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Abstract
We study the Capacitated k-Median problem for which existing constant-factor approximation
algorithms are all pseudo-approximations that violate either the capacities or the upper bound k
on the number of open facilities. Using the natural LP relaxation for the problem, one can only
hope to get the violation factor down to 2. Li [SODA’16] introduced a novel LP to go beyond
the limit of 2 and gave a constant-factor approximation algorithm that opens (1 + ε)k facilities.

We use the configuration LP of Li [SODA’16] to give a constant-factor approximation for
the Capacitated k-Median problem in a seemingly harder configuration: we violate only the
capacities by 1 + ε. This result settles the problem as far as pseudo-approximation algorithms
are concerned.
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1 Introduction

In the capacitated k-median problem (CKM), we are given a set F of facilities together with
their capacities ui ∈ Z>0 for i ∈ F , a set C of clients, a metric d on F ∪ C, and a number k.
We are asked to open some of these facilities F ′ ⊆ F and give an assignment σ : C → F ′

connecting each client to one of the open facilities so that the number of open facilities is not
bigger than k, i.e. |F ′| ≤ k (cardinality constraint), and each facility i ∈ F ′ is connected to
at most ui clients, i.e.

∣∣σ−1(i)
∣∣ ≤ ui (capacity constraint). The goal is to minimize the sum

of the connection costs, i.e.
∑
j∈C d(σ(j), j).

Without the capacity constraint, i.e. ui =∞ for all i ∈ F , this is the famous k-median
problem (KM). The first constant-factor approximation algorithm for KM is given by Charikar
et al. [9], guaranteeing a solution within 6 2

3 times the cost of the optimal solution. Then the
approximation ratio has been improved by a series of papers [13, 8, 3, 12, 17, 5]. The current
best ratio for KM is 2.675 + ε due to Byrka et al. [5], which was obtained by improving a
part of the algorithm given by Li and Svensson [17].

On the other hand, we don’t have a true constant approximation for CKM. All known
constant-factor results are pseudo-approximations which violate either the cardinality or the

∗ A full version of the paper can be found at http://arxiv.org/abs/1603.02324.
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capacity constraint. Aardal et al. [1] gave an algorithm which finds a (7 + ε)-approximate
solution to CKM by opening at most 2k facilities, i.e. violating the cardinality constraint
by a factor of 2. Guha [11] gave an algorithm with approximation ratio 16 for the more
relaxed uniform CKM, where all capacities are the same, by connecting at most 4u clients
to each facility, thus violating the capacity constraint by 4. Li [14] gave a constant-factor
algorithm for uniform CKM with capacity violation of only 2 + ε by improving the algorithm
in [9]. For non-uniform capacities, Chuzhoy and Rabani [10] gave a 40-approximation for
CKM by violating the capacities by a factor of 50 using a mixture of primal-dual schema
and lagrangian relaxations. Their algorithm is for a slightly relaxed version of the problem
called soft CKM where one is allowed to open multiple collocated copies of a facility in F .
The CKM definition we gave above is sometimes referred to as hard CKM as opposed to this
version. Recently, Byrka et al. [4] gave a constant-factor algorithm for hard CKM by keeping
capacity violation factor under 3 + ε.

All these algorithms for CKM use the basic LP relaxation for the problem which is known
to have an unbounded integrality gap even when we are allowed to violate either the capacity
or the cardinality constraint by 2− ε. In this sense, results of [1] and [14] can be considered
as reaching the limits of the basic LP relaxation in terms of restricting the violation factor.
In order to go beyond these limits, Li [15] introduced a novel LP called the rectangle LP
and presented a constant-factor approximation algorithm for soft uniform CKM by opening
(1 + ε)k facilities. This was later generalized by the same author to non-uniform CKM [16],
where he introduced an even stronger LP relaxation called the configuration LP. Very recently,
independently of the work in this paper, Byrka et al. [6] used this configuration LP to give a
similar algorithm for uniform CKM violating the capacities by 1 + ε.

1.1 Our Result
In this paper, we use the configuration LP of [16] to give an O(1/ε5)-approximation algorithm
for non-uniform hard CKM which respects the cardinality constraint and connects at most
(1 + ε)ui clients to any open facility i ∈ F . The running time of our algorithm is nO(1/ε).
Thus, with this result, we now have settled the CKM problem from the view of pseudo-
approximation algorithms: either (1 + ε)-cardinality violation or (1 + ε)-capacity violation is
sufficient for a constant approximation for CKM.

