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Abstract

We study the broadcast scheduling problem with the
objective of minimizing the average response time.
There is a single server that can hold n pages of unit size,
and multiple requests for these pages arrive over time.
At each time slot the server can broadcast one page
which satisfies all the outstanding requests for this page
at that time. The goal is to find a schedule to minimize
the average response time of the requests, i.e. the
duration since a request arrives until it is satisfied.

We give an Õ(log1.5 n) approximation algorithm for
the problem improving upon the previous Õ(log2 n) ap-

proximation. We also show an Ω(log1/2−ε n) hardness
result, and an integrality gap of Ω(log n) for the natural
LP relaxation for the problem. Prior to our work, only
NP-Hardness and a (tiny) constant integrality gap was
known. These results are based on establishing a close
connection to the discrepancy minimization problem for
permutation set-systems. Specifically, our improved ap-
proximation is based on using recent algorithmic ideas
developed for discrepancy minimization. Our integral-
ity gap is obtained from the Ω(log n)-lower bound on
the discrepancy of 3-permutations, while our hardness
result is based on establishing the first hardness result
for the discrepancy of `-permutations.

1 Introduction

We consider the classic broadcast scheduling setting
which has received a lot of attention in recent years.
The problem we study is formalized as follows: there is a
collection of pages P = {1, . . . , n}. Pages are broadcast
by a server in integer time slots in response to requests.
At time t, the server receives wp(t) requests for page
p ∈ P . We say that a request ρ for page p that arrives
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at time t is satisfied at time cp(t), if cp(t) is the first time
after t when page p is transmitted by the server. The
response time of the request ρ is defined to be the time
that elapses from its arrival till the time it is satisfied,
i.e. cp(t) − t. We assume that the response time for
any request is at least 1. The goal is to find a schedule
for broadcasting pages to minimize the average response
time, i.e. (

∑
t,p wp(t)(cp(t) − t))/

∑
t,p wp(t). Here, we

study the offline problem, where the request sequence is
known in advance to the scheduling algorithm.

The problem was shown to be NP-hard by Erlebach
and Hall [19]. Most of the initial focus was in the the
resource augmentation setting. These results compare
the k-speed algorithm, which is allowed to broadcast
k pages per time slot, against the performance of an
optimal 1-speed algorithm. Kalyanasundaram et al. [24]
gave the first (1/α)-speed, 1/(1 − 2α)-approximation
algorithm for any α ≤ 1/3. This guarantee was
improved in sequence of papers [20, 19, 21] culminating
in a (1 + ε)-speed, O(1/ε) approximation for any ε > 0
[3]. When no extra speed is allowed, the problem gets
considerably harder. Note that repeatedly broadcasting
the pages in the cyclic order 1, . . . , n is a trivial O(n)
approximation. The first improvement over this was an
O(
√
n) approximation due to [3]. Later, a significantly

improved O(log2 n) approximation algorithm was given
by [4]. These results are all based on rounding a natural
LP relaxation for the problem. The ideas and the
framework introduced in [4] will play a key role in this
paper.

The problem of minimizing the average response
time has also been studied extensively in the online
setting [24, 17, 18, 3, 30, 14, 15, 23, 5]. In particular,
several (1 + ε)-speed, O(poly(1/ε)) are now known
[23, 5], and it is also known that extra speed is necessary
to obtain no(1) competitive algorithms. In addition
to average response time, various other measures such
as maximum response time [7, 11] and throughput
maximization [6, 21, 10] have also been studied in the
broadcast setting.

Our Results. In this paper, we give an improved
algorithm with approximation guarantee O(log1.5 n) for
the offline problem. In particular, we show the following



more general result.

Theorem 1.1. There is a polynomial time algorithm
that finds a schedule with average response time 3 ·
OPT +O((

√
log n · log log n) log n), where OPT denotes

the value of the average response time in the optimum
schedule.

While we only show the above result in this paper,
using the idea in Lemma 11 in [4] gives the following
parametrized theorem.

Theorem 1.2. Let γ > 0 be any arbitrary parame-
ter. There is a polynomial time algorithm that finds
a schedule with average response time (2 + γ) · OPT +
O((
√

log1+γ n · log log n) log n), where OPT is the value
of the average response time in the optimum schedule.

Setting γ = Θ(log n) above implies the claimed
approximation guarantee of O(log1.5 n). Note that
the Õ(log1.5 n) term in Theorem 1.1 is additive. In
particular, if OPT is large, say OPT = Ω(log1.5+ε n)
for some ε > 0, then setting γ arbitrarily small, implies
an approximation ratio arbitrarily close to 2.

The main idea behind our algorithm is to build on
the approach of [4] using ideas similar to those used
by Rothvoss in his recent breakthrough result [31] for
bin-packing. Roughly speaking, the algorithm in [4]
works as follows. It solves the natural LP relaxation
for the problem, and reduces the problem of finding a
good rounding for it, to finding a good integral solution
to an auxiliary linear program. This auxiliary LP is
then solved using O(log n) rounds of iterative rounding,
where an O(log n) factor is lost at each round. Here,
we follow the same framework, but instead show how to
use a recent result of Lovett and Meka [27] (developed
in the context of discrepancy minimization) so that the
iterative step incurs only an Õ(

√
log n) factor loss in

each round. To this end, we exploit several structural
properties of the auxiliary LP, and in particular show
how they can be used to write a third LP on which the
Lovett-Meka algorithm can be run.

We also complement the above result with several
negative results. First, we substantially improve the
best known integrality gap of 28/27 [3] for the natural
LP relaxation (on which all the known results are
based).

Theorem 1.3. The natural LP relaxation for the
broadcast problem has an integrality gap of Ω(log n).

Even though the algorithmic approach in [4] (and
our algorithm) has similarities to bin-packing, this re-
sult suggests that the broadcast problem is substan-
tially harder than bin-packing for which even an ad-
ditive +1 integrality gap has not been ruled out. In-
terestingly, Theorem 1.3 is based on establishing a new

connection with the problem of minimizing the discrep-
ancy of 3-permutations. In the 3-permutation prob-
lem, we are given 3-permutations π1, π2, π3 of [n]. The
discrepancy of Π = (π1, π2, π3) w.r.t a ±1 coloring χ
is the worst case discrepancy of all prefixes. That is,

max3
i=1 maxnk=1

∣∣∣∑k
j=1 χ(πi,j)

∣∣∣, where πi,j is the jth ele-

ment in πi. The goal of the problem is to find a coloring
χ that minimizes the discrepancy. Recently Newman
and Nikolov [28] showed a (tight) Ω(log n) lower bound
on the discrepancy of 3-permutations, resolving a long
standing conjecture. Our integrality gap in Theorem 1.3
is obtained by combining this result with our connection
to the discrepancy of 3-permutations.

Then, by generalizing the connection to the discrep-
ancy of `-permutations, we show the following hardness
result (prior to this, only NP-hardness was known [19]).

Theorem 1.4. There is no O(log1/2−ε n)-
approximation algorithm for the problem of mini-
mizing average response time, for any ε > 0, unless
NP ⊆

⋃
t>0 BPTIME(2logt n).

Along the way to proving Theorem 1.4, we also give the
first hardness result for the `-permutation problem.

Theorem 1.5. There is no α(`)-approximation algo-
rithm for the `-permutation problem, for any sufficiently
large ` and some function α(`) = Ω(`1/2), unless NP =
RP.

Actually, we prove a stronger theorem: it is hard to
distinguish between the systems Π = (π1, π2, · · · , π`)
with discrepancy O(1) and with average discrepancy
Ω(`1/2). The average discrepancy of a coloring χ

is 1
`

∑`
i=1 maxnk=1

∣∣∣∑k
j=1 χ(πi,j)

∣∣∣. It turns out that

average discrepancy is the right notion which helps
us show our hardness for broadcast scheduling. We
emphasize that in the `-permutation problem, ` is not
a part of the input. Otherwise, by letting ` equal to the
permutation size n (and using our results on completing
partial permutations from Section 3.3), the Ω(`1/2)-
hardness result can be obtained from the hardness for
set discrepancy established by Charikar, Newman and
Nikolov [9]. We also remark that, in order to prove
Theorem 1.4, we need to allow some weak dependence
between ` and n. Specifically, we allow ` to be
poly log(n).

Organization. In section 2 we describe the frame-
work of [4] and describe our improved algorithm. In
sections 3 and 4, we establish hardness for discrepancy
of permutations and the integrality gap and hardness
for the broadcast problem.



2 Improved Algorithm for Broadcast
Scheduling

Our rounding algorithm follows the same high-level
approach as the BCS algorithm [4]. We first solve the
natural LP relaxation LPbcast for the problem. Using
a two-phase rounding scheme, we construct a tentative
schedule (which may transmit multiple pages at the
same time) which satisfies the following properties:

• The total response time for this schedule is at most
c = O(1) times the cost of the LP relaxation.

• The capacity constraints are satisfied approxi-
mately in the following sense. For any interval of
time (t, t′], the total number of pages broadcast
by the tentative schedule during (t, t′] is at most
t′ − t+ b, for some fixed value b. We refer to this b
as the backlog of the schedule.

The following lemma shows that a low backlog
schedule can be converted to a good feasible schedule
(see Lemma 7, [4] for a simple proof).

Lemma 2.1. Any tentative schedule with backlog b and
average response time c can be transformed into a
feasible schedule with average response time at most
c+ b.

