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Abstract

In this paper, we study the uniform capacitated k-
median problem. In the problem, we are given a set
F of potential facility locations, a set C of clients,
a metric d over F U C, an upper bound k on the
number of facilities we can open and an upper bound
u on the number of clients each facility can serve.
We need to open a subset S C F of k facilities and
connect clients in C to facilities in & so that each
facility is connected by at most w clients. The goal is
to minimize the total connection cost over all clients.
Obtaining a constant approximation algorithm for this
problem is a notorious open problem; most previous
works gave constant approximations by either violating
the capacity constraints or the cardinality constraint.
Notably, all these algorithms are based on the natural
LP-relaxation for the problem. The LP-relaxation has
unbounded integrality gap, even when we are allowed
to violate the capacity constraints or the cardinality
constraint by a factor of 2 — e.

Our result is an exp(O(1/€?))-approximation algo-
rithm for the problem that violates the cardinality con-
straint by a factor of 1 + €. That is, we find a solution
that opens at most (1 + €)k facilities whose cost is at
most exp(O(1/€?)) times the optimum solution when at
most k facilities can be open. This is already beyond
the capability of the natural LP relaxation, as it has un-
bounded integrality gap even if we are allowed to open
(2 — €)k facilities. Indeed, our result is based on a novel
LP for this problem. We hope that this LP is the first
step towards a constant approximation for capacitated
k-median.

The version as we described is the hard-capacitated
version of the problem, as we can only open one facil-
ity at each location. This is as opposed to the soft-
capacitated version, in which we are allowed to open
more than one facilities at each location. The hard-
capacitated version is more general, since one can con-
vert a soft-capacitated instance to a hard-capacitated
instance by making enough copies of each facility lo-
cation. We give a simple proof that in the uniform
capacitated case, the soft-capacitated version and the
hard-capacitated version are actually equivalent, up to
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a small constant loss in the approximation ratio. More-
over, we show that the given potential facility locations
do not matter: we can assume F = C.

1 Introduction

In the uniform capacitated k-median (CKM) problem,
we are given a set F of potential facility locations, a set
C of clients, a metric d over F UC, an upper bound k
on the number of facilities we can open and an upper
bound u on the number of clients each facility can serve.
The goal is to find a set S C F of at most k& open
facilities and a connection assignment ¢ : C — S of
clients to open facilities such that |0~ ()| < u for every
facility ¢ € S, so as to minimize the connection cost
5 ec .o (i)-

When u = oo, the problem becomes the classical
NP-hard k-median (KM) problem. There has been
extensive work on approximation algorithms for k-
median. The first constant approximation, due to
Charikar et al. [9], is an LP-based 6Z-approximation.
This factor was improved by a sequence of papers
[18, 8, 17, 3, 22]. In particular, Li and Svensson
[22] gave a 1 4+ /3 + € ~ 2.732 + e-approximation for
k-median, improving the previous decade-old ratio of
3 + € due to [3]. Their algorithm is based on a psudo-
approximation algorithm that opens &k + O(1) facilities,
and a process that turns a pseudo-approximation into a
true approximation. Based on this framework, Byrka et
al. [7] improved the approximation ratio from 2.732+¢ to
the current best 2.611+ € very recently. On the negative
side, it is NP-hard to approximate the problem within
a factor of 1+ 2/e — e ~ 1.736 [17].

Little is known about the uniform CKM prob-
lem; all constant approximation algorithms are pseudo-
approximation algorithms, which produce solutions that
violate either the capacity constraints or the cardinality
constraint (the constraint that at most k facilities are
open). Charikar et al. [9] obtained a 16-approximation
for the problem, by violating the capacity constraint by
a factor of 3. Later, Chuzhoy and Rabani [13] gave a 40-
approximation with capacity violation 50, for the more
general non-uniform capacitated k-median, where dif-
ferent facilities can have different capacities. Recently,
Byrka et al. [6] improved the capacity violation con-



stant 3 of [9] for uniform CKM to 2 + e and achieved
approximation ratio of O(1/€?). This factor was im-
proved to O(1/€) by Li [21]. Constant approximations
for CKM can also be achieved by violating the cardinal-
ity constraint. Gijswijt and Li [14] designed a (7 + €)-
approximation algorithm for a more general version of
CKM that opens 2k + 1 facilities.

There are two slightly different versions of the
(uniform or non-uniform) CKM problem. In the version
as we described, we can open at most one facility at each
location. This is sometimes called hard CKM. This is
as opposed to soft CKM, where we can open more than
one facilities at each location. Notice that hard CKM
is more general as one can convert a soft CKM instance
to a hard CKM instance by making enough copies of
each location. The result of Chuzhoy and Rabani [13] is
for soft CKM while the other mentioned results are for
(uniform or non-uniform) hard CKM.

Most previous approximation algorithms on CKM
are based on the basic LP relaxation. A simple example
shows that the LP has unbounded gap. This is the
main barrier to a constant approximation for CKM.
Moreover, the integrality gap is unbounded even if we
are allowed to violate the cardinality constraint or the
capacity constraint by a factor of 2 — e. Thus, for
algorithms based on the basic LP relaxation, [21] and
[14] almost gave the smallest capacity violation factor
and cardinality violation factor, respectively.

Closely related to KM and CKM are the uncapac-
itated facility location (UFL) and capacitated facility
location (CFL) problems. UFL has similar inputs as KM
but instead of giving an upper bound k£ on the number
of facilities we can open, it specifies an opening cost f;
for each facility ¢+ € F. The objective is the sum of
the cost for opening facilities and the total connection
cost. In CFL, every facility ¢ € F has a capacity u; on
the maximum number of clients it can serve. There has
been a steady stream of papers giving constant approx-
imations for UFL [23, 25, 18, 11, 19, 8, 16, 17, 24, 5].
The current best approximation ratio for UFL is 1.488
due to Li [20], while the hardness of approximation is
1.463 [15].

In contrast to CKM, constant approximations
are known for CFL. Mahdian et al. [24] gave a 2-
approximation for soft CFL. For uniform hard CFL, Ko-
rupolu et al. [19] gave an (8 + €)-approximation, which
was improved to 6 + € by Chudak and Williamson [12]
and to 3 by Aggarwal et al. [1]. For (non-uniform) hard
CFL, the best approximation ratio is 5 due to Bansal et
al. [4], which improves the ratio of 3 +2+/2 by Zhang et
al. [27]. All these algorithms for hard CFL are based on
local search. Recently, An et al. gave an LP-based con-
stant approximation algorithm for hard CFL [2], solving

a long-standing open problem [26].

Our contributions In this paper, we introduce a
novel LP for uniform CKM, that we call the rectangle
LP. We give a rounding algorithm that achieves con-
stant approximation for the problem, by only violating
the cardinality constraint by a factor of 1 + ¢, for any
constant € > 0. This is already beyond the approxima-
bility of the basic LP relaxation, as it has unbounded
integrality gap even if we are allowed to violate the car-
dinality constraint by 2 — e. To be more specific, we
prove

THEOREM 1.1. Given a uniform capacitated k-median
instance and a constant € > 0, we can find in polynomial
time a solution with at most [(1+ e)k] open facilities
and total connection cost at most exp(O(1/€?)) times
the cost of the optimum solution with k open facilities.