The known results for the CKM problem have suggested that designing algorithms with
capacity violation (satisfying the cardinality constraint) is harder than designing algorithms
with cardinality violation. Note, for example, that the best known cardinality violation
factor for non-uniform CKM among algorithms using only the basic LP relaxation (a factor
of 2 in [1]) matches the smallest possible cardinality violation factor dictated by the gap
instance. In contrast, the best capacity-violation factor is 3 + ε due to [4], but the gap
instance for the basic LP with the largest known gap eliminates only the algorithms with
capacity violation smaller than 2. Furthermore, we can argue that, for algorithms based
on the basic LP and the configuration LP, a β-capacity violation can be converted to a
β-cardinality violation, suggesting that allowing capacity violation is more restrictive than
allowing cardinality violation. We leave the detail to the full version of the paper.
Our Techniques. Our algorithm uses the configuration LP introduced in [16] and the
framework of [16] that creates a two-level clustering of facilities. [16] considered the (1 + ε)-
cardinality violation setting, which is more flexible in the sense that one has the much freedom
to distribute the εk extra facilities. In our (1 + ε)-capacity violation setting, each facility
i can provide an extra εui capacity; however, these extra capacities are restricted by the
locations of the facilities. In particular, we need one more level of clustering to form so-called
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“groups” so that each group contains Ω(1/ε) fractional open facility. Only with groups of
Ω(1/ε) facilities, we can benefit from the extra capacities given by the (1 + ε)-capacity scaling.
Our algorithm then constructs distributions of local solutions. Using a dependent rounding
procedure we can select a local solution from each distribution such that the solution formed
by the concatenation of local solutions has a small cost. This initial solution may contain
more than k facilities. We then remove some already-open facilities, and bound the cost
incurred due to the removal of open facilities. When we remove a facility, we are guaranteed
that there is a close group containing Ω(1/ε) open facilities and the extra capacities provided
by these facilities can compensate for the capacity of the removed facility.

Organization. The remaining part of the paper is organized as follows. In Sections 2 and 3,
we describe the configuration LP introduced in [16] and our three-level clustering procedure
respectively. In Section 4, we show how to construct the distributions of local solutions. Then
finally in Section 5, we show how to obtain our final solution by combining the distributions
we constructed. Due to the page limit, some proofs are omitted and they can be found in
the full version of the paper.

2 The Basic LP and the Configuration LP

In this section, we give the configuration LP of [16] for CKM. We start with the following
basic LP relaxation:

min
∑
i∈F,j∈C d(i, j)xi,j s.t. (Basic LP)∑

i∈F yi ≤ k; (1)∑
i∈F xi,j = 1, ∀j ∈ C; (2)

xi,j ≤ yi, ∀i ∈ F, j ∈ C; (3)

∑
j∈C xi,j ≤ uiyi, ∀i ∈ F ; (4)

0 ≤ xi,j , yi ≤ 1, ∀i ∈ F, j ∈ C. (5)

In the LP, yi indicates whether a facility i ∈ F is open, and xi,j indicates whether client
j ∈ C is connected to facility i ∈ F . Constraint (1) is the cardinality constraint assuring
that the number of open facilities is no more than k. Constraint (2) says that every client
must be fully connected to facilities. Constraint (3) requires a facility to be open in order to
connect clients. Constraint (4) is the capacity constraint.

It is well known that the basic LP has unbounded integrality gap, even if we are allowed
to violate the cardinality constraint or the capacity constraint by a factor of 2 − ε. The
description of the instance can be found in the full version of the paper. In order to overcome
the gap in the cardinality-violation setting, Li [16] introduced a novel LP for CKM called
the configuration LP, which we formally state below. Let us fix a set B ⊆ F of facilities.
Let ` = Θ(1/ε) and `1 = Θ(`) be sufficiently large integers. Let S = {S ⊆ B : |S| ≤ `1} and
S̃ = S ∪ {⊥}, where ⊥ stands for “any subset of B with size more than `1”; for convenience,
we also treat ⊥ as a set such that i ∈ ⊥ holds for every i ∈ B. For S ∈ S, let zBS indicate
the event that the set of open facilities in B is exactly S and zB⊥ indicate the event that the
number of open facilities in B is more than `1.

For every S ∈ S̃ and i ∈ S, zBS,i indicates the event that zBS = 1 and i is open. (If i ∈ B
but i /∈ S, then the event will not happen.) Notice that when i ∈ S 6= ⊥, we always have
zBS,i = zBS ; we keep both variables for notational purposes. For every S ∈ S̃, i ∈ S and client
j ∈ C, zBS,i,j indicates the event that zBS,i = 1 and j is connected to i. In an integral solution,
all the above variables are {0, 1} variables. The following constraints are valid. To help
understand the constraints, it is good to think of zBS,i as zBS · yi and zBS,i,j as zBS · xi,j .

ICALP 2016
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∑
S∈S̃

zBS = 1; (6)

∑
S∈S̃:i∈S

zBS,i = yi, ∀i ∈ B; (7)

∑
S∈S̃:i∈S

zBS,i,j = xi,j , ∀i ∈ B, j ∈ C; (8)

0 ≤ zBS,i,j ≤ zBS,i ≤ zBS , ∀S ∈ S̃, i ∈ S, j ∈ C; (9)

zBS,i = zBS , ∀S ∈ S, i ∈ S; (10)∑
i∈S

zBS,i,j ≤ zBS , ∀S ∈ S̃, j ∈ C; (11)∑
j∈C

zBS,i,j ≤ uizBS,i, ∀S ∈ S̃, i ∈ S; (12)

∑
i∈B

zB⊥,i ≥ `1zB⊥ . (13)

Constraint (6) says that zBS = 1 for exactly one S ∈ S̃. Constraint (7) says that if i is
open then there is exactly one S ∈ S̃ with zBS,i = 1. Constraint (8) says that if j is connected
to i then there is exactly one S ∈ S̃ such that zBS,i,j = 1. Constraint (9) is by the definition of
variables. Constraint (10) holds as we mentioned earlier. Constraint (11) says that if zBS = 1
then j can be connected to at most 1 facility in S. Constraint (12) is the capacity constraint.
Constraint (13) says that if zB⊥ = 1, there are at least `1 open facilities in B.