The LP Relaxation. The starting point is the fol-
lowing integer programming formulation for our prob-
lem1. For each page p ∈ [n] and each time t′, there is a
variable ypt′ which indicates whether page p was trans-
mitted at time t′. We have another set of variables xptt′

s.t t′ > t, which indicates whether a request for page p
which arrives at time t is satisfied at t′. Let wpt denote
the total weight of requests for page p that arrive at
time t. Recall that requests arrive at the end of time
slots and can only be served by the next time slot.

min
∑
p

∑
t

∑Tmax+n
t′=t (t′ − t) · wpt · xptt′(2.1)

s.t.
∑
p ypt ≤ 1 ∀t(2.2) ∑Tmax+n

t′=t+1 xptt′ ≥ 1 ∀p, t(2.3)

xptt′ ≤ ypt′ ∀p, t, t′ ≥ t(2.4)

xptt′ ∈ {0, 1} ∀p, t, t′(2.5)

ypt′ ∈ {0, 1} ∀p, t′(2.6)

Here Tmax denotes the last time when any request
arrives. Observe that it suffices to define variables only
until time t = Tmax+n as all requests can be satisfied by

1As stated the LP size is polynomial in Tmax. However we
can assume that the problem input size is at least Tmax/n, since

if there is period of n consecutive timesteps when no page is
requested, then we can split the problem into two instances.

transmitting pages 1, . . . , n after time Tmax. Constraint
(2.2) ensures that only one page is transmitted in each
time, (2.3) ensures that each request must be satisfied,
and (2.4) ensures that a request for page p can be
satisfied at time t only if p is transmitted at time t.
Finally, a request arriving at time t that is satisfied at
time t′ contributes (t′−t) to the objective. Now consider
the linear program obtained by relaxing the integrality
constraints on xptt′ and ypt.

Notation. Let (x∗, y∗) denote an optimal solution
to LPbcast. We can WLOG assume that there is a
request for every page at each time step, by setting
the weight wpt = 0 if there is no request for page
p at time t. For any page p and time t, let σ(p, t)
denote the fractional response time for a request r(p, t)
that arrives at time t. Formally, σ(p, t) =

∑
t′>t(t

′ −
t)x∗ptt′ . Also, let y∗(p, t1, t2) =

∑t2
t=t1

y∗pt denote the
cumulative broadcast of page p between times t1 and
t2. Finally, given a time interval [t1, t2], let t− =
arg maxt′ y

∗(p, t′, t2) ≥ 1 (or is t1 is no such t′ exists).
Define head(I) = [t1, t−] and tail(I) = [t−, t2]. In words,
tail(I) is the smallest suffix of I where there is one unit of
broadcast of p, and head(I) is the corresponding prefix.

2.1 Phase 1: Getting a Block Structured Frac-
tional Solution Since the first phase follows exactly
as in [4], and the novel component is our rounding in
the second phase, we mainly focus on the second phase
while only presenting the necessary aspects about the
first. Indeed, the first phase of the algorithm of Bansal
et al. [4] (henceforth called the BCS algorithm) outputs
a feasible fractional solution to the following auxiliary
LP defined over the following variables.

Blocks and Shifts. For each page p, the BCS algo-
rithm divides the time horizon [1, Tmax + n] into dis-
joint intervals called blocks, each of which has at most
O(log Tmax) cumulative fractional broadcast y∗(p,B) of
page p. Moreover, within each block B = [t1, t2) for
page p, the BCS algorithm identifies a set of possible
tentative schedules for the page p within the block. In-
tuitively, these are the different offset schedules within
the block. e.g., for a fixed offset α ∈ (0, 1], the cor-
responding offset schedule makes tentative broadcasts
at those time slots ti+α when the cumulative broadcast
y∗(p, t1, ti+α) first exceeds i+ α, for i ∈ Z≥0.

Auxiliary LP. In what follows, we denote a
(block,offset) tuple (B,α) as a shift S. There is a vari-
able XS for each shift. For a block B, let p(B) denote
the associated page, and S(B) denote the set of all shifts
associated with B. Let S denote the set of all shifts. Fi-
nally, for shift S, let p(S) denote the associated page,
and 1(S, t) be the indicator variable for whether shift



S ∈ S makes a tentative broadcast at time t.
We have the following constraints: (i) each block B

chooses exactly one shift from S(B), and (ii) any time t
can have at most one broadcast. Finally each shift has
a cost C(S) defined appropriately.

Bansal et al. [4] show the following results about
these blocks and the auxiliary LP, which we compress
into one lemma.

min
∑
S∈S

xSC(S)(LPaux) ∑
S∈S(B)

xS = 1 ∀B ∈ B,(2.7)

∑
S∈S

1(S, t)x(S) ≤ 1 ∀t ∈ [Tmax],(2.8)

xS ≥ 0 ∀S ∈ S.(2.9)

Lemma 2.2. After Phase I of [4], the constructed
blocks, their shifts, and the auxiliary LP LPaux satisfy
the following properties.

(i) Any shift S ∈ S makes at most O(log Tmax) tenta-
tive broadcasts, all within its corresponding block.

(ii) The different shifts in a block are “interleaving”:
between two successive transmissions of a shift S′ ∈
S(B), there is exactly one transmission made by
any other shift S ∈ S(B).

(iii) LPaux has a feasible solution of cost at most 3·OPT.
(iv) For any integral assignment XS ∈ {0, 1} which

satisfies (2.7), the cost of the tentative schedule is
exactly its objective value in LPaux.

The proof is in Appendix A.1. Note that apriori
Tmax can be arbitrarily large (w.r.t n). However, by
Lemma 10 in [4], we can assume that Tmax = poly(n)
using a decomposition procedure. In what follows, we
will still use O(log Tmax) below to make the dependence
on time horizon explicit for better clarity. Furthermore,
the factor 3 in part (iii) of the lemma above can be
reduced to 2 + γ for any γ > 0, at the expense
of increasing the number of broadcasts in a shift to
O(log1+γ Tmax) (see Lemma 11 in [4]).

2.2 Phase 2: Rounding the Auxiliary LP Let
x∗ denote an optimal solution to LPaux. The remainder
of this section focuses on rounding x∗.

Theorem 2.1. LP solution x∗ to LPaux can be effi-
ciently rounded to an integral solution X = {XS} satis-
fying

(i)
∑
S XSC(S) ≤ O(1)

∑
S x
∗
SC(S),

(ii)
∑
S∈S(B)XS = 1, for all B ∈ B, and

(iii) For any interval I = [t1, t2),
∑
S XS1(S, I) ≤

(t2 − t1) + b, for b = O(log3/2 Tmax). In words,
the total number of tentative broadcasts is at most
(t2 − t1) + b for any interval [t1, t2).

Here, 1(S, I) =
∑
t1≤t<t2 1(S, t) denotes the total

number of broadcasts that shift S makes in time interval
I = [t1, t2). We can then recover a schedule with average
response time O(1) ·OPT + b, by using property (iv) of
Lemma 2.2 and Lemma 2.1.

2.2.1 Proof of Theorem 2.1: The Rounding Al-
gorithm Our rounding of LPaux will proceed in iter-
ations. In each iteration, we will round a constant
fraction of the variables xS to integral values in {0, 1}.
Throughout the algorithm we will maintain the invari-
ant that

∑
S∈S(B) xS = 1 for each block B. This implies

that once some variable xS is set to 1, then xS′ = 0 for
all S′ ∈ S(B)\{S} where B is the block containing shift
S. We call such a block B integrally assigned.

Algorithm Notation. Let Xk (boldfont) denote
the fractional solution at the beginning of the kth

iteration, and XS,k denote the value of the LP variable
corresponding to shift S in Xk. Let Sk denote the set
of shifts with strictly fractional values in Xk, i.e. 0 <
XS,k < 1. Let Bk denote the set of blocks which are not
integrally assigned in Xk. Note that Sk is precisely the
set of shifts contained in the blocks Bk.

Our high level idea is the following. As it is hard to
guarantee that the constraint (2.8) will be maintained
exactly for each time step upon rounding, we will
instead enforce such a constraint only for large time
intervals (as we will show, this can be ensured as the
number of such constraints will be few). However, as
the algorithm proceeds over iterations and fixes some
shifts integrally to 0/1, a time slot (or) time interval may
have very little (or no) broadcast among the fractional
shifts in Xk. To get around this, instead of directly
working with time intervals, we will adopt a different
approach and consider intervals of transmissions made
by the shifts in Sk. In fact, this step will be critical
in ensuring that the Lovett-Meka result can be applied
later. To this end, the following notation will serve
useful.

(i) Let Nk denote the multi-set of all time slots where
a transmission is made by a shift in Sk, and let
Nk = |Nk|. That is, a time step t appears mt times
in Nk if mt shifts in Sk transmit at t.

(ii) Let us order the transmissions in Nk in the increas-
ing order of time (breaking ties arbitrarily). Let Oki
denote the shift that makes the ith transmission
from Nk.



(iii) For 1 ≤ j1 ≤ j2 ≤ Nk, let Ok[j1,j2] denote the

multiset of shifts ]j2i=j1O
k
j . For an interval of

indices J = [j1, j2], OkJ is defined identically.
(iv) For a fractional solution X and a multiset C of

shifts, let X(C) :=
∑
S∈C XS denote the total

fractional broadcast made by the fractional solution
with respect to the multiset C of shifts.

Replacing time intervals by J-intervals. Let us
consider property (iii) of Theorem 2.1. As stated, prop-
erty (iii) is required for a collection of Θ(T 2

max) con-
straints, for different choices of t1 and t2. This property
can also be expressed as collection of constraints that
bound X(C) for the multi-set of shifts C = OkJ corre-
sponding to intervals J = [j1, j2], where j1 is the small
index of the transmission that is made at time t1, and
j2 is the largest index of the transmissions made at time
t2. So, we will consider enforcing such a constraint for
each J-interval [j1, j2] for j1, j2 ∈ [Nk]. In what follows,
we will approximately capture all these constraints by
a family of Θ(Nk) constraints using the dyadic interval
decomposition.