The running time of our algorithm is n©() where
the constant in the exponent does not depend on €. If we
allow the running time to be n®(/€)| we can remove the
ceiling in the number of open facilities: we can handle
the case when k < O(1/e) by enumerating the &k open
facilities. As our LP overcomes the gap instance for the
basic LP relaxation, we hope it is the first step towards
a constant approximation for capacitated k-median.

Our algorithm is for the hard capacitated version
of the problem; namely, we open at most one facility at
each location. Indeed, we give a simple proof that, up
to a constant loss in the approximation ratio, we can
assume the instance is soft-capacitated and F = C.

THEOREM 1.2. Let (k,u,F,C,d) be a hard uniform
CKM instance, and C' be the minimum connection cost
of the instance when all facilities in F are open.t Then,
given any solution of cost C' to the soft uniform CKM
instance (k,u,C,C,d), we can find a solution of cost
at most C + 2C" to the hard uniform CKM instance
(k,u, F,C,d).

C is a trivial lower bound on the cost of the
hard uniform CKM instance (k,u,F,C,d). Moreover,
the optimum cost of the soft uniform CKM instance
(k,u,C,C,d) is at most twice the optimum cost of the
hard uniform CKM instance (k,u,F,C,d). Thus, any
a-approximation for the soft instance (k,u,C,C,d) im-
plies a 1+ 2(2a) = (1 + 4«)-approximation for the hard
instance (k,u,F,C,d). The reduction works even if we
are considering pseudo-approximation algorithms by al-
lowing violating the cardinality constraint by S > 1 and
the capacity constraint by v > 1; we can simply apply
the above theorem to the instance (|8k] , |yu],F,C,d).

TGiven the set of open facilities, finding the best connection

assignment is a minimum cost bipartite matching problem.



Thus, we only focus on soft uniform CKM instances with
F = C in the paper.

Though we have F = C, we keep both notions to
indicate whether a set of facility locations or a set of
clients is being considered. Most part of our algorithm
works without assuming F = C; only a single step uses
this assumption.

The remaining part of the paper is organized as fol-
lows. In Section 2, we introduce some useful notations,
the basic LP relaxation for uniform CKM), the gap in-
stance and the proof of Theorem 1.2. In Section 3, we
describe our rectangle LP. Then in Section 4, we show
how to round a fractional solution obtained from the
rectangle LP. We leave some open questions in Section 5.

2 Preliminaries

Let Z,,Z.,R; and R, denote the set of positive in-
tegers, non-negative integers, positive real numbers and
non-negative real numbers respectively. For any x € R,,
let |x] and [x] denote the floor and ceiling of x respec-
tively. Let |z] =z — |z] and [z] = [z] — =.

Given two sets C',C” C C of points, define
d(C’,C") = minjeer jrcer d(F,7') be the minimum dis-
tance from points in C’ to points in C”. We simply use
d(j,C") for d({j}.C").

Following is the basic LP for the uniform CKM
problem:

(Basic LP)  min Yierjec dli, J)Ti s.t.
(2.1) dier¥i <k,

(2.2) YicrTij =1, Vjied,

(2.3) i < Yi, Vie F,jecC,

(2.4) djec Tij < uyi Vie F,

(2.5) i 5,4 > 0, Vie F,j€C.

In the above LP, y; is the number of open facilities
at location 7, and =z;; indicates whether a client j
is connected to a facility at i. Constraint (2.1) says
that we can open at most k facilities, Constraint (2.2)
says that every client must be connected to a facility,
Constraint (2.3) says that a client can only be connected
to an open facility and Constraint (2.4) is the capacity
constraint. In the integer programming capturing the
problem, we require y; € Z, and xz; ; € {0, 1} for every
i € F,j € C. In the LP relaxation, we relax the
constraint to z; ; > 0,y; > 0.

The basic LP has unbounded integrality gap, even
if we are allowed to open (2 — ¢)k facilities. The gap
instance is the following. k =u+1and |F|=|C| =n =
u(u 4+ 1). The n points are partitioned into u groups,
each containing u + 1 points. Two points in the same
group have distance 0 and two points in different groups

have distance 1. The following LP solution has cost 0:
y; = 1/u for every i € F and z; ; is 1/(u+ 1) if ¢ is co-
located with j and 0 otherwise. The optimum solution
is non-zero even if we are allowed to open 2u—1 = 2k—3
facilities: there must be a group in which we open
at most 1 facility and some client in the group must
connect to a facility outside the group. 2

2.1 Reduction to Soft Capacitated Case: Proof
of Theorem 1.2

Proof. Consider the solution for the soft uniform capac-
itated CKM instance (k,u,C,C,d). We construct a set
S of size at most k as follows. Suppose we opened s
facilities at some location j € C, we add s facility loca-
tions collocated with j to S. By the assumption, we can
find a matching of cost C' between F and C (the cost of
matching ¢ € F to j € C is d(4,J)), where each facility
in F is matched at most u times and each client in C
is matched exactly once. We are also given a matching
of cost C’" between C and S, where each client in C is
matched exactly once and each facility ¢ € S is matched
t; < u times. By concatenating the two matchings and
by triangle inequalities, we obtain a matching between
F and S of cost at most C'+ C’, such that every facility
in F is matched at most v times and every facility in
i € § is matched ¢; times. We then modify the match-
ing between F and S in iterations, so that finally at
most |S| < k facilities in F are matched. Moreover, the
modifications do not increase the cost of the matching.

Focus on the bipartite multi-graph between F and
S defined by the matching. Then we can assume the
graph is a forest, when ignoring multiplicities. If there
is an even cycle, we can color the edges in the cycle
alternatively in black and white. Assume the total
length of black edges is at most that of white edges.
Then, we can increase the multiplicities of black edges
by one and decrease the multiplicities of white edges by
one. This does not increase the cost of the matching.
We can apply this operation until the cycle breaks.

We can further assume that in any tree of the
forest, at most one facility in F is matched less than
u times. If there are two, we then take the path in
the tree connecting the two facilities (path has even
length), color the edges in the path alternatively in
black and white. Assume the total length of black

2Note that this gap instance is not bad when we are allowed to

violate the capacity constraints by 1+ e. However, if we are only
allowed to violate the capacity constraints, there is a different
bad instance: each group has 2u — 1 clients and k& = 2u — 1.
Fractionally, we open 2 — 1/u facilities in each group and the cost
is 0. But if we want to open 2u — 1 facilities integrally, some group
contains at most 1 facility and thus the capacity violation factor
has to be 2 — 1/u.



edges is at most that of white edges. Again we can
increase the multiplicities of black edges and decrease
the multiplicities of white edges. We can apply this
operation until either some edge disappears from the
tree, or one of the two facilities is matched exactly u
times.