The configuration LP is obtained from the basic LP by adding the z variables and
Constraints (6) to (13) for every B ⊆ F . Since there are exponentially many subsets B ⊆ F ,
we don’t know how to solve this LP efficiently. However, note that there are only polynomially
many (nO(`1)) zB variables for a fixed B ⊆ F . Given a fractional solution (x, y) to the
basic LP relaxation, we can construct the values of zB variables and check their feasibility
for Constraints (6) to (13) in polynomial time as in [16]. Our rounding algorithm either
constructs an integral solution with the desired properties, or outputs a set B ⊆ F such
that Constraints (6) to (13) are infeasible. In the latter case, we can find a constraint in the
configuration LP that (x, y) does not satisfy. Then we can run the ellipsoid method and the
rounding algorithm in an iterative way (see, e.g., [7, 2]).

Notations From now on, we fix a solution ({xi,j : i ∈ F, j ∈ C} , {yi : i ∈ F}) to the basic
LP. We define dav(j) :=

∑
i∈F xi,jd(i, j) to be the connection cost of j, for every j ∈ C. Let

Di :=
∑
j∈C xi,j (d(i, j) + dav(j)) for every i ∈ F , and DS :=

∑
i∈S Di for every S ⊆ F . We

denote the value of the solution (x, y) by LP :=
∑
i∈F,j∈C xi,jd(i, j) =

∑
j∈C dav(j). Note that

DF =
∑
i∈F,j∈C xi,j (d(i, j) + dav(j)) =

∑
i∈F,j∈C xi,jd(i, j) +

∑
j∈C dav(j)

∑
i∈F xi,j = 2LP.

For any set F ′ ⊆ F of facilities and C ′ ⊆ C of clients, we shall let xF ′,C′ :=
∑
i∈F ′,j∈C′ xi,j ;

we simply use xi,C′ for x{i},C′ and xF ′,j for xF ′,{j}. For any F ′ ⊆ F , let yF ′ :=
∑
i∈F ′ yi.

Let d(A,B) := mini∈A,j∈B d(i, j) denote the minimum distance between A and B, for any
A,B ⊆ F ∪ C; we simply use d(i, B) for d({i} , B).

Moving of Demands After the set of open facilities is decided, the optimum connection
assignment from clients to facilities can be computed by solving the minimum cost b-matching
problem. Due to the integrality of the matching polytope, we may allow the connections to
be fractional. That is, if there is a good fractional assignment, then there is a good integral
assignment. So we can use the following framework to design and analyze the rounding
algorithm. Initially there is one unit of demand at each client j ∈ C. During the course of
our algorithm, we move demands fractionally within F ∪ C; moving α units of demand from
i to j incurs a cost of αd(i, j). At the end, all the demands are moved to F and each facility
i ∈ F has at most (1 +O( 1

` ))ui units of demand. We open a facility if it has positive amount
of demand. Our goal is to bound the total moving cost by O(`5)LP and the number of open
facilities by k.
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(a). bundles {Uv}v∈R (b). black components J

facilities representatives black components groups

and forest Υ∗J

(c). groups G and forest ΥG

Figure 1 The three-phase clustering procedure. In the first phase (Figure (a)), we partition F
into bundles, centered at the set R of representatives. In the second phase (Figure (b)), we partition
R into a family J of black components and construct a degree-2 rooted forest over J . In the third
phase (Figure(c)), we partition J into a family G of groups; ΥG is formed from Υ∗J by contracting
each group into a single node.

3 Representatives, Black Components, and Groups

Our algorithm starts with bundling facilities together with a three-phase process each of
which creates bigger and bigger clusters. At the end, we have a nicely formed network of
sufficiently big clusters of facilities. See Figure 1 for illustration of the three-phase clustering.

3.1 Representatives, Bundles and Initial Moving of Demands
In the first phase, we use a standard approach to facility location problems ([18, 19, 9, 16])
to partition the facilities into bundles {Uv}v∈R, where each bundle Uv is associated with a
center v ∈ C that is called a representative and R ⊆ C is the set of representatives. Each
bundle Uv has a total opening at least 1/2.

Let R = ∅ initially. Repeat the following process until C becomes empty: we select the
client v ∈ C with the smallest dav(v) and add it to R; then we remove all clients j such
that d(j, v) ≤ 4dav(j) from C (thus, v itself is removed). We use v and its variants to index
representatives, and j and its variants to index general clients. The family {Uv : v ∈ R} is
the Voronoi diagram of F with R being the centers: let Uv = ∅ for every v ∈ R initially; for
each location i ∈ F , we add i to Uv for v ∈ R that is closest to i. For any subset V ⊆ R, we
use U(V ) :=

⋃
v∈V Uv to denote the union of Voronoi regions with centers V .