Grouping Transmissions into Dyadic Intervals.
WLOG, let us assume that Nk is a power of 2, and say
Nk = 2`. Let Dk denote the family of dyadic intervals of
[Nk], i.e., all intervals of the form (i2`/2j , (i + 1)2`/2j ]
where 0 ≤ j ≤ `, and 0 ≤ i ≤ 2j − 1. . Now, instead
of rounding LPaux directly, we will work with the core
LP LPcore (defined below) which has time constraints
only on the dyadic intervals, and later argue that a
good solution for the core LP implies a good solution
for LPaux. Intuitively, this is because we can express
any J-interval [j1, j2] as the concatenation of O(logNk)
many dyadic intervals, and the core LP will ensure that
the capacity constraints are satisfied on these intervals.

∑
S∈Sk

C(S)yS ≤
∑
S∈Sk

C(S)XS,k (LPcore)(2.10)

∑
S∈S(B)

yS = 1 ∀B ∈ Bk(2.11)

y(OkJ) ≤ Xk(OkJ) ∀J ∈ Dlk(2.12)

y(OkJ) ≤ Xk(OkJ) ∀J ∈ Dsk(2.13)

yS ≥ 0 ∀S ∈ Sk(2.14)

In the LP and henceforth, Dsk denotes the “small”
dyadic intervals, i.e., Dsk = {J ∈ Dk, |J | ≤
O(log Tmax)}, and Dlk = Dk \ Dsk denotes the “larger”
dyadic intervals. Also, y = {yS} are the variables,
and Xk = {XS,k} is the fractional solution we start
with in the kth iteration. While the constraints (2.12)

and (2.13) are identical as written, our rounding algo-
rithm will treat them differently.

Lovett-Meka Rounding of LPcore. We now run
the Lovett-Meka rounding algorithm [27] (henceforth
LM algorithm) on the above core LP. The Lovett-Meka
algorithm was developed to find low discrepancy par-
tial colorings for any set system, and matches the best
non-constructive result due to the celebrated work of
Spencer [32] and simplifies a previous constructive al-
gorithm of Bansal [2]. However, these techniques are
much more general and can be applied to a variety of
problems besides the discrepancy problem. Recently,
Rothvoss [31] used this to improve the approximation
factor for Bin Packing to O(log OPT log log OPT), beat-
ing a long-standing bound of Karmarkar and Karp [25].
In general, we can view the LM rounding as a more re-
fined (albeit lossy) form of traditional iterative round-
ing, where we have no control over the structure of a ba-
sic feasible solution. Much like Rothvoss’s rounding [31],
our rounding heavily relies on the fine control which the
LM rounding gives us, in moving to a partially-integral
solution. We first present the LM algorithm’s guaran-
tees as a blackbox, and then apply it in our setting.

Theorem 2.2. 2[Constructive partial coloring theo-
rem [27]] Let y ∈ [0, 1]m be any starting point, δ > 0 be
an arbitrary error parameter, v1, . . . , vn ∈ Rn vectors
and λ1, . . . , λn ≥ 0 parameters with

(2.15)

n∑
i=1

e−λ
2
i /161λi>0 ≤

m

16
.

Also suppose at most 9m/16 constraints have λi =

0. Then there is a randomized Õ((m + n)3/δ2)-time
algorithm to compute a vector z ∈ [0, 1]m with

(i) zj ∈ [0, δ]∪ [1−δ, 1] for at least m/32 of the indices
j ∈ [m],

(ii) |vi · z− vi · y| ≤ λi||vi||2, for each i ∈ [n].

Firstly, by setting δ inverse-polynomially small, we
can ignore it and assume that 1/32 of the variables
become integral in z. Now, we apply this theorem
to LPcore, with y as the starting point, the different
constraints (2.10)-(2.13) corresponding to the vectors
v1, . . . , vn, and the following choice of λ parameters:

(i) Set λ value to 0 for the constraints (2.10), (2.11),
and (2.12),

(iii) Set λ value to Ω(
√

log log Tmax) for all smaller
interval constraints (2.13).

2The original theorem does not allow 5m/8 λi’s to be 0,

but we show how to adapt their proof to allow this setting in
Appendix A.2



We now show that these parameters satisfy the
condition (A.1) so that we can apply the LM rounding.

Lemma 2.3. The choice of λ above for the con-
straints (2.10)-(2.13) satisfies the conditions for The-
orem 2.2.

Proof. We first show that at most 9m/16 constraints
have λi = 0. Firstly, there is only one objective function
constraint (2.10) which accounts for 1. Likewise, each
block constraint (2.11) accounts for 1, and there are
|Bk| ≤ (1/2)|Sk| of them. This is because each non-
integral block has at least 2 shifts in Sk. In total, they
contribute at most |Sk|/2.

Now, let us count the contribution of the large
intervals. Now, since the dyadic intervals can be
represented by a binary tree (root node has size Nk,
and each child has half the size, and so on), the total
number of large intervals (of size at least Ω(log Tmax))
is at most O(Nk/ log Tmax). However, we note that
Nk = O(|Sk| log Tmax). This is because each shift,
say corresponding to block B and offset α and page p,
makes at mostO(log Tmax) transmissions by Lemma 2.2,
property (i). Therefore, the total contribution due to
these intervals is at most |Sk|/32, for a suitable choice
of constants. In total, this is at most 9|Sk|/16 = 9m/16.

Next, we show that condition (A.1) is satisfied: for
this, we focus on the small interval constraints. There
are at most O(Tmax) such constraints, and each of these
constraints has λ value Ω(

√
log log Tmax). Therefore, the

total contribution due to these constraints is |Sk|/16,
which is the RHS value of (A.1) as desired.

Therefore, by property (i) of Theorem 2.2, the LM
rounding returns a solution z which has made at least
1/8th of Sk integrally assigned. We define Xk+1 :=
z, Sk+1 denote the shifts which are still fractionally
assigned in Xk+1, Bk+1 denote the blocks which are
not integrally assigned, and repeat this process, until
we end up with an integral solution. Let k∗ denote the
iteration when we end up with an integral solution.

We now analyze the final solution Xk∗ . The next
lemmas prove properties (i) and (ii) of Theorem 2.1.

Lemma 2.4. The cost of the final solution∑
S∈S C(S)Xk∗,S ≤

∑
S∈S C(S)x∗S.

Proof. Consider iteration k ≥ 0. Notice that when
we run the LM algorithm, we had set λ value to
be 0 for constraint (2.10). Therefore, by prop-
erty (ii) of Theorem 2.2, we have

∑
S∈Sk C(S)Xk+1,S −∑

S∈Sk C(S)XkS ≤ 0. Moreover, once a shift gets in-
tegrally assigned in Xk+1, it is never altered in subse-
quent iterations. Therefore, we can inductively apply
this property and complete the proof.

Lemma 2.5. At every iteration k, for every block B ∈
B, we have

∑
S∈S(B)XS,k = 1.

Proof. This again follows because throughout our
iterative rounding, we maintain the property∑
S∈S(B)XS,k = XS,k+1 since we set λ value to

be 0 for all the block constraints.

As a result, we pick exactly one shift/offset in each
block in our final integral solution. We are left with
bounding the backlog of Xk∗ .

Lemma 2.6. For any interval I = [t1, t2) and any 0 ≤
k < k∗,

∑
S∈Sk XS,k+11(S, I) ≤

∑
S∈Sk XS,k + O(B),

where B =
√

log Tmax log log Tmax.

Proof. Consider some iteration 0 ≤ k < k∗ and time
interval I = [t1, t2]. Firstly, notice that for any
fractional solution y, we can view the total fractional
transmission by shifts in Sk in this time interval I (i.e.,
the set Nk ∩ I), as the dot product OkJ(I) · y, where

J(I) is an appropriately defined interval of the form
J(I) = [j1, j2], with 1 ≤ j1 ≤ j2 ≤ Nk. Notice that here,
and for the rest of the proof, we are viewing the multiset
OkJ as a vector with integral entries in |Sk| dimensions.

In this view, we can rephrase the statement of the
lemma as OkJ(I) · (Xk+1 − Xk) ≤ O(B). To this end,

we decompose the interval J(I) into a concatenation of
intervals belonging to the dyadic family, and individu-
ally compute the error accrued by Xk+1−Xk in each of
these intervals. Moreover, the larger intervals J accrue
no error, i.e., OkJ · (Xk+1 −Xk) = 0 because we set the
λ parameter of all large intervals to 0.

Therefore we focus on the smaller intervals J ∈ Dsk.
Since property (ii) of Theorem 2.2 says that the error
OkJ · (Xk+1 − Xk) ≤ λJ · ||OkJ ||2, we now focus on
bounding the 2-norm of such constraints.

Indeed, since J is by definition a multiset consisting
of |J | contiguous transmissions, the `1 norm of OkJ
is |J |. Hence, in order to bound the `2 norm, it
suffices to bound the `∞ norm. In general, however,
the `∞ norm can be as large as O(log Tmax), since
the same shift can make multiple transmissions in an
interval. While such an event can happen, we now
appeal to the interleaving nature of shifts to reduce
the `∞ norm. Indeed, by Lemma 6 (property (ii)), all
shifts of a block make an equal number (upto ±1) of
transmissions in any time interval. Using this, we can
actually eliminate many transmissions in this multiset,
because our rounding preserves the sum

∑
S∈S(B)XS,k

by Lemma 2.5. Therefore, we will be left with only at
most 1 transmission per shift, thus bounding the `∞
norm by 1. More formally, we run the LM algorithm on
the simplified family of constraints (2.13) as obtained
below.



Simplifying Constraints (2.13). Consider some in-
terval J ∈ Dsk, and some block B ∈ Bk, and let
p = minS∈S(B)OkJ [S] denote the minimum number of
transmissions done by shifts of block B in the multiset
OkJ . Here, Okj [S] is the value of the coordinate cor-

responding to shift S in the multiset OkJ . Then, by
Lemma 2.5, we know that

∑
S∈S(B) yS = 1 is preserved

by the final solution Xk+1, and therefore we can sub-
tract p

∑
S∈S(B) yS from the LHS of constraint (2.13),

and p from the RHS before running the LM algorithm.
Now, it is easy to see that if our rounded solution
Xk+1 = z satisfies the simplified constraint with an ad-
ditive error of ∆, then the original constraint is satisfied
with the same error.