Now we claim that at most k facilities in F are
matched. To see this, focus on each tree in the forest
containing at least one edge. If facilities in S in the tree
are matched ¢ times in total, so are the facilities in F
in the tree. Thus, there are exactly [t/u] facilities in F
in this tree, since at most one facility in F in the tree is
matched less than u times. The number of facilities in
S in this tree is at least [t/u] since each facility in S is
matched t; < u times. This proves the claim.

Let F' C F be the set of facilities that are matched.
Then, |F'| < |S| < k, and we have a matching between
F' and S of cost at most C' 4+ C’, where each facility in
F’ is matched at most u times and each facility in S is
matched t; times. By concatenating this matching with
the matching between S and C of cost C’, we obtain a
solution of cost C' + 2C’ with open facilities F’ to the
uniform hard CKM instance (k,u, F,C,d). This finishes
the proof.

3 Rectangle LP

Our rectangle LP is motivated by the gap instance
described in Section 2. Focus on a group of u+1 clients
in the gap instance. The fractional solution opens
1+ 1/u facilities for this group and use them to serve
the u(1+1/u) = u+1 clients in the group. We interpret
this fractional event as a convex combination of integral
events: with probability 1 — 1/u we open 1 facility for
the group and serve u clients; with probability 1/u we
open 2 facilities and serve 2u clients. However, there
are only u 4 1 clients in this group; even if 2 facilities
are open, we can only serve u + 1 clients. Thus, we can
only serve (1 —1/w)u+ (L/u)(u+1)=u+1/u<u+1
clients using 1 4+ 1/u open facilities.

This motivates the following definition of f(p,q)
for any p € Z.,q € R.. When ¢ € Z,, let f(p,q) =
min {qu, p} be the upper bound on the number of clients
in a set of cardinality p that can be connected to a set
of ¢ facilities. We then extend the range of ¢ from Z,
to R, using linear interpolation(see Figure 1). Then the
exact definition of f(p,q) is the following:

qu q< |2
fo)=qu 2] +ul[B](¢—[2]) [2]<a<[E].
p q=[2]

CLAM 3.1. Fizing p € Zy, f(p,-) is a concave function

[p/u) [p/u]

Figure 1: The f function for a fixed p such that p/u ¢ Z.
It contains three linear segments. The dashed line shows
the function f defined by f = min {p, qu}.

on R,. Fizing q € Ry, f(-,q) is a concave function on

L.

Proof. Tt is easy to see that f(p,q) = min{p,uq,
u|p/u]+u|p/u] (¢—|p/ul)}. Fix p, all the three terms
are linear functions of ¢; thus the minimum of the three
is concave.

Now we fix ¢ € R,.. Then f(p,q) =pif p < ulgq],
fp,a) =ulq+(p—ulq]) lq] ifulq] <p<ulq], and
f(p,q) = uq if p > u|q]. All three segments are linear
on p and their gradients are 1, |q],0 respectively. The
gradients are decreasing from left to right. Moreover,
the first segment and the second segment agree on
p = u|q]; the second segment and the third segment
agree on p = u [q]. Thus, f(-,¢q) is a concave function
on Zy.

For any subset B C F of facility locations and
subset J C C of clients, define yz := y(B) := >_,c5¥i
and ¥p,7 = > icp jes Tij- We simply write z; 7 for
xy,7 and x5 for xp ;3. By the definition of f(p,q),
>jer®sy < [(|T],yp) is valid for every B C F and
J C C. The constraint says that there can be at
most f(|J],yp) clients in J connected to facilities in B.
Notice the constraint with B = {i} and J = {j} implies
z;; < f(1,y;) < y;. The constraint with B = {i} and
J = C implies 37,z < f(IC],y:) < uy;. Thus,
Constraint (2.3) and (2.4) are implied. The constraints
of our rectangle LP are Constraint (2.1),(2.2),(2.5) and
the new constraint:

(Rectangle LP) minimize Z x; 5d(i, j) s.t.
i€F,jeC
(3.6) TF; = lyr < k,xi,j,yi >0,
(3.7) 57 < f(1T],y5),
The LP is called the rectangle LP since we have a
constraint for every “rectangle” (B C F,J C C). We

Vie F,jeC,
vVBC F,J CC.



use the concavity of f(p, -) to convert Constraint (3.7) to
linear constraints. Since f(p, ¢) is the minimum of p, ug
and u [p/u| + u|p/u] (¢ — |p/u]), Constraint (3.7) is
equivalent to a combination of three linear constraints.

For a fixed B C F, the separation oracle for Con-
straint (3.7) is simple: for every p € [|C|], we take
the sum of the p largest values in {zp,;:j€C}; if
it is larger than f(p,ys) we find a separation. Since
there are exponential number of sets B, we do not know
how to find a separation oracle for the Constraint (3.7)
efficiently. However, we can use the following stan-
dard trick: given {x;;:i€ F,je€C} and {y; :i € F}
satisfying Constraint (3.6), we either find a rectangle
(B C F,J CC) for which Constraint (3.7) is violated,
or construct an integral solution with at most [(1 4 €)k]
facilities and the desired approximation ratio. This is
sufficient for us to run the ellipsoid method.

We also remark that the definition of f(p,q) for
lp/u] < ¢ < [p/u] is what makes the rectangle LP
powerful. If we change the definition of f(p,q) to
f(p,q) = min{p, uq}(see Figure 1), then the rectangle
LP is equivalent to the basic LP.
4 Rounding a Fractional Solution of the
Rectangle LP

Throughout this section, let ({z;;:i€ F,j€C},
{y; i€ F }) be a fractional solution satisfying Con-
straints (3.6). Let LP 1=}, » . x; ;d(i, j) be the cost
of the fractional solution. We then try to round the frac-
tional solution to an integral one with at most [(1 + €)k]|
open facilities. We either claim the constructed integral
solution has connection cost at most exp(O(1/€e?))LP,
or output a rectangle (B C F,J C C) for which Con-
straint (3.7) is violated. We can assume Constraint (2.3)
and (2.4) are satisfied by checking Constraint (3.7) for
rectangles ({i},{j}) and ({i},C) respectively.

Overall, the algorithm works as follows. Initially,
we have 1 unit of demand at each client 5 € C. During
the execution of the algorithm, we move demands
fractionally between clients. We pay a cost of zd(j,j’)
for moving x units of demand from client j to client
j'. Suppose our final moving cost is C, and each client
j € C has a; units of demand. Then we use the fact
that 7 = C. We open [¢;/u] facilities at the location
j € C = F. By the integrality of matching, there is an
integral matching between the F and C, such that each
i € F is matched at most v [a;/u] times and each j € C
is matched exactly once. The cost of the matching is at
most C' (cost of matching ¢ and j is d(7,7)). Thus our
goal is to bound C' and ) . [a;/u].

4.1 Moving Demands to Client Representatives
In this section, we define a subset of clients called client

representatives (representatives for short) and move all
demands to the representatives. The definition of client
representatives is similar to that of Charikar and Li [10].

Let day(j) = D ;e 7 ®i,;d(i, j) be the connection cost
of j, for every client j € C. Then LP =}, . day(j). Let
¢ = O(1/e€) be an integer whose value will be decided
later. Let C* = () initially. Repeat the following process
until C becomes empty. We select the client v € C with
the smallest d,,(v) and add it to C*. We remove all
clients j such that d(j,v) < 20d,,(j) from C (thus, v
itself is removed). Then the final set C* is the set of
client representatives. We shall use v and its derivatives
to index representatives, and j and its derivatives to
index general clients.