I Lemma 1. The following statements hold:
(1a) for all v, v′ ∈ R, v 6= v′, we have d(v, v′) > 4 max {dav(v), dav(v′)}
(1b) for all j ∈ C, there exists v ∈ R, such that dav(v) ≤ dav(j) and d(v, j) ≤ 4dav(j);
(1c) yUv

≥ 1/2 for every v ∈ R;
(1d) for any v ∈ R, i ∈ Uv, and j ∈ C, we have d(i, v) ≤ d(i, j) + 4dav(j).

The next lemma shows that moving demands from facilities to their corresponding
representative doesn’t cost much.

I Lemma 2. For every v ∈ R, we have
∑
i∈Uv

xi,Cd(i, v) ≤ O(1)DUv
.

ICALP 2016
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Since {Uv : v ∈ R} forms a partition of F , we get the following corollary.

I Corollary 3.
∑
v∈R,i∈Uv

xi,Cd(i, v) ≤ O(1)LP.

Initial Moving of Demands With this corollary, we now move all the demands from C to
V . First for every j ∈ C and i ∈ F , we move xi,j units of demand from j to i. The moving
cost of this step is exactly LP. After the step, all demands are at F and every i ∈ F has xi,C
units of demand. Then, for every v ∈ R and i ∈ Uv, we move the xi,C units of demand at i
to v. The moving cost for this step is O(1)LP. Thus, after the initial moving, all demands
are at the set R of representatives: a representative v has xUv,C units of demand.

3.2 Black Components
In the second phase, we employ the minimum-spanning-tree construction of [16] to partition
the set R of representatives into a family J of so-called black components. There is a degree-2
rooted forest Υ∗J over J with many good properties. For example, each non-root black
component is not far away from its parent, and each root black component of Υ∗J contains a
total opening of Ω(`). (For simplicity, we say the total opening at a representative v ∈ R is
yUv

, which is the total opening at the bundle Uv.) The forest in [16] can have a large degree,
while our algorithm requires the forest to have degree 2. This property is guaranteed by
using the left-child-right-sibling representation.

Due to the page limit, we leave the description of the framework of [16] to the full version
of the paper, and give its summary in the following lemma:

I Lemma 4. There is an efficient algorithm to partition R into a set J of black components
(or components, for simplicity) and construct a rooted forest Υ∗J over J , such that if we let
L(J) = d(J,R \ J) for every black component J ∈ J , then the following properties hold:
(4a) for every J ∈ J , there is a spanning tree over the representatives in J such that for

every edge (v, v′) in the spanning tree we have d(v, v′) ≤ L(J);
(4b) every root component J ∈ J of Υ∗J has yU(J) ≥ ` and every non-root component J ∈ J

has yU(J) < `;
(4c) every root component J ∈ J of Υ∗J has either yU(J) < 2` or |J | = 1;
(4d) for any non-root component J and its parent J ′, we have L(J) ≥ L(J ′);
(4e) for any non-root component J and its parent J ′, we have d(J, J ′) ≤ O(`)L(J);
(4f) every component J has at most two children.

3.3 Groups
In the third phase, we apply a simple greedy algorithm to the forest Υ∗J to partition the set
J of black components into a family G of groups, where each group G ∈ G contains many
black components that are connected in Υ∗J . By contracting each group G ∈ G, the forest
Υ∗J over the set J of black components becomes a forest ΥG over the set G of groups. Each
group has a total opening of Ω(`), unless it is a leaf-group in ΥG .

We partition the set J into groups using a technique similar to [4, 6]. For each rooted
tree T = (JT , ET ) in Υ∗J , we construct a group G of black components as follows. Initially,
let G contain the root component of T . While

∑
J∈G yU(J) < ` and G 6= JT , repeat the

following procedure. Choose the component J ∈ JT \G that is adjacent to G in T , with the
smallest L-value, and add J to G.

Thus, by the construction G is connected in T . After we have constructed the group G,
we add G to G. We remove all black components in G from T . Then, each T is broken into
many rooted trees; we apply the above procedure recursively for each rooted tree.
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So, we have constructed a partition G for the set J of components. If for every G ∈ G, we
contract all components in G into a single node, then the rooted forest Υ∗J over J becomes
a rooted forest ΥG over the set G of groups. ΥG naturally defines a parent-child relationship
over G. The following lemma uses Properties (4a) to (4f) of J and the way we construct G.

I Lemma 5. The following statements hold for the set G of groups and the rooted forest ΥG
over G:

(5a) any root group G ∈ G contains a single root component J ∈ J ;
(5b) if G ∈ G is not a root group, then

∑
J∈G yU(J) < 2`;

(5c) if G ∈ G is a non-leaf group, then
∑
J∈G yU(J) ≥ `;

(5d) let G ∈ G, G′ ∈ G be the parent of G, J ∈ G and v ∈ J , then the distance between v

and any representative in
⋃
J′∈G′ J

′ is at most O(`2)L(J);
(5e) any group G has at most O(`) children.