Claim 1. The 2-norm of any constraint (2.13) corre-
sponding to J ∈ Dsk after simplification is O(

√
|J |).

Proof. As mentioned above, the 1-norm of the original
constraint is O(|J |), and the simplification process only
decreases the 1-norm. Moreover, the ∞-norm of the
constraint is bounded by 2, since no shift can make more
than 2 transmissions in the simplified constraint. The
claim follows then by a simple norm inequality.

Therefore, the difference OkJ · (Xk+1 − Xk) ≤√
|J | log log Tmax for all small intervals J ∈ Dsk, since

the λ value was set to Θ(
√

log log Tmax) for such in-
tervals. Since the small intervals form a geometric se-
ries of sizes 1, 2, 4, . . . ,Θ(log Tmax), the total error of
OkJ(I) · (Xk+1 − Xk) is dominated by the largest in-

terval, and hence is at most O(
√

log Tmax log log Tmax),
completing the proof.

To complete the proof of Theorem 2.1, we can apply
Lemma 2.6 iteratively and bound the total backlog by
O(log1.5 Tmax

√
log log Tmax), thus proving property (iii).

This completes the proof of Theorem 1.1.

3 Hardness of Approximating `-permutations

Notation: Let χ : U → {±1} be a {±1} coloring of
elements in U . For a subset U ′ ⊆ U , we define χ(U ′) =∑
u∈U ′ χ(u). For a sequence p = (p1, p2, · · · , pm) of

length m elements from U , define χ(p) =
∑m
i=1 χ(pi).

Define discχ(p) = maxp′ |χ(p′)|, where p′ ranges over all
prefixes of p.

Let π1, π2, · · · , π` be ` permutations of U . Then,
the discrepancy and the average discrepancy of the
permutation system Π = {π1, π2, · · · , π`} are defined
as

disc(Π) := min
χ:U→{±1}

max
i∈[`]

discχ(πi),

avgdisc(Π) := min
χ:U→{±1}

1

`

∑
i∈[`]

discχ(πi).

In this section, we prove Theorem 1.5. Like the
proof of Charikar et al. for discrepancy hardness for
arbitrary set systems [9], our proof is also based on
reduction from the 4-set splitting problem.

4-Set Splitting Problem. We are given a ground
set U and a collection S of subsets of U where each
S ∈ S has |S| = 4. The goal of the problem is to find a
±1 coloring χ of U such that the number of sets S ∈ S
with χ(S) = 0 is maximized. We say a set S ∈ S is
“equally split” by χ if χ(S) = 0. So, we want to find
a coloring χ so as to maximize the number of equally
split sets. Additionally, we say that a 4-set splitting
instance (U,S) is ∆-restricted for some integer ∆ > 0,
if each u ∈ U appears in at most ∆ sets in S. W.l.o.g,
we assume each u ∈ U appears in at least 1 set in S.
Thus, we have |U |/4 ≤ |S| ≤ |U |∆/4 in a ∆-restricted
instance (U,S). We start with the following hardness
result (see, e.g., [9]).

Theorem 3.1. There exist a real number δ ∈ (0, 1) and
an interger ∆ ≥ 1 such that the following is true. Given
a ∆-restricted 4-set splitting instance (U,S), it is NP-
hard to distinguish the following two cases:

• Yes Instance: There is a coloring χ such that all
sets in S are equally split.

• No Instance: For every coloring χ, at most δ
fraction of the sets in S are equally split.

Since δ and ∆ are absolute constants, we hide them in
O(.) and Ω(.) notations. Thus, we have |S| = Θ(|U |)
in a ∆-restricted instance (U,S). The main lemma we
shall prove in this section is the following. Combining
this with Theorem 3.1 implies Theorem 1.5.

Lemma 3.1. There exists some constants `0, C ∈ Z+,
such that: given a ∆-restricted 4-set splitting instance
(U,S) and an integer ` such that `0 ≤ ` ≤ |U |/C, there
is an efficient randomized algorithm that constructs
an `-permutation instance Π = {π1, π2, · · · , π`} with
permutation size O(`|U |), such that

• If (U,S) is a yes instance, then disc(Π) = O(1) with
probability 1.

• If (U,S) is a no instance, then avgdisc(Π) = Ω(
√
`)

with probability at least 1/2.

We first sketch the proof of Lemma 3.1. Since
the instance (U,S) is ∆-restricted, we can partition
S into 4∆ families of disjoint sets. For a fixed fam-
ily S ′ ⊆ S, we produce s = Θ(`) permutations over⋃
S∈S′ S randomly and independently. Each permu-

tation g = (g1, g2, · · · , g4|S′|) is obtained by concate-
nating the sets in S ′ according to a random permu-
tation (S1, S2, · · · , S|S′|) of S ′. That is, g satisfies
Si = {g4i−3, g4i−2, g4i−1, g4i} for every i ∈ [|S ′|]. In



total, we have constructed 4∆× s = Θ(`) “partial per-
mutations” over U . If s is small enough, the number of
partial permutations is at most `.

For a no instance (U,S) and any coloring χ of U ,
there is a family S ′ of size Ω(|S|) in the partition such
that a constant fraction of sets in S ′ are not equally
split by χ. We split each of the s permutations for
S ′ into blocks of length 4`′, for some `′ = Θ(`). We
then expect that each block g′ has |χ(g′)| = Ω(

√
`) by

“inverse Chernoff bound”. Since each of the s = Θ(`)
permutations contain Θ(|S|/`′) blocks, with probability
at least 1 − e−Ω(|S|), s/2 permutations contain bad
blocks, i.e. blocks g′ such that |χ(g)| ≥ Ω(

√
`′). Thus,

with probability at least 1− e−Ω(|S|), s/2 permutations
g have discχ(g) ≥ Ω(

√
`′). Taking union bound over all

colorings χ of U , we have that with probability at least
1/2, the system of partial permutations has average
discrepancy Ω(

√
`). In the formal proof, we need to

carefully consider the dependence between the blocks.
Notice that for a yes instance, the system of partial

permutations has discrepancy 2, since every partial
permutation is a concatenation of some sets in S. Thus,
we have almost proved Lemma 3.1 except that the
permutations are partial. In the last and important
step, we obtain a system of perfect permutations by
appending elements to the end of partial permutations,
so that the system for a yes instance still has O(1)
discrepancy.

The remaining part of this section is organized
as follows. In Section 3.1, we construct the system
of ` partial permutations for the given 4-set splitting
instance (U,S). Then in Section 3.2, we prove that the
system for no instances has average discrepancy Ω(`1/2).
Finally in Section 3.3, we show how to extend the partial
permutations to full permutations so that the system for
yes instances still has discrepancy O(1).

3.1 Construction of partial permutations Since
(U,S) is a ∆-restricted instance, we can partition S into
4∆ families of disjoint sets. For each family S ′ ⊆ S of
disjoint sets, we construct s := d64∆`′/(1− δ)e per-
mutations over

⋃
S∈S′ S, for some suitable parameter

`′ = Θ(`) (here δ is as defined in theorem 3.1). Each per-
mutation is constructed randomly and independently as
follows. Let g = (g1, g2, · · · , g4|S′|) be the permuta-
tion over

⋃
S∈S′ S, obtained by concatenating sets in S

according to a random permutation (S1, S2, · · · , S|S′|)
over S ′. That is, Si = {g4i−3, g4i−2, g4i−1, g4i} for every
i ∈ [|S ′|]. The 4 elements in Si are arbitrarily ordered
in g. Notice the sequence g is a partial permutation of
U ; that is, g does not need to contain all elements in
U . In total, we have constructed 4∆× s = O(`) partial
permutations. We select `′ small enough so that the

number of partial permutations is at most `.
For a yes instance (U,S) let χ : U → {±1} be the

coloring that equally split all sets in S. Then, it is easy
to see that every partial permutation g has discχ(g) ≤ 2,
since g is a concatenation of sets in S. Thus, for yes
instances, the partial permutation system has maximum
discrepancy O(1).

3.2 Ω(
√
`)-discrepancy on the partial permuta-

tion system for no instances In this section, we
show that if (U,S) is a no instance, then with prob-
ability at least 1/2, for every coloring χ : U → {±1},
at least Ω(`) partial permutations have discrepancy at
least Ω(

√
`) w.r.t χ.

We start with the following technical lemma.

Lemma 3.2. Let T ⊆ S be a subfamily of disjoint sets
in S and χ : U → {±1} be a coloring of U such that at
least (1−δ)|S|/(8∆) sets in T are not equally split by χ.
Let S1, S2, · · · , S`′ be `′ different sets selected randomly
from T . Then, with probability at least 0.8, we have∣∣∣∑i∈[`′] χ(Si)

∣∣∣ ≥ Ω(
√
`).

Proof. Let Xi = χ(Si) for every i ∈ [`′]. We first
consider the simpler procedure where each Si is selected
from T randomly and independently (that is, we do not
require the `′ sets to be different). ThenX1, X2, · · · , X`′

are i.i.d. Let µ = E[Xi] and w.l.o.g, assume µ ≥ 0.

Since |T | ≤ |S|, at least (1−δ)
8∆ fraction of sets in

T are not equally split by χ. Then, with probability
at least (1 − δ)/(8∆), |Xi| ≥ 1, we have E[X2

i ] ≥
(1 − δ)/(8∆). Then, σ2 := Var(Xi) = E[X2

i ] − µ2 ≥
(1 − δ)/(8∆) − µ2 ≥ (1 − δ)/(8∆) − 169/`′. For large
enough `′, σ2 ≥ (1− δ)/(10∆). We apply the following
theorem to lower-bound the tail probability of χ(g).

