iff there is a matching in \(G \) that covers \(A \).

\[\{3, 4, 5\} \in \mathcal{I} \] since there is a matching covering them.

\[\{1, 2, 3\} \notin \mathcal{I} \] since no matching can cover them.
A Transversal Matroid is Indeed a Matroid

- $G = (U \cup V, E)$: a bipartite graph.
A Transversal Matroid is Indeed a Matroid

- $G = (U \cup V, E)$: a bipartite graph.
- U: ground set of the matroid
A Transversal Matroid is Indeed a Matroid

- $G = (U \cup V, E)$: a bipartite graph.
- U: ground set of the matroid
- $A \subseteq U$ is in \mathcal{I} iff there is a matching in G that covers A.
A Transversal Matroid is Indeed a Matroid

- $A, B \in \mathcal{I}$, $|A| > |B|$.
A Transversal Matroid is Indeed a Matroid

- $A, B \in \mathcal{I}$, $|A| > |B|$.
- Red edges: matching covering A.

Consider the graph formed by red and blue edges. Each connected component is either a cycle, with alternating red and blue edges, or a path, with alternating red and blue edges.

$|A| > |B|$: one path must have 1 more red edge than the blue edge. Augmenting using the path will give a matching that covers $B \cup \{x\}$, for some $x \in A \setminus B$.
A Transversal Matroid is Indeed a Matroid

- $A, B \in \mathcal{I}$, $|A| > |B|$.
- Red edges: matching covering A.
- Blue edges: matching covering B.

Consider the graph formed by red and blue edges. Each connected component is either a cycle, with alternating red and blue edges, or a path, with alternating red and blue edges. $|A| > |B|$: one path must have 1 more red edge than the blue edge. Augmenting using the path will give a matching that covers $B \cup \{x\}$, for some $x \in A \setminus B$.
A Transversal Matroid is Indeed a Matroid

- \(A, B \in \mathcal{I}, |A| > |B| \).
- Red edges: matching covering \(A \).
- Blue edges: matching covering \(B \).
- Consider the graph formed by red and blue edges.
A Transversal Matroid is Indeed a Matroid

- $A, B \in \mathcal{I}$, $|A| > |B|$.
- Red edges: matching covering A.
- Blue edges: matching covering B.
- Consider the graph formed by red and blue edges.
- Each connected component is either a cycle, with alternating red and blue edges, or a path, with alternating red and blue edges.
- $|A| > |B|$: one path must have 1 more red edge than the blue edge.
- Augmenting using the path will give a matching that covers $B \cup \{x\}$, for some $x \in A \setminus B$.
A Transversal Matroid is Indeed a Matroid

- $A, B \in I$, $|A| > |B|$.
- Red edges: matching covering A.
- Blue edges: matching covering B.
- Consider the graph formed by red and blue edges.
- Each connected component is
 - either a cycle, with alternating red and blue edges.
A Transversal Matroid is Indeed a Matroid

- $A, B \in \mathcal{I}$, $|A| > |B|$.
- Red edges: matching covering A.
- Blue edges: matching covering B.
- Consider the graph formed by red and blue edges.
- Each connected component is either a cycle, with alternating red and blue edges.
- or a path, with alternating red and blue edges.
A Transversal Matroid is Indeed a Matroid

- $A, B \in \mathcal{I}$, $|A| > |B|$.
- Red edges: matching covering A.
- Blue edges: matching covering B.
- Consider the graph formed by red and blue edges.
- Each connected component is
 - either a cycle, with alternating red and blue edges.
 - or a path, with alternating red and blue edges.
- $|A| > |B|$: one path must have 1 more red edge than the blue edge.
A Transversal Matroid is Indeed a Matroid

- $A, B \in \mathcal{I}, |A| > |B|.$
- Red edges: matching covering $A.$
- Blue edges: matching covering $B.$
- Consider the graph formed by red and blue edges.
- Each connected component is
 - either a cycle, with alternating red and blue edges.
 - or a path, with alternating red and blue edges.
- $|A| > |B|$: one path must have 1 more red edge than the blue edge.
- Augmenting using the path will give a matching that covers $B \cup \{x\}$, for some $x \in A \setminus B.$