4 Constructing Local Solutions

In this section, we shall construct a local solution, or a distribution of local solutions, for
a given set V ⊆ R which is the union of some black components. A local solution for V
contains a pair (S ⊆ U(V ), β ∈ RU(V )

≥0 ), where S is the facilities we open in U(V ) and βi for
each i ∈ U(V ) is the amount of supply at i: the demand that can be satisfied by i. Thus
βi = 0 if i ∈ U(V ) \ S. We shall use the supplies at U(V ) to satisfy the xU(V ),C demands at
V after the initial moving of demands; thus, we require

∑
i∈U(V ) βi = xU(V ),C . There are

two other main properties we need the distribution to satisfy: (a) the expected size of S
from the distribution is not too big, and (b) the cost of matching the demands at V and the
supplies at U(V ) is small.

We distinguish between concentrated black components and non-concentrated black
components. Roughly speaking, a component J ∈ J is concentrated if in the fractional
solution (x, y), for most clients j ∈ C, j is either almost fully served by facilities in U(J),
or almost fully served by facilities in F \ U(J). We shall construct a distribution of local
solutions for each concentrated component J . We require Constraints (6) to (13) to be
satisfied for B = U(J) (if not, we return the set U(J) to the separation oracle) and let zB be
the vector satisfying the constraints. Roughly speaking, the zB-vector defines a distribution
of local solutions for V . A local solution (S, β) is good if S is not too big and the total
demand

∑
i∈S βi satisfied by S is not too small. Then, our algorithm randomly selects (S, β)

from the distribution defined by zB , under the condition that (S, β) is good. The fact that
J is concentrated guarantees that the total mass of good local solutions in the distribution is
large; therefore the factors we lose due to the conditioning are small.

For non-concentrated components, we construct a single local solution (S, β), instead
of a distribution of local solutions. Moreover, the construction is for the union V of some
non-concentrated components, instead of an individual component. The components that
comprise V are close to each other; by the fact that they are non-concentrated, we can move
demands arbitrarily within V , without incurring too much cost. Thus we can essentially
treat the distances between representatives in V as 0. Then we are only concerned with two
parameters for each facility i ∈ U(V ): the distance from i to V and the capacity ui. Using a
simple argument, the optimum fractional local solution (that minimizes the cost of matching
the demands and supplies) is almost integral: it contains at most 2 fractionally open facilities.
By fully opening the two fractional facilities, we find an integral local solution with small
number of open facilities.

ICALP 2016
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The remaining part of this section is organized as follows. We first formally define
concentrated black components, and explain the importance of the definition. We then define
the earth-mover-distance, which will be used to measure the cost of satisfying demands
using supplies. The construction of local solutions for concentrated components and non-
concentrated components will be stated in Theorem 9 and Lemma 10 respectively. Due to
the page limit, their proofs will only appear in the full version of the paper.
Concentrated Black Components The definition of concentrated black component is
the same as that of [16], except that we choose the parameter `2 differently.

I Definition 6. Define πJ =
∑
j∈C xU(J),j(1−xU(J),j), for every black component J ∈ J . A

black component J ∈ J is said to be concentrated if πJ ≤ xU(J),C/`2, and non-concentrated
otherwise, where `2 = Θ(`3) is large enough.

We use J C to denote the set of concentrated components and J N to denote the set of
non-concentrated components. The next lemma from [16] shows the importance of πJ .

I Lemma 7. For any J ∈ J , we have L(J)πJ ≤ O(1)DU(J).

Recall that L(J) = d(J,R \ J) and xU(J),C is the total demand in J after the initial
moving. Thus, according to Lemma 7, if J is not concentrated, we can use DU(J) to charge the
cost for moving all the xU(J),C units of demand out of J , provided that the moving distance
is not too big compared to L(J). This gives us freedom for handling non-concentrated
components. If J is concentrated, the amount of demand that is moved out of J must be
comparable to πJ ; this will be guaranteed by the configuration LP.
Earth Mover Distance In order to measure the moving cost of satisfying demands using
supplies, we define the earth mover distance:

I Definition 8 (Earth Mover Distance). Given a set V ⊆ R with B = U(V ), a demand vector
α ∈ RV≥0 and a supply vector β ∈ RB≥0 such that

∑
v∈V αv ≤

∑
i∈B βi, the earth mover

distance from α to β is defined as EMDV (α, β) := inff
∑
v∈V,i∈B f(v, i)d(v, i), where f is

over all functions from V ×B to R≥0 such that∑
i∈B f(v, i) = αv for every v ∈ V ;∑
v∈V f(v, i) ≤ βi for every i ∈ B.

For some technical reason, we allow some fraction of a supply to be unmatched. From now
on, we shall use αv = xUv,C to denote the amount of demand at v after the initial moving.
For any set V ⊆ R of representatives, we use α|V to denote the vector α restricted to the
coordinates in V .

We now summarize our constructions of local solutions for concentrated and non-
concentrated black components, respectively.

I Theorem 9. Let J ∈ J C and let B = U(J). Assume Constraints (6) to (13) are satisfied
for B. Then, we can find a distribution (φS,β)S⊆B,β∈RB

≥0
of pairs (S, β), such that

(9a) sφ := E(S,β)∼φ |S| ∈ [yB , yB(1 + 2`πJ/xB,C)], and sφ = yB if yB > 2`,
and for every (S, β) in the support of φ, we have
(9b) |S| ∈ {bsφc , dsφe};
(9c) βi ≤ (1 +O(1/`))ui if i ∈ S and βi = 0 if i ∈ B \ S;
(9d)

∑
i∈S βi = xB,C =

∑
v∈J αv.