Theorem 3.2. (Berry-Esseen inequality) Let
X1, X2, · · · , Xn be independent random variables with
E(Xi) = 0, E(X2

i ) = σ2
i > 0 and E(|Xi|3) = ρi < ∞.

Let F be the cumulative density function of

Y :=

∑n
i=1Xi√∑n
i=1 σ

2
i

.

Then, there is an absolute constant C1 such that

sup
x∈R
|F (x)− Φ(x)| ≤ C1

(
n∑
i=1

σ2
i

)−3/2

·
n∑
i=1

ρi,

where Φ is the culmulative density function of the
normal distribution.

We apply the theorem to the variables X ′i := Xi−µ.
Then, ρi := E(|X ′3i |) ≤ 8E(X ′2i ) = 8σ2, since |X ′i| ≤ 8



with probability 1. Then,

Pr

[∣∣∣∣∑`′

i=1
Xi

∣∣∣∣ ≥ 0.1σ
√
`′
]

= 1− Pr

[
−0.1−

√
`′µ
σ <

∣∣∣∑`′
i=1X

′
i

∣∣∣
σ
√
`′

< 0.1−
√
`′µ
σ

]
≥ 1−

(
Φ
(

0.1−
√
`′µ/σ

)
− Φ

(
−0.1−

√
`′µ/σ

))
− 2C1

(
`′σ2

)−3/2 · `′ρ

≥ 1− (Φ(0.1)− Φ(−0.1))− 16C1/
√
`′σ2

≥ 0.92− 32C1/
√

(1− δ)`′.

If `0 in Lemma 3.1 is large enough, the above
probability is at least 0.9. Since σ ≥

√
(1− δ)/(8∆) =

Ω(1), we have Pr
[
χ(g′) ≥ Ω(

√
`′)
]
≥ 0.9.

The probability that S1, S2, · · · , S`′ are disjoint is
at least

|T | (|T | − 1) (|T | − 2) · · · (|T | − (`′ − 1))

|T |`′
.

If the constant C in Lemma 3.1 is large enough, we have
|T | ≥ 11`′, the above quantity is at least (1−1/11`′)`

′ ≥
e−1/10 > 0.9. Thus, in the sampling process without
replacement, with probability at least 0.9+0.9−1 = 0.8,
the generated sequence g has |χ(g)| ≥ Ω(

√
`′).

Now, focus on a no instance (U,S) and an arbitrary
coloring χ : U → {±1}. Then, at least (1 − δ)|S|
sets in S are not equally split by χ. Recall that we
have partitioned S into 4∆ families of disjoint sets.
At least (1 − δ)|S|/(4∆) sets in some family are not
equally split by χ. Focus on such a family S ′ and let
(S1, S2, · · · , S|S′|) be a random permutation on S ′.

Split (S1, S2, · · · , S|S′|) into blocks of sizes `′. Con-
sider a block (St`′+1, St`′+2, · · · , St`′+`′). Notice that if
S1, S2, · · · , St`′ are fixed, then St`′+1, St`′+2, · · · , St`′+`′
are `′ different sets, randomly selected from the sub-
family S ′ \ {S1, S2, · · · , St`′}. If t ≤ (1 − δ)|S|/(8∆`′),
then at least (1 − δ)|S|/(4∆) − (1 − δ)|S|/(8∆) =
(1− δ)|S|/(8∆) sets from the subfamily are not equally
split by χ. By Lemma 3.2, with probability at least 0.8,∣∣∣∣∣ t`

′+`′∑
i=t`′+1

χ(Si)

∣∣∣∣∣ ≥ Ω(
√
`),(3.16)

for any choices of S1, S2, · · · , St`′ . Thus, the proba-
bility that there exists a t ≤ (1 − δ)|S|/(8∆`′) sat-
isfying (3.16) is at least 1 − 0.2(1−δ)|S|/(8∆`′). If we
let g be the permutation over

⋃
S∈S′ S according to

(S1, S2, · · · , S|S′|), then discχ(g) ≥ Ω(
√
`) with prob-

ability at least 1− 0.2(1−δ)|S|/(8∆`′).

Recall that in Section 3.1, we have constructed
s = d64∆`′/(1− δ)e permutations g1, g2, · · · , gs over⋃
S∈S′ S independently. With probability at most(
s

s/2

)
0.2(1−δ)|S|/(8∆`′)×s/2 ≤

(
s

s/2

)
0.24|S| ≤ 0.4|U |,

s/2 choices of i ∈ [s] satisfy discχ(gi) ≤ Ω(
√
`). The last

inequality used the fact that |S| ≥ |U |/4 and s ≤ |U | (if
the constant C in Lemma 3.1 is large enough).

By union bound over all colorings χ, with probabil-
ity at least 1−2|U | ·0.4|U | ≥ 1/2, for every coloring χ, at
least s/2 = Ω(`) partial permutations have discrepancy
Ω(
√
`). In other words, with probability at least 1/2,

the system of the ` partial permutations has average
discrepancy Ω(

√
`).

3.3 Completing Partial Permutations We have
almost proved Lemma 3.1, except that the obtained
“permutations” are partial. The remaining task is
to complete the partial permutations by appending
elements to their ends. In the process, we introduce
a new set V of elements. Then all the ` permutations
will be on U ∪ V . Notice that appending elements does
not decrease the discrepancy. In particular, for a no
instance (U,S), the permutation system still has average
discrepancy Ω(

√
`). We need to ensure that in a yes

instance, no matter what the coloring for U is, we can
find a coloring for V so that the resulting permutation
has O(1) discrepancy.

To this end, we focus on a yes instance (U,S) and
a coloring χ that equally splits all sets in S. We can
assume χ(U) = 0 by adding dummy elements to U .
For each partial permutation, we append the elements
of U that do not appear in the permutation arbitrarily
to its end. We thus obtain ` permutations of U . Let
p1, p2, · · · , p` be the ` suffixes we appended to the end
of the ` partial permutations. Since χ(U) = 0, we have
χ(pi) = 0 for every i ∈ [`]. Now, we insert the elements
of V to each of the sequences pi to form ` new sequences
q1, q2, · · · , q`. We guarantee that no matter what the
original coloring χ is, we can find a coloring χ′ for V
such that the discrepancy of the system {q1, q2, · · · , q`}
has O(1) discrepancy w.r.t to χ and χ′. The following
lemma is the crux of this step, which also completes the
proof of Lemma 3.1.

Lemma 3.3. There is a large enough constant d such
that the following is true. Let U be the ground set and
p1, p2, · · · , p` be ` sequences of elements in U , each of
even length. Then, we can efficiently construct a set V
of d×

∑`
i=1 |pi| elements with U∩V = ∅ and ` sequences

q1, q2, · · · , q`, such that



(i) Each sequence qi is formed by inserting all the
elements of V into pi;

(ii) For every coloring χ : U → {±1} s.t χ(pi) = 0 for
every i ∈ [`], we can find a coloring χ′ : U ∪ V →
{±1} such that χ′|U ≡ χ and discχ′(qi) ≤ d+1

2 for
every i ∈ [`].

Proof. In our construction, we shall apply some explicit
construction of expanders. Recall that the expansion of
a graph G = (V,E) is

Φ(G) = min
S⊆V ;|S|≤|V |/2

|E(S, V \ S)|
|S|

.

Let d be a large enough odd number such that given any
even number n ≥ 0, we can construct in poly(n) time a
d-regular graph with n vertices and expansion at least
1. It is known that such constructions exist.

We describe how we obtain the sequences
q1, q2, · · · , q` from p1, p2, · · · , p`. Let mi = |pi|, and pi,j
denote the jth element of the sequence pi. In the first
step, for each i ∈ [`] and j ∈ [mi], we insert d unique ele-
ments right before pi,j in the sequence pi. Thus, we have

inserted |V | = d
∑`
i=1mi elements across all sequences,

and also guarantee that each element is inserted exactly
once. We use Ai,j to denote the set of d elements in-
serted before pi,j . Then, the set {Ai,j : i ∈ [`], j ∈ [mi]}
forms a partitioning of V into groups of size d. Let
Ai =

⋃
j∈[mi]

Ai,j .

In order to satisfy Property (i), we need to insert the
elements inserted into pi in the other sequences also. We
now do this in a careful manner. To this end, for each
i ∈ [`], we divide the dmi elements of Ai into dmi/2
pairs, in the manner described in the next paragraph
(recall that mi is even). Let Bi denote the set of pairs.
For every i′ ∈ [`], i′ 6= i, we append the dmi elements
to the end of pi′ , with the only constraint that the 2
elements of each pair in Bi appear next to each other in
the appended sequence.

We now describe the requirement that our pairing
Bi must satisfy. To this end, we construct a d-regular
graph Hi = ([mi], EHi

) as follows. Each vertex j ∈ [mi]
corresponds to the set Ai,j . For each pair {u, v} ∈ Bi
with u ∈ Ai,j and v ∈ Ai,j′ , there is an edge (j, j′) in
EHi

. The only requirement for Bi is that the associated
d-regular graph Hi has expansion at least 1. Moreover,
we can easily recover a pairing from any d-regular graph
on mi vertices with expansion at least 1. This finishes
the construction of the sequences q1, · · · , q`.

Now, we show how we extend a coloring χ : U →
{±1} to a coloring for χ′ : U ∪ V → {±1}. Suppose we
are given a coloring χ : U → {±1} such that χ(pi) = 0
for every i ∈ [`]. Consider the element pi,j and the d
elements Ai,j inserted before pi,j . We require that the

d+ 1 elements are equally split by χ′. Thus, we require
χ′(Ai,j) = −χ(pi,j). Then, for each pair {u, v} ∈ Bi ,
we require χ′(u) + χ′(v) = 0. The first condition will
ensure that the intervals we add before each pi,j have no
discrepancy, and the second condition ensures that the
pairs we add at the end of each suffix also don’t have
any discrepancy. Therefore, these two requirements
are sufficient to guarantee that the sequences {qi} have
O(1)-discrepancy.