We partition the set F of locations according to
their nearest representatives in C*. Let U, = () for
every v € C* initially. For each location i € F, we
add i to U, for the v € C* that is closest to 7. Thus,
{U, : v € C*} forms a Voronoi diagram of F with centers
being C*. For any subset A C C* of representatives,
we use Uy = |J,c4 Uy to denote the union of Voronoi
regions with centers in A.

CLAIM 4.1. The following statements hold:

(C1) for all v,v' € C*v # V', we have d(v,v") >
20max {day (v), day (V') };

(C2) for all j € C, there exists v € C*, such that
day (V) < dayv(j) and d(v,j) < 20d,(j);

(C3) yUy,) >1—1/L for every v € C*;

(C4) for any v € C*, i € U, and j € C, we have
d(i,v) < d(i, j) + 20day (7).

Proof. First consider Property (C1). Assume da(v) <
day(v"). When we add v to C*, we remove all clients j
satisfying d(v, j) < 20d.,(j) from C. Thus, v’ can not
be added to C* later.

For Property (C2), just consider the iteration in
which j is removed from C. The representative v added
to C* in the iteration satisfy the property.

Then consider Property (C3). By Property (C1),
we have B := {i € F:d(i,v) < lda(v)} C U,. Since
dav(V) = D ;e r Tind(i,v) and D, r x5, = 1, we have
dav(v) =2 (1 = wpy)lday(v), implying y(Uy) = ys >
zB,y > 1 — 7, due to Constraint (2.3).

Finally, consider Property (C4). By Property (C2),
there is a client v' € C* such that da, (v") < dav(j) and
d(v',j) < 20d,,(j). Notice that d(i,v) < d(i,v") since
v € C* and i was added to U,,. Thus, d(i,v) < d(i,v") <
d(i, )+ d(G, ) < d(i, ) + 20 ().

Now, we move demands to C*. For every represen-
tative v € C*, every location i € U, and every client



J # v such that z; ; > 0, we move z; ; units of demand
from j to v. We bound the moving cost:

LEMMA 4.1. The total cost of moving demands in the
above step is at most 2(¢ + 1)LP.

Proof. The cost is bounded by

PIDIP BT

veC* ieU, jeC

<D @ (2d(6, ) + 26day (5))

veC* icU, jeC

MDY

JEC veC icl,

=2 (day(j) + Lday (5))

jec

)+ d(i,v))

i g (d(i, J) + Lday ()

—2((+1)LP

The inequality is by Property (C4). The second equality
used the fact that {U, : v € C*} form a partition of F,

dicrTij =Land >0, rx;;d(i, j) = dav(j).

After the moving operation, all demands are at
the set C* of representatives. FEvery representative
v € C* has >,y > jcc®i; units of demand. Let

yi = % for any facility location ¢ € F. Since
Constraint (2.4) holds, we have y, < y;. Define
yp =Y (B) == icp¥i = % for every B C F.

Obviously yi < yp. The amount of demand at v € C*
i8> seu, uy; = uy' (Us).

We have obtained an O(1) approximation with
2k open facilities: we set £ = 2 and open [y’ (Uy)]
facilities at each location v € C* C C = F. By
Lemma 4.1, the connection cost is at most 2(¢ +
1)LP = 6LP. The number of open facilities is at most

/u’u
[v @] < max,>i— 1/5[] < 2. No

y(Us)
matter how large ¢ is, the bound is tight as fﬂ?
approaches 2. This is as expected since we have not used
Constraint (3.7). In order to improve the factor of 2, we

further move demands between client representatives.

2k, as max,cc*

4.2 Bounding cost for moving demands out
of a set Suppose we are given a set A C C* of
representatives such that d(A,C* \ A) is large. If
[y (UA)] /yUa) is large then we can not afford to
open [y'(U4)] open facilities inside A. (Recall that
Uy = UveAUv is the union of Voronoi regions with
centers in A.) Thus, we need to move demands between
A and C*\ A. The goal of this section is to bound
d(A,C* \ A); this requires Constraint (3.7).

To describe the main lemma, we need some no-
tations.  Let D; = >, ci;d(i,j) and D; =
> jec Tijdav(j) for any location i € F. Let Dy :=

D(F') := 3 icr Di and D%, := D'(F') := Y .. D;
for every subset F' C F of locations. It is easy to see
that LP = Dy = D this fact will be used to bound
the total moving cost. The main lemma we prove in this
section is the following.

LEMMA 4.2. Let 0 © A C C* and S = Uy. Suppose

ys > |ys| and Constraint (3.7) holds for B = S and
every J C C. Then,
40+ 2
lys] [ys] d(A,C"\ A) < Ds+7Ds

We explain why this bound gives what we need. We
can open |ys| facilities in A and move u [y%] units of
demand from A to some close representatives in C* \ A.
If we guarantee that the moving distance is roughly
d(A,C*\A), then the moving cost is u |y ] d(A,C*\ A).
When [ys] is not too small, the cost is bounded in terms
of Ds + DY. On the other hand, if [ys] is very small,
we can simply open [ys]| facilities in A as [ys] /ys is
close to 1.

The proof of Lemma 4.2 requires the follow-
ing lemma, which directly uses the power of Con-
straint (3.7). As the lemma is very technical, we de-
fer its proof to Section 4.5. We shall prove Lemma 4.2
assuming Lemma 4.3.

LEMMA 4.3. Suppose ({z; ;i€ F,jeC} {yi:i€ F})
satisfies Constraint (3.7) for some set B C F and every
J C C. Moreover, suppose yg > |yg]. Then

21'57_]‘(1

jec

(4.8) —ag;) > ulys] [vs] -

To get an intuition about Inequality (4.8), let us
assume yi = yg # Z and uyg € Z. Thus, B serves
uyy = uyp fractional clients. Without Constraint (3.7),
it can happen that B serves uyp integral clients, in
which case the left side of (4.8) is 0 and (4.8) does not
hold. In other words, Inequality (4.8) prevents the case
from happening. Indeed, we show that the left side of
(4.8) is minimized when the following happens: B serves
u | yp] integral clients, and u fractional clients, each with
fraction |yg|. In this case, (4.8) holds with equality.
Proof of Lemma 4.2. Focus on some i € S,

F\S,j € C. Suppose i € U, for some v € A and
i’ € Uy for some v’ € C*\ A. Then

d(A,C*\A) < dv,0) < dv,i)+dR, 1)
< 2d(v,i') < 2(d(v,i) +d(i,5) +d(4,1))
< 2[2d(5, ) + 2ldav(§) + d(d, 7))

In the above sequence, the third inequality used the fact
that i’ € U, and the fifth inequality used Property (C4)



in Claim 4.1. Thus,
lys T [ys] d(A,C"\ A)

1
< - > ws,(1 = 25;)d(A,C*\ A)
jec
1 *
= ; Z l'i’jl'i/’jd(A,C \A)
JECIES,i'€F\S
< - Z i vy, [2d(i, 7) + 20day (5) + d(7, j)]
j i3/
= - sz,j — IS, [d(lvj) +€d3v(])]
— . Y i’ y
+ w Z;st,sz ,]d(z a.])
< *sz,] { .] +€dav ZIS,] av

4 40+ 2
WPst— = Ds

In above summations, j is over all clients in C, i is over
all locations in & and i’ is over all locations in F \ S.
The first inequality in the sequence used Lemma 4.3.
All other inequalities and equations follow from the
definitions of the notations used. ]

4.3 Constructing family of neighborhood trees
Lemma 4.2 gives a necessary bound for our analysis.
Still, we need to guarantee some other conditions when
moving the demands. For example, when moving
demands out of an “isolated” set A, we should make
sure that the distance is roughly d(A,C* \ A). If
y' (Ua) < |y(Ua)], then we should not move demands
out of A, as d(A,C*\ A) may not be bounded any more.