Moreover, the distribution φ satisfies
(9e) the support of φ has size at most nO(`);
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(9f) E(S,β)∼φ EMDJ(α|J , β) ≤ O(`4)DB.

I Lemma 10. Let J ′ ⊆ J N be a set of non-concentrated black components, V =
⋃
J∈J ′ J

and B = U(V ). Assume there exists v∗ ∈ R such that d(v, v∗) ≤ O(`2)L(J) for every J ∈ J ′
and v ∈ J . Then, we can find a pair (S ⊆ B, β ⊆ RB≥0) such that
(10a) |S| ∈

{
dyBe , dyBe+ 1

}
;

(10b) βi ≤ ui if i ∈ S and βi = 0 if i ∈ B \ S;
(10c)

∑
i∈S βi = xB,C =

∑
v∈V αv;

(10d) EMDV (α|V , β) ≤ O(`2`2)DB.

5 Rounding Algorithm

In this section we describe our rounding algorithm. We start by giving the intuition behind
the algorithm. For each concentrated component J ∈ J , we construct a distribution of
local solutions using Theorem 9. We shall construct a partition VN of the representatives
in
⋃
J∈J N J so that each V ∈ VN is the union of some nearby components in J N. For each

set V ∈ VN, we apply Lemma 10 to construct a local solution. If we independently and
randomly choose a local solution from every distribution we constructed, then we can move
all the demands to the open facilities at a small cost, by Property (9f) and Property (10d).

However, we may open more than k facilities, even in expectation. Noticing that the
fractional solution opens yB facilities in a set B, the extra number of facilities come from
two places. In Property (9a) of Theorem 9, we may open in expectation yB · 2`πJ/xB,C
more facilities in B than yB. Then in Property (10a) of Lemma 10, we may open dyBe or
dyBe+ 1 facilities in B. To reduce the number of open facilities to k, we shall shut down (or
remove) some already-open facilities and move the demands satisfied by these facilities to
the survived open facilities: a concentrated component J ∈ J C is responsible for removing
yB · 2`πJ/xB,C < 1 facilities in expectation; a set V ∈ VN is responsible for removing up to
2 facilities. Lemma 7 allows us to bound the cost of moving demands caused by the removal,
provided that the moving distance is not too big. To respect the capacity constraint up to a
factor of 1 + ε, we are only allowed to scale the supplies of the survived open facilities by a
factor of 1 +O(1/`). Both requirements will be satisfied by the forest structure over groups
and the fact that each non-leaf group contains Ω(`) fractional opening (Property (5c)). Due
to the forest structure and Property (5c), we always have enough open facilities locally that
can support the removing of facilities.

In order to guarantee that we always open k facilities, we need to use a dependent
rounding procedure for opening and removing facilities. As in many of previous algorithms,
we incorporate the randomized rounding procedure into random selections of vertex points of
polytopes respecting marginal probabilities. In many cases, a randomized selection procedure
can be derandomized since there is an explicit linear objective we shall optimize.

We now formally describe our rounding algorithm. For every group G ∈ G, we use ΛG
to denote the set of child-groups of G. We construct a partition JC of J C as follows. For
each root group G ∈ G, we add G ∩ J C to JC if it is not empty. For each non-leaf group
G ∈ G, we add

⋃
G′∈ΛG

(G′ ∩ J C) to JC, if it is not empty. We construct the partition JN for
J N in the same way, except that we consider components in J N. We also define a set VN as
follows: for every J ′ ∈ JN, we add

⋃
J∈J ′ J to VN; thus, VN forms a partition for

⋃
J∈J N J .

See Figure 2 for the definition of VN.
In Section 5.1, we describe the procedure for opening a set S∗ of facilities, whose cardinality

may be larger than k. Then in Section 5.2, we define the procedure remove, which removes
one open facility. We wrap up the algorithm in Section 5.3.
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non-concentrated components

concentrated components

groups

sets in VN

(a) (b)

Figure 2 Figure (a) gives the forest Υ∗J over J and the set G of groups (denoted by empty
polygons). Figure (b) gives VN: each set V ∈ VN is the union of components in a solid polygon.

5.1 Constructing Initial Set S∗ of Open Facilities
In this section, we open a set S∗ of facilities, whose cardinality may be larger than k,
and construct a supply vector β∗ ∈ RF≥0 such that β∗i = 0 if i /∈ S∗. (S∗, β∗) will be the
concatenation of all local solutions we constructed.