To this end, notice that the requirements for differ-
ent i’s are independent and thus we can focus on a fixed
i ∈ [`]. Then, the requirements for χ′ and the set Ai
are: ∑

u∈Ai,j

χ′(u) = −χ(pi,j) ∀j ∈ [mi]

χ′(u) + χ′(v) = 0 ∀B = {u, v} ∈ Bi

For an element u ∈ Ai, let yu = χ′(u)+1
2 . We can

then convert the above linear system to a system on y
variables:∑

u∈Ai,j

yu =
d− χ(pi,j)

2
∀j ∈ [mi]

yu + yv = 1 ∀ {u, v} ∈ Bi

We prove that the above linear system has a {0, 1}
solution. To this end, focus on the d-regular graph Hi.
To gain some intuition, let us see what the above LP
is doing. Indeed, it tries to orient the edges of H so

that the in-degree of j is exactly
d−χ(pi,j)

2 for every
j ∈ [mi]. To see this, for each edge corresponding to
{u, v} ∈ Bi, u ∈ Ai,j , v ∈ Ai,j′ , we let yu = 1, yv = 0 if
the edge is oriented from j′ to j and let yu = 0, yv = 1
otherwise.

Now, because χ(pi) = 0, we have that the number

of edges in Hi is dmi/2 =
∑mi

j=1
d−χ(pi,j)

2 . Therefore, it
is an equivalent problem to require that the in-degree of

j is at most
d−χ(pi,j)

2 for every j ∈ [mi]. By viewing this
as a bipartite matching problem, it is easy to see that
there exists a valid orientation if and only if for every

subset S ⊆ [mi], |EHi
(S)| ≤

∑
j∈S

d−χ(pi,j)
2 . Here,

E(S) is the set of edges induced inside the subset S
of vertices.

Indeed, if |S| ≤ mi/2, by the expansion property

of Hi, we have |EHi
(S)| ≤ d|S|−|S|

2 =
∑
j∈S

d−1
2 ≤∑

j∈S
d−χ(pi,j)

2 . On the other hand, if |S| ≥ mi/2,

we have |EHi
(S)| ≤ d|S|−(mi−|S|)

2 = (d+1)|S|−mi

2 . But

notice that
∑
j∈S

d−χ(pi,j)
2 ≥ mi

2 ×
d−1

2 +
(
|S| − mi

2

)
×

d+1
2 = (d+1)S−mi

2 , since there are at most mi/2 pi,j ’s

with color 1. Thus, we have |EHi
(S)| ≤

∑
j∈S

d−χ(pi,j)
2



in both cases. Therefore, the above system has a {0, 1}
solution, which implies that the linear system with χ′

variables has a {±1} solution.

4 Integrality Gaps and Hardness of Broadcast
Scheduling

In this section, we show hardness of approximation
for the broadcast scheduling problem, via a reduc-
tion from the discrepancy of `-permutations problem.
Indeed, given an instance Iperm of ` permutations
π′1, π

′
2, π
′
3, . . . , π

′
` over [m′], our broadcast scheduling in-

stance Ibcast is then constructed as follows.

Construction of Instance Ibcast. For a suitable
choice of parameter M to be determined later, we first
concatenate M unique copies (on different sets of vari-
ables) of each permutation π′i to generate permutation
πi over [2m′M ]. In what follows, let m := 2m′M , an
even integer, be the size of the permutations πi. The
time horizon in Ibcast is divided into 2`+ 1 permutation
intervals (P-interval for short) P1, P2, · · · , P2`+1 and
2`+1 forbidden intervals (F-interval) F1, F2, · · · , F2`+1.
The P-intervals and F-intervals are alternately placed in
the time horizon in the form P1, F1, P2, F2, . . . , F2`+1.
Let Pi,j and Fi,j denote the j-th time slot in Pi and Fi
respectively. The construction will often involve a pa-
rameter D which we set to be m/2 with the knowledge
of hindsight.

Defining P-intervals. Each P-interval has length
m/2. For i ∈ [2`], j ∈ [m/2], we request 2 pages
πdi/2e,2j−1 and πdi/2e,2j of weight 1/Di−1 in time slot
Pi,j . There are no requests in P-interval P2`+1.

Defining F-intervals. For i ∈ [2`+ 1], the F-
interval Fi has length mDi−1. At each time slot in
an F-interval, we request a page which is requested only
once in the instance, of weight m/Di−1.

This completes the construction, see Figure 1. We
now start with some useful claims.

Claim 2. The total weight of requests in F-intervals is
Θ(`m2), and that of requests in P-intervals is Θ(m).

Proof. The total weight of requests in F-intervals is∑2`+1
i=1

(
mDi−1 ×m/Di−1

)
=

∑2`+1
i=1 m2 = (2` +

1)m2 = Θ(`m2). The total weight of requests in P-

intervals is
∑2`
i=1m(1/Di−1) = Θ(m).

Claim 3. There is a fractional scheduling whose aver-
age response time is Θ(1).

Proof. In a time slot a F-interval, we broadcast the F-
page requested in the slot. In a time slot of Pi, i ∈ [2`],
we broadcast 1/2 fraction of each P-page requested in
the slot. In P2`+1, we broadcast 1/2 fraction of all pages

in [m] in an arbitrary way. Then, each request in a F-
interval has response time 1. Consider a request in Pi.
1/2 fraction of the request is satisfied immediately, with
response time 1, and the other 1/2 fraction is satisfied
at some lot in Pi+1, with response time Θ(mDi−1).
Thus, the total weighted response time is Θ(`m2)× 1 +∑2`
i=1

(
2m× 1/Di−1 ×Θ(mDi−1)

)
= Θ(`m2), and the

average response time is Θ(1).

4.1 Completeness In this section, we show the fol-
lowing theorem.

Theorem 4.1. If the system of `-permutations has av-
erage discrepancy C, then there is a broadcast schedule
for which the average response time is O(C).

Consider a balanced coloring χ of the permutation
system, i.e., there are an equal number of +1’s and −1’s.
This is WLOG, as the imbalance is at most C, and hence
changes the overall discrepancy by at most a factor of
2. For i ∈ [`], let ci denote the discrepancy of the ith

permutation w.r.t χ. Then C =
∑
i∈[`] ci/`.

We now derive the broadcast schedule in a natural
manner: Firstly, we simply broadcast each page in the
F-intervals as and when the requests are released. Then,
our idea is to schedule the m/2 elements labeled +1 in
the odd P-intervals, and those labeled −1 in the even
P-intervals. Indeed, for odd P-intervals, say P2i−1, we
schedule the elements of [m] labeled +1 in the order
in which they appear in πi. Likewise, we schedule the
elements with −1 label in even P-intervals P2i in the
order of πi. Moreover, within each Pi, we right-shift
the schedule by cdi/2e time steps in order to account for
the discrepancy, with a wrap-around to the beginning of
Pi. E.g., if the original schedule is 2, 7, 10, 9, 5 and the
discrepancy of the permutation was 2, the new schedule
would be 9, 5, 2, 7, 10. This gives us the final schedule.

Let χ+ = {i ∈ [m] : χ(i) = 1} and χ− = [m] \ χ+.
The following lemma shows that most requests in Pi
are either satisfied in Pi or Pi+1. This crucially uses
the fact that the discrepancy of πdi/2e is cdi/2e. The
following lemmas complete the proof of Theorem 4.1.

Lemma 4.1. For any odd P-interval P2i−1, the requests
corresponding to elements in χ− are satisfied in P2i, and
all but the last ci requests in χ+ corresponding to πi are
satisfied in P2i−1 itself. An analogous statement holds
for even P-intervals with the signs flipped.

Proof. The first part follows trivially, because all the
elements in χ− are broadcast in P2i. Now let us focus
on the requests in χ+, and suppose there exists a request
(which is not in the last ci requests) that is not satisfied
in P2i−1. Let us consider the last such request r,
say corresponding to element πi,j . The fact that r is
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Figure 1: Constructing the broadcast scheduling instance from the `-permutations instance

not satisfied in P2i−1 means that there are at least
d(m − j)/2e + ci pages in χ+ scheduled among the
elements πi,j , πi,j+1, . . . , πi,m. Otherwise, since there
are d(m − j)/2e slots in P2i−1 after the arrival time
of the request r, and we right-shift the schedule by ci
units, r would be satisfied within P2i−1 itself.

But this gives us a witness to the fact that the suffix
πi,j , πi,j+1 . . . , πi,m has discrepancy at least 2ci, since
there are at least d(m− j)/2e+ ci from χ+ from these
elements, and hence there can be at most d(m−j)/2e−ci
from χ−. This contradicts the fact that the discrepancy
of πi under χ is ci.

Lemma 4.2. The total weighted response time of the
above solution is O(C`m2).

Proof. Each request in F-interval has a response time
of 1, and hence their total weighted response time is
Θ(m2`). Now let us consider the requests in some
P-interval P2i−1 (an analogous argument works for
the requests in P2i). Each request corresponding to
elements in χ− are only satisfied in P2i and incurs
a response time of Θ(mDi−1). Therefore the total
weighted response time of requests in χ− is m/2 ×
1/Di−1×Θ(mDi−1) = Θ(m2) (there are m/2 requests,
each of weight 1/Di−1). Now let us focus on the
requests in χ+: all but ci of them are satisfied in
P2i−1 itself, giving a total weighted response time of
m/2 × 1/Di−1 × Θ(m) = o(m2). The ci unsatisfied
requests are satisfied the next time the pages in χ+

are broadcast in P2i+1. Their weighted response time
is bounded by ci × 1/Di−1 × Θ(mDi) = Θ(cimD) =
Θ(cim

2).
Therefore, the total weighted response time of re-

quests in P2i−1 (and similarly, P2i) is at most O(cim
2).