We guarantee these conditions by building a set of
rooted trees over C*, called neighborhood trees. Roughly
speaking, each neighborhood tree contains representa-
tives that are nearby; moving demands within a neigh-
borhood tree does not cost too much.

We use a triple T = (V, E,r) to denote a rooted
tree, with vertex set V C C*, edge set E C (g) and root
r € V. Given a rooted tree T = (V, E,r) and a vertex
v €V, we use Ap(v) to denote the set of vertices in the
sub-tree of T rooted at v. If v # r, we use pr(v) to
denote the parent of v in T

DEFINITION 4.1. A rooted tree T = (V C C*,E,r) is
called a neighborhood tree if for every vertex v € V\ r,

d(v,C*\ Az (v)) = d(v, pr(v)).

In other words, T' = (V, E, r) is a neighborhood tree
if for every non-root vertex v of T, the parent pp(v) of v
is the nearest vertex in C* to v, except for v itself and its

descendants. The next lemma shows that we can cover
C* using a set of neighborhood trees of size between /¢
and ¢2. The vertex sets of these trees almost form a
partition of C*, except that trees may share the same
root. Since the lemma is technical and peripheral to the
spirit of our result, we defer the proof to Section 4.5.

LEMMA 4.4. Given any positive integer ¢ such that
|IC*| > ¢, we can find a set T of neighborhood trees such
that

(T1) ¢ < V| < 2 for every neighborhood-tree
(V,E,r) e T;

(T2) U(v,E,r)eT V=Cr

(T3) For two distinct trees T = (V,E,r),T" =
VL, E'r") €T, V\{r} and V' \ {r'} are disjoint.

4.4 Moving demands within neighbourhood
trees Recall that all the demands are at the client rep-
resentatives. Every representative v € C* has uy'(U,)
units of demand. In this section, it is convenient for us
to scale down the demands by u. Thus a representative
v € C* has y'(Uy,) units of demand. Due to the scaling,
moving x units of demand from v to v’ costs uxd(v,v").
If finally some v has a, units of demand, we need to
open [, | facilities at v. For analytical purposes, we
also say that v € C* has y(U,) > y'(U,,) units of supply.
The total supply is >, cc. y(Uy) = y7r < k.

Assume |[C*| > ¢ for now. We apply Lemma 4.4
to construct a set T of neighborhood trees satisfying
Properties (T1) to (T3). We assign the supplies and
demands to vertices in the set T. Notice that every
representative in C* appears in T, and it appears in T
as a non-root at most once. If v € C* appears as a
non-root, we assign the y’(U,) units of demand and the
y(U,,) units of supply to the non-root. Otherwise, we
assign the y/(U,) units of demand and the y(U,) units
of supply to an arbitrary root v in T.

Fix a neighborhood tree T = (V,E,r) € T from
now on. Each v € V has «, units of demand and 3,
units of supply. For v € V\ {r}, we have o, = v/ (U,)
and 8, = y(U,). We have either o, = ¢'(U,.), B = y(U,)
or a, = f3, = 0. Define ays 1= ) .y, @, and By :=
> veyr Bo for every V' € V. We shall move demands and
supplies within 7. Moving supplies is only for analytic
purposes and costs nothing. When moving demands
and supplies, we update {a, : v € V} and {8, : v € V}
accordingly. Keep in mind that we always maintain the
property that a, < (3, for every v € V; we do not
change ayy and Sy (we do not change the total demands
or supplies in V). After the moving process for T, we



add [a,] open facilities at v for every v € V. We shall
compare »_ .y, [, | to ay.

To define the moving process for T = (V, E,r),
we give each edge in E a rank as follows. An edge
e = (v,v') € E has length L. := d(v,v"). Sort edges in
E according to their lengths; assume ey, ez, -+, ejpj_1
is the ordering. Let the rank of e; be 1. For each
t =23, ,epy_1, if L, < 23'2] L., then let the
rank of e; be the rank of e;_1; otherwise let the rank
of e; be the rank of e;_; plus 1. Let h be the rank of
ejy|—1- For each i € [h], let E; be the set of rank-i edges
in E; fori=0,1,---,h, let E<; = J;, <, E+ be the set
of edges of rank at most . B

CLAM 4.2. For any i € [h] and e,e¢’ € E;, we have
Le/Le < 3VI-1

Proof. 1t suffices to prove the lemma for the case where
¢’ is the shortest rank-7 edge, and e is the longest rank-
7 edge. Suppose ¢ = ey and e = e; for t' < t. Let
L = Ze,,eEQA Lev. Then, Lo > 2L. For every
se{t',t'+1,---,t—1}, we have L., <2(L+ L., +
Ley,, + -+ Le,). Thus, L+ Le, + Le,,, +- +
Le,+ Le,,, <3(L+ Le, + Le, ,+ -+ L..). Thus,
L. < gt—t' (L + L) < % . 3t7t’Le, < 3|V\*1Le, as
t—t <|V| -2

For every i € {0,1,--- , h}, we call the set of vertices
in a connected component of (V, E<;) a level-i set. The
family of level-i sets forms a partition of V; and the
union of families over all ¢ € {0,1,--- A} is a laminar
family. For every ¢ € [h] and every level-i set A, we
check if Constraint (3.7) is satisfied for B = U4 and
every J C C (recall that this can be checked efficiently).
If not, we find a violation of Constraint (3.7); from
now on, we assume Constraint (3.7) holds for all these
rectangles (B, J).

Cram 4.3. If a level-i set A does not contain the root
r, then d(A,C* \ A) > & where L' is the length of the
shortest edge in E;y.

Proof. See Figure 2 for the notations used in the proof.
Let v be the highest vertex in A according to T, and
L =73 cp_, Le be the total length of edges of rank at
most ¢.