It is easy to construct local solutions for non-concentrated components. For each set
J ′ ∈ JN of components and its correspondent V =

⋃
J∈J ′ J ∈ JN, we apply Lemma 10 to

obtain a local solution
(
S ⊆ U(V ), β ∈ RU(V )

≥0
)
. Then, we add S to S∗ and let β∗i = βi for

every i ∈ U(V ). Notice that J ′ either contains a single root black component J , or contains
all the non-concentrated black components in the child-groups of some group G. In the
former case, the diameter of J is at most O(`)L(J) by Property (4a); in the latter case, we let
v∗ be an arbitrary representative in

⋃
J′∈G J

′ and then any representative v ∈ J, J ∈ J ′ has
d(v, v∗) ≤ O(`2)L(J) by Property (5d). Thus, all the properties in Lemma 10 are satisfied.

For concentrated components, we only obtain distributions of local solutions by applying
Theorem 9. For every J ∈ J C, we check if Constraints (6) to (13) are satisfied for B = U(J).
If not, we return a separation plane for the fractional solution; otherwise we apply Theorem 9
to each component J to obtain a distribution

(
φJS,β

)
S⊆U(J),β∈RU(J)

≥0
. To produce local solutions

for concentrated components, we shall use a dependent rounding procedure that respects the
marginal probabilities. As mentioned earlier, we shall define a polytope and the procedure
randomly selects a vertex point of the polytope.

We let sJ := sφJ
:= E(S,β)∼φJ |S| be the expectation of |S| according to distribution

φJ . For notational convenience, we shall use a ≈ b to denote a ∈
[
bbc , dbe

]
. Consider the

following polytope P defined by variables {ψJS,β}J∈J C,S,β and {qJ}J∈J C .1

ψJS,β , pJ ∈ [0, 1] ∀J ∈ J C, S, β; (14)

∑
S,β

ψJS,β = 1, ∀J ∈ J C; (15)

∑
J∈J ′

qJ ≤ 1, ∀J ′ ∈ JC; (16)∑
S,β

ψJS,β |S| − qJ ≈ yU(J), ∀J ∈ J C; (17)

∑
J∈J ′

(∑
S,β

ψJS,β |S| − qJ
)
≈
∑
J∈J ′

yU(J), ∀J ′ ∈ JC; (18)

∑
J∈J C

(∑
S,β

ψJS,β |S| − qJ
)
≈
∑
J∈J C

yU(J). (19)

1 For every J ∈ J C, we only consider the pairs (S, β) in the support of φJ ; thus the total number of
variables is nO(`).
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In the above LP, ψJ is the indicator vector for local solutions for J and qJ indicates
whether J is responsible for removing one facility; if qJ = 1, we shall call remove(J) later.
Up to changing of variables, any vertex point of P is defined by two laminar families of tight
constraints and thus P is integral:

I Lemma 11. P is integral.

We set ψ∗JS,β = φJS,β and q∗J = sJ − yU(J) for every J ∈ J C and (S, β). Then,

I Lemma 12. (ψ∗, q∗) is a point in polytope P.

We randomly select a vertex point (ψ, q) of P such that E[ψJS,β ] = ψ∗JS,β = φJS,β for every
J ∈ J C, (S, β), and E[qJ ] = q∗J = sJ − yU(J) for every J ∈ J C. Since ψ is integral, for every
J ∈ J , there is a unique local solution

(
S ⊆ U(J), β ∈ RU(J)

≥0
)
such that ψJS,β = 1; we add S

to S∗ and let β∗i = βi for every i ∈ U(J).
This finishes the definition of the initial S∗ and β∗. Let α∗ = α (recall that αv = xUv,C is

the demand at v after the initial moving, for every v ∈ R) be the initial demand vector. Later
we shall remove facilities from S∗ and update α∗ and β∗. S∗, α∗, β∗ satisfy the following
properties, which will be maintained as the rounding algorithm proceeds.
(13a)

∑
v∈V α

∗
v =

∑
v∈V β

∗
v for every V ∈ J C ∪ VN;

(13b)
∑
v∈R α

∗
v = |C|.

Property (13a) is due to Properties (9d) and (10c). Property (13b) holds since
∑
v∈R α

∗
v =∑

v∈R xUv,C = xF,C = |C|.

5.2 The remove procedure
In this section, we define the procedure remove that removes facilities from S∗ and updates
α∗ and β∗. The procedure takes a set V ∈ J C ∪VN as input. If V is a root black component,
then we let G = {V } be the root group containing V ; if V is a non-root concentrated
component, let G be the parent group of the group containing V ; otherwise V is the union of
non-concentrated components in all child-groups of some group, and we let G be this group.
Let V ′ =

⋃
J′∈G J

′. Before calling remove(V ), we require the following properties to hold:
(14a) |S∗ ∩ U(V )| ≥ 1;
(14b)

∣∣S∗ ∩ U(V ′)
∣∣ ≥ `− 6.