Summing over all i completes the proof.

4.2 Soundness In this section, we show the following
theorem.

Theorem 4.2. Given any broadcast schedule τ of av-
erage response time at most C, we can recover a col-
oring for the `-permutations instance with average dis-
crepancy O(C).

The rest of this section is devoted to the proof of
the above theorem. Our goal is to show that most
of the pages are in fact scheduled in alternating P-
intervals, from which we can recover a coloring for the `-
permutation instance. To this end, we consider a relaxed
objective function.

Definition 1. In our new objective function, if a re-
quest in Pi is not satisfied by the end of Fi+1 by a sched-
ule τ , then it is automatically satisfied at that time, in-
curring a response time until the end of Fi+1, and no
broadcast is needed to satisfy the request.

Note that the average response time of a schedule can
only decrease with this modified objective function (and
hence is at most C). The following lemma says that we
can assume in each slot of an F-interval, we broadcast
the page requested.

Lemma 4.3. Given any schedule τ for the instance, we
can construct a schedule τ ′ such that

• The (relaxed) cost of τ ′ is at most the cost of τ .
• In each time slot of an F-interval, τ ′ broadcasts the

corresponding F-page requested.

Proof. Consider the first slot Fi,j in an F-interval when
τ does not broadcast the requested page f requested.
Let us focus on all the unsatisfied requests at the
beginning of the slot, and define the weight of a page
to be the total weight of all unsatisfied requests for the
page at this time.

We first claim that page f has the largest weight.
Indeed, due to our assumption on Fi,j being the first
slot when τ does not broadcast the corresponding page,
all previous requests in F-intervals are already satisfied.
Thus suffices to compare f with pages in [m]. Now,
because we relaxed our objective function, each page in
[m] has at most two unsatisfied requests: one from Pi
and the other from Pi−1. Thus the weight of any page
is at most 1/Di−2 +1/Di−1 ≤ 2/Di−2 = m/Di−1 (since
D = m/2), which is the weight of f .

Now, suppose f is satisfied at some time t > Fi,j .
Then we can simply switch the two broadcasts at time



Fi,j and t. This does not increase the overall objective
function, because (i) f is never requested after Fi,j , and
the overall weighted response time only decreases. This
completes the proof.

Therefore, we may WLOG assume that each request
in an F-interval is satisfied immediately by our schedule
τ ′. We also assume each page is broadcast in each P-
interval at most once: otherwise, we only keep the last
broadcast and this increases the average response time
by o(1). Now, the relaxed objective implies that any
request in Pi is either (i) satisfied in Pi or Pi+1, or (ii)
automatically declared as satisfied at the end of Fi+1

according to our relaxed objective — such requests are
denoted as bad requests.

Claim 4. The number of bad requests is at most O(C`).

Proof. A bad request (say from Pi) incurs a weighted
response cost of at least 1/Di−1 × Θ(mDi) = Θ(m2).
The claim follows since the total weighted response time
of the solution is O(C`m2).

Following on the notion of bad requests, we now
categorize pages as either good or bad.

Definition 2. A page is said to be “good” if it satisfies
the following properties:

(i) It is broadcast in alternate P-intervals, i.e., either
the odd intervals or even intervals.

(ii) For all i, if the page is broadcast in Pi, it is
broadcast after the corresponding request for the
page arrived in Pi, which depends on πdi/2e.

All other pages are said to be “bad”.

We will now show that most of the pages have to
be scheduled in alternating P-intervals, based on the
following intuition: (i) broadcasting the same page in
consecutive P-intervals takes up too much space, as two
consecutive P-intervals have a collective space of only m,
one slot per element, and (ii) not making a broadcast
in two consecutive P-intervals will create a bad request.

Lemma 4.4. Given any schedule τ ′, we can construct
a schedule τ ′′ such that: (i) no page is broadcast in
consecutive P-intervals, (ii) the relaxed cost of τ ′′ is
O(C), and (iii) the total number of bad pages is O(`C).

Proof. We begin by making the following definitions
and observations: Let Xi,j , for 1 ≤ i ≤ 2` + 1 and
1 ≤ j ≤ m/2 denote the number of requests which
the broadcast τ ′ satisfies at time Pi,j . Notice that any
broadcast in P1 can satisfy at most 1 request. Likewise,
a broadcast in P2`+1 can satisfy at most one request,

the one which arrived in P2` (requests in P2`−1 can’t
be satisfied due to our relaxed objective function in
Definition 1). Any other broadcast, say in Pi, can
satisfy at most 2 requests, the ones on Pi and Pi−1

for the corresponding page (earlier requests are again
disallowed by Definition 1). We can therefore assign
the trivial bounds Bi,j on Xi,j where Bi,j = 1 if
i = 1 or i = 2`+ 1 and Bi,j = 2 otherwise.

Using the above bounds, observe that the total
number of requests that can be satisfied is at most

(4.17)
∑
i,j

Bi,j = (2`− 1)m+m = 2`m

On the other hand, there are 2`m requests of which
O(C`) are bad by Claim 4 and need not be served.
Therefore, ∑

i,j

Xi,j ≥ 2`m−O(C`)(4.18)

⇒
∑
i,j

(Bi,j −Xi,j) ≤ O(C`).(4.19)

We first argue that we don’t have too many consec-
utive P-intervals in which the same page is broadcast,
and moreover, we show that we can also avoid such con-
secutive broadcasts.
Bounding Consecutive Broadcasts. Suppose

a page p is scheduled in consecutive P-intervals
Pi, Pi+1, . . . , Pi+q. Let j(p, i′) denote the timeslot
within Pi′ where p is broadcast. Then the to-
tal number of requests these broadcasts can serve is∑i+q
i′=iXi,j(p,i′) ≤ q + 2, since they can only serve re-

quests which arrive in Pi−1, Pi, . . . , Pi+q. However, the

sum
∑i+q
i′=iBi,j(p,i′) = 2(q + 1) in (4.17). A boundary

case is when the interval starts or ends at P1 or P2`+1,
in which case both sums drop by one. Thus each con-
secutive interval contributes its length towards (4.19),
which means that the sum of lengths of all such intervals
is O(C`), by inequality (4.19).

We now delete all but the last broadcast in every
interval of consecutive broadcasts: for an interval of q+1
consecutive broadcasts, this will create q bad requests
(each of which incurs Θ(m2) weighted response time in
the relaxed objective). Since their total sum of lengths
is bounded by O(C`), the total weighted response time
increases by O(C`m2), and the average response time
only increases by O(C).

This proves (i) and (ii) of the claim.

Bounding Skipped Intervals. We now bound the
number of bad pages. To this end, note that any time
a page is not broadcast in two consecutive P-intervals
Pi and Pi+1, there is a bad request which arrived in Pi.



Hence the number of such skipped broadcasts is at most
O(C`). Every other page make broadcasts in alternate
P-intervals.

Bounding Bad Pages. Consider the m − O(C`)
pages which make broadcasts in alternate P-intervals.
Of these pages, if a page makes a broadcast in an
interval Pi before the corresponding request is made
(according to the permutation πdi/2e), then it satisfies
one fewer request that its bound Bi,j , and contributes
one to (4.19). Therefore, there can be at most O(C`)
such pages. By definition, every other page is good, and
this completes the proof.

Now we are ready to obtain a coloring of most of the
elements of [m], from which we will decode a coloring
for one of the M copies of the `-permutations system.

Decoding a Coloring. Consider all the good pages.
If a good page is broadcast in the odd P-intervals, color
it +1; if it is broadcast in even P-intervals, label it −1.
We now use the fact that each permutation was in fact a
concatenation of M copies of the original permutation
to recover a copy without any bad pages. Indeed, if
M = Ω(C`) is large enough, then at least one copy, say
the qth copy, has no bad pages. We will now show that
our coloring for this copy has average discrepancy at
most O(C) w.r.t the original permutations.

Claim 5. If permutation π′i has discrepancy ci accord-
ing to our coloring of the qth copy as defined above,
then at least Ω(ci) bad requests arrive in P-intervals
P2i−1 ∪ P2i.

Proof. Let us focus on the permutation copies q, q +
1, . . . ,M . By the way we have constructed the broad-
cast instance, their requests appear contiguously in a
suffix of the P-intervals P2i−1 and P2i. Moreover, sup-
pose some suffix of length t of the original permutation
π′i has discrepancy ci w.r.t our coloring of the qth copy.
WLOG, let the number of +1’s in this suffix w.r.t our
coloring be at least (t+ ci)/2.

Then consider the last t/2 + (M − q)m′ time slots
of P2i−1. Note that all the pages colored +1 in the qth

copy are requested in these time slots. Therefore, since
all pages in the qth copy are good, at least (t + ci)/2
broadcasts for pages in qth copy are in these slots.
Therefore, at least ci/2 slots are taken from the last
(M − q)m′/2 slots of P2i−1. Then consider the last
(M−q)m′/2 slots in P2i−1 and the last (M−q)m′/2 slots
in P2i. At least ci/2 pages out of the (M − q)m′ pages
corresponding to copies q + 1, . . . ,M are not broadcast
in these slots. For each of these pages, either it is not
broadcast in P2i−1∪P2i or it is before its corresponding
request is released. Both cases lead to a bad request,
and this completes the proof.

Since there are at most O(C`) bad requests, we
obtained a coloring with average discrepancyO(C`/`) =
O(C). This finishes the proof of Theorem 4.2.

Finally, we need to set the correct parameters to
finish the proof of Theorems 1.3 and 1.4.

We now finish the proofs of Theorem 1.3 and
1.4. For Theorem 1.3, we take the 3-permutation in-
stance (π1, π2, π3) of permutation size n and discrep-
ancy Ω(log n) in [28]. Then, we apply our construction
to obtain a broadcast scheduling instance with number
of time slots being T = O(n7) and number of pages
being at most N = Θ(T ). By Claim 3, the LP solu-
tion for the instance has cost Θ(1). By Theorem 4.2
and the fact that the 3-permutation system has average
discrepancy Ω(log n), any integral scheduling of the in-
stance has cost Ω(log n) = Ω(logN). This finishes the
proof of Theorem 1.3.