Notice that C* \ A = (C* \ Ar(v)) U (Ar(v) \ A).
d(v,C* \ Ar(v)) = d(v,pr(v)) > L' since T is a
neighborhood tree and the rank of (v, pr(v)) is at least
i+ 1. Thus d(A,C* \ Ap(v)) > L' — L > L as the
distance from v to any vertex in A is at most L. We
now bound d(A, Ar(v) \ A). Consider each connected
component in (Ar(v) \ A, E<;). Let A’ be the set of
vertices in the component and v’ be its root. Since

Figure 2: Notations used in the proof of Claim 4.3. Solid
circles are client representatives in C* and solid lines give
a neighborhood tree T'.

d(v', pr(v")) > L', we have d(v',v) > L' as pr(v') is
the nearest representative to v’ in C* \ Ar(v') 3 wv.
Since each of A and A’ is connected by edges in E<;,
v e Av € A and the total length of edges in E<; is
L, we have that d(A, A') > L' — L > L. As this is

7.
true for any such A’, we have d(A,Ar(v) \ A) > %,

which, combined with d(A,C* \ Ar(v)) > %, implies
the lemma.

Recall that the family of all level-: sets, over all
t = 0,1,2,---  h form a laminar family. Level-0 sets
are singletons and the level-h set is the whole set V.
Our moving operation is level-by-level: for every i =
1,2,--- ,h in this order, for every level-i set A C V,
we define a moving process for A, in which we move
demands and supplies within vertices in A. After the
moving operation for A, we guarantee the following
properties.

If r & A, then either

(N1) all but one vertices v € A have o, = 8, € Zy; or
(N2) every vertex v € A has 3, > [, | — 1/L.

If r € A, then

(I1) every vertex v € A\ {r} has 8, > [a, ]| — 1/L.

The above properties hold for all level-0 sets: they
are all singletons; Property (N1) holds if » ¢ A and
Property (I1) holds if » € A. Now, suppose the
properties hold for all level-(i — 1) sets. We define
a moving operation for a level-i set A after which A
satisfies the properties.

The first step is a collection step, in which we collect
demands and supplies from A. For every v € A\ {r}
such that 8, < [a,] — 1/¢, we collect |a,| units of
demand and 8, — |« | units of supply from v and keep
them in a temporary holder. For all vertices v € A with



By > [ay], we collect B, — [a,] units of supply from
v. Now, we have [a,] — 1/ < B, < [, ] for every
ve A\ {r}.

The second step is a redistribution step, in which we
move the demand and supply in the temporary holder
back to A. If r € A, we simply move the demand and
the supply in the holder to r and terminate the process.
A will satisfy Property (I1). From now on we assume
r ¢ A. We try to move the demand and the supply
in the holder to each v € A continuously until we have
a, = By € Zy: we first move demand from the holder
to v until a, = B,, then move demand and supply at
the same rate until o, = 8, € Z,.. If we succeeded
in making all vertices v € A satisfy a,, = B, € Z,,
then we can move the remaining supplies and demands
in the holder to an arbitrary vertex in A. In this case
A satisfies Property (N1). Suppose we failed to make
oy = By € Zy for some v € A. The failure is due to
the insufficient demand in the holder: we have collected
at least the same amount of supply as demand; in the
redistribution step, we either move the demand from the
holder or move the demand and the supply at the same
rate. We then move all the remaining supply in the
holder to an arbitrary vertex v € A. Notice that during
the continuous redistribution process for v, we always
maintain the property that [a,] — 1/¢ < 8, < [ay].
Moving the remaining supply to an arbitrary vertex v
also maintain the property that [«,] — 1/¢ < B,. Thus
A will satisfy Property (N2) in the end.

After we finished the moving operation for the level-
h set V, our set V satisfies Property (I1) as r € V.
Thus 3 ey [av] < Xpepy(Bo +1/0) + ar +1 <
Byt 1+(V| 1)/ > 25k By as By > (V] -1)(1-1/0)
and |V| > ¢. Taking this sum over all trees in T, we have
that the number of open facilities is at most (?{7_1)12]6.
By setting ¢ = [3/¢], the number of open facilities is at
most (1 + €)k.

It suffices to bound the moving cost for 7T'.

LEMMA 4.5. The moving cost of the operation for T =
(V,E,r) €T is at most

exp (O(6%)) (DU (ry) + D' (U (ry)) -

Proof. Consider the moving process for a level-i set A.
Suppose we collected some demand from v € A. It
must be the case that v # r and B8, < [ay]| — 1/¢
before the collection, as otherwise we would not collect
demand from v. If we let A’ C A be the level-
(i — 1) set containing v, then A’ must satisfy r ¢ A’
and Property (N2) by the induction assumption. This
implies that we did not collect demands from any other
vertices in A’. Notice that 8, < [a,| — 1/¢ implies
ay > |By] and [B,] > 1/¢. Then, aqx > |Bar]

and [B4| > 1/€ as all vertices v € A"\ {v} have
oy = By € Z,. Since we never moved demands or

supplies in or out of A’ before, we have a4 = yjs
and Ba = ys, where S = U Then ys > |ys| and
[ys| > 1/¢.

As we assumed that Constraint (3.7) is satisfied for
B =S and every J C C, we can apply Lemma 4.2 to
show that [ys] [ys]d(A',C* \ A') < 2Dg + 42D
The demands collected from v will be moved to vertices
in A. The moving distance is at most ZeeEq L. <

[V|3IVIL by Claim 4.2, where L' is the length of the
shortest edge in F;. Now, by Claim 4.3, L’ < 2d(A’,C*\
A’). Thus, the moving distance is at most

V| I opE\ gl 2 |V|3|V| /
2V3Md(A, A" < — (2Ds+(2¢+1)D%).

~ 4 |ys] Tys]

Notice that [ys] > 1/¢ and |V| < ¢2. The distance
2

M(DS + D%). As we moved |y5s]

is at most o
units of demand from A’, the moving cost is at most
exp (O(?)) (Ds + Df).

Taking the sum of the upper bounds over all
level-(i — 1) sets A" C A\ {r}, the cost is at most
exp (O(?)) (DUa\(ry) + D' (U gry)). Taking the sum
over ¢ € [h] and all level-i sets A, the cost is at most
exp (0(52)) (D(Z/{V\{r}) + D/(UV\{T})), as the number h
of levels is absorbed by exp (O(¢?)). This finishes the
proof of Lemma 4.5.

Finally, taking the bound over all neighborhood
trees T = (V,E,r), the moving cost is at most
exp(O(£?))(Dx+D’%) due to Property (T3) and the fact
that {U, : v € C*} forms a partition of F. Since Dr =
D’- = LP, the moving cost is at most exp(O(¢?))LP.

This finishes the proof of Theorem 1.1 for the
case |[C*| > £. When |C*| < ¢, we only build one
neighborhood tree (C*, E,r). Any minimum spanning
tree over C* will be a neighborhood tree. We run the
algorithm for this neighborhood tree. The argument for
moving cost still works; it suffices to bound the number
of open facilities. After the moving process, we have
By > [, ] — 1/¢ for every v € C* \ {r}. Also B¢+ < k.
Thus, Br <k- /BC*\{T} <k- Zvec*\{r}([a?J - 1/6) <
k=3 ecnqry [aw] + (€ —2)/C as |C*] < £ Thus,
[a.] < [B] < k — Z’UEC*\{T} [a,] 4+ 1, implying
> veee |w] < k+1. Thus, the number of open facilities
is at most kK +1 < [(1+e€)k]. To finish the proof
of Theorem 1.1, it remains to prove the two technical
lemmas.