While maintaining Properties (13a) and (13b), the procedure remove(V ) will
(15a) remove from S∗ exactly one open facility, which is in U(V ∪ V ′),
(15b) not change α∗|R\(V ∪V ′) and β∗|F\U(V ∪V ′),
(15c) increase α∗v by at most a factor of 1 +O(1/`) for every v ∈ V ∪ V ′ and increase β∗i by

at most a factor of 1 +O(1/`) for every i ∈ U(V ∪ V ′).
Moreover,
(15d) the moving cost for converting the old α∗ to the new α∗ is at most O(`2)β∗i∗L(J) for

some black component J ⊆ V and facility i∗ ∈ U(J);
(15e) for every V ′′ ∈ J C ∪ VN, EMDV ′′

(
α∗|V ′′ , β∗|U(V ′′)

)
will be increased by at most a

factor of 1 +O(1/`).
Due to the page limit, we only highlight the key ideas used to implement remove(V )

and leave the formal description to the full version of the paper. Assume V is not a root
component. We choose an arbitrary facility i ∈ S∗ ∩ U(V ). Notice that there are Ω(`)
facilities in S∗ ∩ U(V ′). If the β∗i ≤

∑
v′∈V ′ α

∗
v′/`, then we can shut down i and send the

demands that should be sent to i to V ′. We only need to increase the supplies in U(V ′) by a

ICALP 2016



XXX:12 Constant Approximation for CKM with (1 + ε)-Capacity Violation

factor of 1 + O(1/`). Otherwise, we shall shut down the facility i′ ∈ S∗ ∩ U(V ′) with the
smallest β∗i′ value. Since there are at least Ω(`) facilities in U(V ′), we can satisfy the β∗i′ units
of unsatisfied demands using other facilities in S∗ ∩U(V ′). For this i′, we have β∗i′ ≤ O(1)β∗i .
Thus, the total amount of demands that will be moved is comparable to β∗i . In either case,
the cost of redistributing the demands is not too big. When V is a root component, we shall
shut down the facility i′ ∈ S∗ ∩ U(V ) with the smallest β∗i′ value.

5.3 Obtaining the Final Solution
To obtain our final set S∗ of facilities, we call the remove procedures in some order. We
consider each group G using the top-to-bottom order. That is, before we consider a group G,
we have already considered its parent group. If G is a root group, then it contains a single
root component J . If J ∈ J N, repeat the the following procedure twice: if there is some
facility in S∗ ∩ U(J) then we call remove(J). If J ∈ J C and qJ = 1 then we call remove(J).
Now if G is a non-leaf group, then do the following. Let V =

⋃
G′∈ΛG,J∈G′∩J N J . Repeat

the following procedure twice: if there is some facility in S∗ ∩ U(V ) then we call remove(V ).
For every G′ ∈ ΛG and J ∈ G′ ∩ J C such that qJ = 1 we call remove(J).

I Lemma 16. After the above procedure, we have |S∗| ≤ yF ≤ k.

By Properties (15b) and (15c), and Constraint (16), our final β∗i is at most 1 +O(1/`)
times the initial β∗i for every i ∈ V . Finally we have β∗i ≤ (1 + O(1/`))ui for every i ∈ F .
Thus, the capacity constraint is violated by a factor of 1 + ε if we set ` to be large enough.

It remains to bound the expected cost of the solution S∗; this is done by bounding the
cost for transferring the original α∗ to the final α∗, as well as the cost for matching our final
α∗ and β∗.

We first focus on the transferring cost. By Property (15e), when we call remove(V ), the
transferring cost is at most O(`2)β∗i∗L(J) for some black component J ⊆ V and i∗. Notice that
β∗i∗ is scaled by at most a factor of (1 +O(1/`)), we always have β∗i∗ ≤ (1 +O(1/`))αU(J),C .
So, the cost is at most O(`2)xU(J),CL(J). If V is the union of some non-concentrated
components, then this quantity is at most O(`2)`2πJL(J) ≤ O(`2`2)DU(J) ≤ O(`2`2)DU(V ).
We call remove(V ) at most twice, thus the contribution of V to the transferring cost is at
most O(`2`2)DU(V ). If V is a concentrated component J , then the quantity might be large.
However, the probability we call remove(J) is E[qJ ] = q∗J = sJ − yU(J) ≤ 2`yU(J)πJ/xU(J),C
if yU(J) ≤ 2` and it is 0 otherwise (by Property (9a)). So, the expected contribution
of this V to the transferring cost is at most O(`2)xU(J),CL(J) × 2`yU(J)πJ/xU(J),C ≤
O(`4)πJL(J) ≤ O(`4)DU(J) by Lemma 7. Thus, overall, the expected transferring cost is at
most O(`5)DF = O(`5)LP.

Then we consider the matching cost. Since we maintained Property (13a), the matching
cost is bounded by

∑
V ∈J C∪VN EMDV (α∗|V , β∗|U(V )). Due to Property (15e), this quantity

has only increased by a factor of 1 + O(1/`) during the course of removing facilities. For
the initial α∗ and β∗, the expectation of this quantity is at most

∑
J∈J C O(`4)DU(J) +∑

V ∈VN O(`2`2)DU(V ) due to Properties (9f) and (10d). This is at most O(`5)DF = O(`5)LP.
We have found a set S∗ of at most k facilities and a vector β∗ ∈ RF≥0 such that β∗i = 0

for every i /∈ S∗ and β∗i ≤ (1 + O(1/`))ui. If we set ` = Θ(1/ε) to be large enough,
then β∗i ≤ (1 + ε)ui. The cost for matching the α-demand vector and the β∗ vector is at
most O(`5)LP = O(1/ε5)LP. Thus, we obtained a O(1/ε5)-approximation for CKM with
(1 + ε)-capacity violation.
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