For Theorem 1.4, we start from a ∆-uniform 4-
set splitting instance (U,S) of size n = |U |. We
let ` = logt n for some constant t. We construct `
permutations π1, π2, · · · , π` of length O(`n) by apply-
ing Lemma 3.1. Using the construction in the sec-
tion, we obtain a broadcast scheduling instance of size
N = Θ

(
(n`)2`+1

)
. Thus, logN = (2` + 1) log(`n) =

Θ(logt+1 n). If (U,S) is a yes instance, the permuta-
tion system Π = (π1, π2, · · · , π`) has disc(Π) = O(1)
and thus there is a scheduling of average response time
O(1) for the broadcast scheduling instance. If (U,S) is
a no instance, we have avgdisc(Π) = Ω(`1/2). Thus,
any scheduling for the broadcast scheduling instance
has average response time Ω(`1/2). If there is a NO(1)-
time algorithm that approximates the cost of the broad-
cast scheduling instance within a factor of O

(
`1/2

)
=

O
(

logt/2 n
)

= O
(

logt/2(t+1)N
)

, then there is a ran-

domized O
(
NO(1)

)
= 2O(logt+1 n)-time algorithm that

distinguish between yes instances and no instances for
∆-uniform 4-set splitting. Assuming NP is not con-

tained in BPTIME
(

2logt n
)

for any constant t, there is

no O
(

log1/2−ε n
)

approximation algorithm for broad-

cast scheduling instances of size n, for any ε > 0. This
finishes the proof of Theorem 1.4.
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A Proofs from Section 2

A.1 Defining the Blocks, and the Costs C(S):
Proof of Lemma 2.2 We begin with the following in-
tuitive description of the original LP solution (x∗, y∗),
and the fractional response time σ(p, t). In this proof,
we also present the details of how the blocks are con-
structed by the BCS algorithm, and present an intuitive
explanation of the first phase of their algorithm.
Random Offset Rounding for a Request. One way
to view σ(p, t) is the following experiment (Lemma 1
in [4]). Say we choose α uniformly at random in (0, 1]
and transmit page p at time the earliest time tα where
the fractional broadcast has accumulated α mass of page
p from t, i.e., tα = arg mint′ y

∗(p, t, t′) ≥ α. Then the
expected response time E[tα − t] for r(p, t) is equal to
the LP cost for this request.

Random Offset Rounding for a Page. We now
generalize the above intuition for getting a schedule for
a page p over an interval of time, rather than satisfying
just one request r(p, t): To this end, consider a time
interval I = [t1, t2] such that y∗(p, t1, t2) ≥ 2. Notice
that head(I) and tail(I) are both non-empty intervals.
We now obtain a broadcast sequence of page p as
follows: Choose the offset α uniformly at random in
(0, 1]. For i ∈ Z+, define ti+α to be the smallest
t′ ≤ t2 s.t y∗(p, t1, t

′) ≥ i + α. If no such t′ exists,
set ti+α =∞. Then, we transmit page p at times ti+α,
and stop broadcasting when ti+α = ∞. The schedules
for different offsets satisfy the following properties.

Claim 6. Consider an interval I = [t1, t2] s.t
y∗(p, t1, t2) ≥ 2. Define frac(x) = x − bxc for x ≥ 0.
Then,
(i) If α < frac(y∗(p, t1, t2)), then the offset α makes
dy∗(p, t1, t2)e broadcasts within I. On the other hand,
if α > frac(y∗(p, t1, t2)), then it makes by∗(p, t1, t2)c
broadcasts.
(ii) The broadcast schedules of two possible offsets
α1, α2 are “interleaving”: between two successive
transmissions of α1, there is exactly one transmission
made by α2.

Proof. The proof is quite straightforward. Indeed,

suppose α < frac(y∗(p, t1, t2)). Then notice that, for
i = by∗(p, t1, t2)c is the largest index for which the
quantity arg mint′(y

∗(p, t1, t
′) ≥ i + α) is at most t2,

and therefore ti+α is finite. Therefore, the offset makes
broadcasts for i = 0, 1, . . . , by∗(p, t1, t2)c, giving us the
desired count. The case of larger α has a similar proof.

For the second part, suppose α1 < α2 WLOG.
Then notice that for any i ≥ 0, arg mint′(y

∗(p, t1, t
′) ≥

i + α1) ≤ arg mint′(y
∗(p, t1, t

′) ≥ i + α2), and
also that arg mint′(y

∗(p, t1, t
′) ≥ i + 1 + α1) >

arg mint′(y
∗(p, t1, t

′) ≥ i + α2). The first inequality
holds because α1 < α2, and the second because α2 < 1.
Therefore, there is precisely one broadcast α2 makes be-
tween two successive broadcast of α1.

Furthermore, for the random schedule obtained, we
can show (by applying the random offset argument)
that the expected response time for all the requests
that arrive in head(I) is equal to their total LP cost.
Note that requests in tail(I), however may not even be
satisfied by this schedule (for some choices of α).

The BCS Algorithm [4]. The main result of the
first phase of [4] is that we can make the LP choose
one offset integrally in each block, by allowing a small
backlog. To achieve this, for each page p, it divides the
time horizon [1, Tmax + n] into disjoint intervals called
blocks (which we will define later). Then, it solves an
LP which picks one offset schedule for the corresponding
page within each block, so as to (i) minimize the average
response time, and (ii) ensure that the backlog is small.
But what is the objective function of this LP? To this
end, let us now try to see what the cost of choosing
an offset α in block B for page p is: Indeed, by the
random offset rounding above, the tentative schedule
of this offset transmits at times {ti+α}. Therefore, each
request arriving at time t ∈ head(B) has a fixed response
time of tf − t where tf is the smallest time after t when
the page is transmitted by the offset.

But how do they handle the requests in tail(I) for
each block? Such requests may not have any well-
defined tf within this block, and may only be satisfied
by the next block for this page. This is in fact the
main criterion for how BCS defines the blocks! Indeed,
given a left end point t1 for an interval, the right end
point t2 of the block [t1, t2) is chosen in such a way that
any request in tail([t1, t2)) incurs a small cost, even if is
“moved” to t2, the starting time of the next block. The
following definition helps to this end.

Definition 3. (p-good timestep) Given a timestep
t1 and a page p, we say that a timestep t2 is “p-good”
if σ(p, t2) ≤ 2σ(p, τ) for all τ ∈ tail([t1, t2]).

Moreover, they show (Lemma 2 in [4]) that a p-good
timestep exists in any large enough interval.



Lemma A.1. Any time interval [t1, t2] such that
y∗(p, t1, t2) > log Tmax contains a p-good timestep.

As a result, we have the following useful corollary.

Corollary A.1. For any page p, and a block B
for that page, the cumulative broadcast y∗(p,B) ≤
O(log Tmax)

For each page, BCS repeatedly uses the above lemma to
partition the time horizon into disjoint intervals called
blocks. Note that Corollary A.1 and Claim 6 together
prove property (i) of Lemma 2.2. Claim 6 also proves
property (ii) of Lemma 2.2.

By virtue of the way these blocks are chosen, we can
intuitively “move” all requests in tail(I) to the beginning
of the next interval. Formally we now define the cost of
choosing a particular offset for a block. To this end, the
cost C(S) of a shift S ≡ (B,α) for a page p is calculated
as follows:

(i) Let B−1 be the block corresponding to page p which
is immediately before B, and consider the requests
in its tail. Move all those requests to the starting
time t0 of block B. These requests now belong to
B.

(ii) For any request for page p in B arriving at t
(including the requests moved from the previous
block), let t′ denote the earliest time after t the
page is broadcast according to the schedule defined
by offset α, i.e., {ti+α : ti+α ∈ B}. Then, the
request contributes t′ − t + 1 to the cost C(S). If
no such time exists, then this request is satisfied
in the next block, so we would have “moved” the
request to the next block in step (i): in this case,
include the moving cost t1 − t to C(S) where t1 is
the ending time of the this block (which is also the
starting time of the next block).

Property (iii) is proved in Bansal et al. [4], Lemma
5. It is easy to see that property (iv) follows from
the way we have defined the cost C(S) above. This
completes the proof.

A.2 Adaptations of the Lovett Meka Partial
Coloring Theorem We recall the actual theorem
statement from [27], and then explain how our extra
requirement can be handled. Indeed, Lovett and Meka
show the following theorem.

Theorem A.1. [27]] Let y ∈ [0, 1]m be any start-
ing point, δ > 0 be an arbitrary error parameter,
v1, . . . , vn ∈ Rn vectors and λ1, . . . , λn ≥ 0 parameters
with

(A.1)

n∑
i=1

e−λ
2
i /16 ≤ m

16
.

Then there is a randomized Õ((m + n)3/δ2)-time algo-
rithm to compute a vector z ∈ [0, 1]m with

(i) zj ∈ [0, δ] ∪ [1− δ, 1] for at least half of the indices
j ∈ [m],

(ii) |vi · z− vi · y| ≤ λi||vi||2, for each i ∈ [n].

In order to incorporate our adaptation, we go into
the details of their proof. In particular, their proof goes
through unchanged all the way up to Claim 14. Here,
they consider two cases, based on whether λj is small
or large, and bound the small set by m/16. Here, in our
case, the small set is bounded by 10m/16 (by adding
an extra 5m/8). Therefore, the resulting bound in the
claim becomes 12m/16 instead of m/4.

The next change happens in Claim 16, where, if we
replace the bound of m/4 from Claim 14 with 12m/16,
we get m/16 instead of 0.56m. The rest of the proof is
identical.