4.5 Proofs of Technical Lemmas

Proof of Lemma 4.3. For simplicity we let y =
ys,y = yp and z; = zp ; for every j € C. Throughout
the proof, y and 3’ are fixed.



We assume C = [n] and 1 > 21 > 29 > -+ >
z, > 0. Let f(p) = min {f(p,y),uy’} for every integer

€ [0,n]. Notice that f is a non-decreasing concave
function as f(-,y) is concave and uy’ is independent
of p. The conjunction of Constraint (3.7) and y' =
>i_yaj/u is equivalent to Y°¥_, x; < f(p) for every
p € [n].

Let g : [0,1] — R be any second-order differentiable
concave function such that g(0) = 0. We shall show that
> 9(ay) = 300, g(@)), where a7 = f(j) — f(j — 1)
for every j € [n]

We use ¢’ and ¢” to denote the first-order and
second-order derivative functions of g respectively. For
any € [0,1], let ¢(x) = |{j € C: x; > x}|. Then

> g(z)) /¢

jEC
-/ 1 <g’<o> ¥ / (0t vl
0) /Olw(x)da: + /01 [/tlw(x)dx} o (t)dt

Notice that the first term is equal to
90)>ccr; = ¢'(0)uy’, which is independent
of T = (x1,22, " ,Zn). Since ¢ is concave,
we have ¢"(t) < 0 for every t € [0,1]. We
show that Q(t) ft z)dzr is maximized when
=z (ml,x2,~-~, xh), foreverytE[O 1].

We now fix ¢ € [0, 1]. Notice that Q(t) = >7% (z;—
t) where p; is the largest integer p such that z, > ¢.
Then Q(t) < f(py) — tpy < maxll_ (f(P) —tp).

We show that Q(t) = max]_y (f(p) —tp) when
Z = #*. Consider the sequence x1 —t, 29 — ¢, -+ ,x, —t.
The sequence is non-increasing; f(p) — tp is the sum of
the first p number in the sequence by the definition of
{x;‘} Thus, the sum is maximized when f(p) —tp is the
largest number such that x, > ¢. This p is exactly the
definition of p;. Thus, Q(¢) is maximized when ¥ = ¥*.
This proves that > ., g(z;) > >0, g(z).

Now we let g(z) = =z(1 — z). Then g¢(0)

g(1) = 0. Thus, >, cg(z}) = { E’]’]Jg(tzﬂ)
p Q LL” m) By the concavity of ¢ and g(0)
e (3] [
Thus 3 ccg(z;) > Q o > (lvD)

oyl = 4 - ) = . The last

equation used the fact that [y]+[y J f yis fractlonal
and |y'] = 0 if y is integral. O

_|_

Proof of Lemma 4.4. The first step is a simple
iterative process. We maintain a spanning forest of
rooted trees for C*. Initially, we have |C*| singletons. At
each iteration, we arbitrarily choose a tree T'= (V, E, r)
of size less than /. Let v* = argmin,¢c«\y d(r,v) be the
nearest neighbor of r in C*\ V. Assume v* is in some
rooted tree T' = (V', E’',r'). Then, we merge T and T’
by adding an edge (r,v*), and let v* be the parent of 7.
i.e, the new tree will be (WU V', EU E U {(r,v*)},r').
The process ends when all rooted trees have size at least
L.

Now we show that every rooted tree in the spanning
forest is a neighborhood tree. Initially all trees are
trivially neighborhood trees; it suffices to prove that the
new tree formed by merging two neighborhood trees is
also a neighborhood tree. Consider two neighborhood
trees T = (V,E,r) and T = (V', E',r’), and suppose
we obtain a merged tree T” by adding an edge (r,v*)
for some v* € V. Then, for every v € V\ {r} we
have d(v,C* \ Ap»(v)) = d(v, pp(v)) since Apr(v) =
Ar(v), pr(v) = pr(v) and T is a neighborhood tree.
Also, we have d(r,C* \ Ar~(r)) = d(r, pr(r)) since
Apin(r) =V and p(T")(r) = v* is the nearest neighbor
of 7 in C*\ V. Finally, for every v € V' \ {r'}, we have
d(v,C* \ T) = d(v, pr(v)) since ppn(v) = pr(v) €
C* \ Arv(v) C C*\ Ap/(v) and T” is a neighborhood
tree.

All neighborhood trees we constructed have size at
least ¢. However, they might have size much larger than
£2. Thus, we need to break a large neighborhood tree.
Focus on a neighborhood tree T' = (V, E, 1) of size more
than ¢2 and consider its growth in the iterative process.
Initially it contains only a single vertex r. During
the execution of the process, we merge it with some
neighborhood tree T” of size less than I, by “hanging”
T’ at some vertex of T. We call T” a treelet. When we
hang T' = (V', E',r') at some vertex v* of T, we have
d(r’,v*) =d(r',C*\ V).

Let T be the tree obtained from T by contracting
vertices of the same treelet into a super-node (for
convenience, the root r is a treelet). Thus, T is a tree
rooted at r, where each super-node corresponds to a
treelet. Let the weight of a super-node be the size of
its correspondent treelet. Consider the deepest super-
node of T such that the total weight of the sub-tree
rooted at this super-node is at least ¢(¢ — 1). The
treelet T/ = (V', E’,r') correspondent to this super-
node has size at most ¢ — 1. Then there must be a
vertex v € V' such that the total weight hanging at this
w = ¢ — 1. Then, we break
T into two parts: the sub-tree T' of T rooted at v, and
the sub-tree T2 of T obtained by removing descendants
of v. The two sub-trees share the vertex v. Then 72

vertex is at least



obviously a neighborhood tree since it is the sub-tree of
T rooted at v and T is a neighborhood tree. Also, T
is neighborhood tree since we can obtain 7! from r by
repeatedly hanging treelets. T2 has size at least ¢ and
at most /(¢ — 1) and T has size at least £. Now we let
T + T' and repeat the process until the size of T is at
most /2.

All neighborhood trees have size between ¢ and ¢2
and the union of all neighborhood trees cover all vertices
of C*. Every vertex of C* can appear at most once as a
non-root of some neighborhood tree. ([

5 Discussion

In this paper, we introduced a novel rectangle LP re-
laxation for uniform CKM and gave a rounding algo-
rithm which produces exp (O(l / 62))—approximate solu-
tions by opening (1 + €)k facilities. This is beyond the
approximability of the natural LP relaxation, as it has
unbounded integrality gap even if (2 — €)k facilities are
allowed to be opened. There are many related open
problems.

First, can our rectangle LP give a constant approx-
imation for uniform CKM by violating capacity con-
straints by 1 4 €? The difficulty of this problem seems
to be that each facility has a capacity constraint and
we need to guarantee that none of them is violated by
too much. While in our problem, we are only concerned
with one cardinality constraint.

Second, can we extend our result to non-uniform
CKM? Without uniform capacities, we can not even
prove Theorem 1.2. Also, Constraint (3.7) crucially
used the uniformity. Without it, we may need to
generalize Constraint (3.7).

Finally, can we obtain a true constant approxima-
tion for uniform CKM? After submitting the extended
abstract of the paper, we found an example showing
that the integrality gap of the rectangle LP is Q(logn),
if the cardinality constraint can not be violated. We
defer the proof of the integrality gap to the full version
of the paper. Thus, a stronger LP is needed to obtain a
true constant approximation.

Acknowledgement

I want to thank Ola Svensson for pointing out a sim-
plification for the rectangle LP. I also thank anonymous
reviewers for many useful comments over the extended
abstract version of the paper.

References

[1] Ankit Aggarwal, L. Anand, Manisha Bansal, Naveen
Garg, Neelima Gupta, Shubham Gupta, and Surabhi

[5]

(8]

(9]

[10]

(11]

Jain. A 3-approximation for facility location with
uniform capacities. In Proceedings of the 14th In-
ternational Conference on Integer Programming and
Combinatorial Optimization, IPCO’10, pages 149-162,
Berlin, Heidelberg, 2010. Springer-Verlag.
Hyung-Chan An, Mohit Singh, and Ola Svensson. LP-
based algorithms for capacitated facility location. In
Proceedings of the 55th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2014.

V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Mu-
nagala, and V. Pandit. Local search heuristic for k-
median and facility location problems. In Proceedings
of the thirty-third annual ACM symposium on Theory
of computing, STOC ’01, pages 21-29, New York, NY,
USA, 2001. ACM.

Manisha Bansal, Naveen Garg, and Neelima Gupta. A
5-approximation for capacitated facility location. In
Proceedings of the 20th Annual European Conference
on Algorithms, ESA’12, pages 133-144, Berlin, Heidel-
berg, 2012. Springer-Verlag.

J. Byrka. An optimal bifactor approximation algo-
rithm for the metric uncapacitated facility location
problem. In APPROX ’07/RANDOM ’07: Proceed-
ings of the 10th International Workshop on Approxima-
tion and the 11th International Workshop on Random-
ization, and Combinatorial Optimization. Algorithms
and Techniques, pages 29—-43, Berlin, Heidelberg, 2007.
Springer-Verlag.

Jaroslaw Byrka, Krzysztof Fleszar, Bartosz Rybicki,
and Joachim Spoerhase. Bi-factor approximation al-
gorithms for hard capacitated k-median problems. In
Proceedings of the 26th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2015).

Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Ar-
avind Srinivasan, and Khoa Trinh. An improved ap-
proximation for k-median, and positive correlation in
budgeted optimization. In Proceedings of the 26th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2015).

M. Charikar and S. Guha. Improved combinatorial al-
gorithms for the facility location and k-median prob-
lems. In In Proceedings of the 40th Annual IEEE Sym-
posium on Foundations of Computer Science, pages
378-388, 1999.

M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys.
A constant-factor approximation algorithm for the k-
median problem (extended abstract). In Proceedings
of the thirty-first annual ACM symposium on Theory
of computing, STOC 99, pages 1-10, New York, NY,
USA, 1999. ACM.

Moses Charikar and Shi Li. A dependent lp-rounding
approach for the k-median problem. In Proceedings
of the 39th International Colloguium Conference on
Automata, Languages, and Programming - Volume
Part I, ICALP’12, pages 194-205, Berlin, Heidelberg,
2012. Springer-Verlag.

F. A. Chudak and D. B. Shmoys. Improved approxima-
tion algorithms for the uncapacitated facility location



(12]

(13]

(14]

(15]

[16]

(17]

18]

19]

20]

(21]

(22]

23]

24]

(25]

problem. STAM J. Comput., 33(1):1-25, 2004.

Fabian A. Chudak and David P. Williamson. Im-
proved approximation algorithms for capacitated facil-
ity location problems. Math. Program., 102(2):207—
222, March 2005.

Julia Chuzhoy and Yuval Rabani. Approximating k-
median with non-uniform capacities. In In SODA 05,
pages 952-958, 2005.

Dion Gijswijt and Shanfei Li. Approximation algo-
rithms for the capacitated k-facility location problems.
CoRR, abs/1311.4759, 2013.

S Guha and S Khuller. Greedy strikes back: Improved
facility location algorithms. In Journal of Algorithms,
pages 649-657, 1998.

K. Jain, M. Mahdian, E. Markakis, A. Saberi, and
V. V. Vazirani. Greedy facility location algorithms
analyzed using dual fitting with factor-revealing LP.
J. ACM, 50:795-824, November 2003.

K. Jain, M. Mahdian, and A. Saberi. A new greedy
approach for facility location problems. In Proceedings
of the thiry-fourth annual ACM symposium on Theory
of computing, STOC ’02, pages 731-740, New York,
NY, USA, 2002. ACM.

K Jain and V. V. Vazirani. Approximation algorithms
for metric facility location and k-median problems us-
ing the primal-dual schema and Lagrangian relaxation.
J. ACM, 48(2):274-296, 2001.

M. R. Korupolu, C. G. Plaxton, and R. Rajaraman.
Analysis of a local search heuristic for facility location
problems. In Proceedings of the ninth annual ACM-
SIAM symposium on Discrete algorithms, SODA 98,
pages 1-10, Philadelphia, PA, USA, 1998. Society for
Industrial and Applied Mathematics.

S. Li. A 1.488 approximation algorithm for the un-
capacitated facility location problem. In Automata,
Languages and Programming - 38th International Col-
loquium (ICALP), pages 77-88, 2011.

Shanfei Li. An improved approximation algorithm for
the hard uniform capacitated k-median problem. In
APPROX ’14/RANDOM ’14: Proceedings of the 17th
International Workshop on Combinatorial Optimiza-
tion Problems and the 18th International Workshop on
Randomization and Computation, APPROX ’14/RAN-
DOM ’14, 2014.

Shi Li and Ola Svensson. Approximating k-median
via pseudo-approximation. In Proceedings of the Forty-
fifth Annual ACM Symposium on Theory of Comput-
ing, STOC ’13, pages 901-910, New York, NY, USA,
2013. ACM.

J. Lin and J. S. Vitter.
for geometric median problems.
44:245-249, December 1992.

M. Mahdian, Y. Ye, and J. Zhang. Approximation
algorithms for metric facility location problems. SIAM
J. Comput., 36(2):411-432, 2006.

D. B. Shmoys, E. Tardos, and K. Aardal. Approxima-
tion algorithms for facility location problems (extended
abstract). In STOC ’97: Proceedings of the twenty-

Approximation algorithms
Inf. Process. Lelt.,

[26]

27]

ninth annual ACM symposium on Theory of comput-
ing, pages 265-274, New York, NY, USA, 1997. ACM.
D Williamson and Shmoys D. The Design of Approxi-
mation Algorithms. Cambridge University Press, 2011.
Jiawei Zhang, Bo Chen, and Yinyu Ye. A multiex-
change local search algorithm for the capacitated facil-
ity location problem. Math. Oper. Res., 30(2):389-403,
May 2005.



