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Abstract. In this paper, we study the approximability of the capacitated net-
work design problem (Cap-NDP) on undirected graphs: Given G = (V, E) with
non-negative costs ¢ and capacities u on its edges, source-sink pairs (s;, t;) with
demand r;, the goal is to find the minimum cost subgraph where the minimum
(si,t;) cut with u-capacities is at least ;. When v = 1, we get the usual SNDP
for which Jain gave a 2-approximation algorithm [9]. Prior to our work, the ap-
proximability of undirected Cap-NDP was not well understood even in the single
source-sink pair case. In this paper, we show that the single-source pair Cap-NDP
is label-cover hard in undirected graphs.

An important special case of single source-sink pair undirected Cap-NDP is the
following source location problem. Given an undirected graph, a collection of
sources S and a sink ¢, find the minimum cardinality subset S’ C S such that
flow(S’, ), the maximum flow from S’ to ¢, equals flow(S,t). In general, the
problem is known to be set-cover hard. We give a O(p)-approximation when
flow(s, t) =, flow(s’,t) for s, s’ € S, that is, all sources have max-flow values
to the sink within a multiplicative p factor of each other.

The main technical ingredient of our algorithmic result is the following theorem
which may have other applications. Given a capacitated, undirected graph G with
a dedicated sink ¢, call a subset X C V irreducible if the maximum flow f(X)
from X to t is strictly greater than that from any strict subset X’ C X, to t.
We prove that for any irreducible set, X, the flow f(X) > >, fi, where
fi is the max-flow from ¢ to ¢t. That is, undirected flows are quasi-additive on
irreducible sets.

1 Introduction

In the capacitated network design problem (Cap-NDP), we are given a graph G =
(V, E). Each edge e has a cost c(e) and a capacity u(e) which we assume to be non-
negative integers. We are also given a collection of pairs of terminals (s1,t1), (s2,t2),
.., (8K, tr), where each s; and ¢; lies in V. Each pair is associated with an integer ;.
The objective is to find a minimum cost subgraph of G in which every s; can send a flow
of at least r; units to ¢;. We are not requiring these flows to be satisfied concurrently;
the concurrent requirement leads to a different problem.
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The problem generalizes many problems, the simplest of which is probably the
minimum knapsack problem induced when the graph has two nodes and parallel edges
between them. When all the capacities are unit, and the graph is undirected, then the
problem is what is called the survivable network design problem (SNDP) for which a
2-approximation is known [9]. SNDP is label-cover hard [4] in case of directed graphs;
this already shows the hardness of the above problem for directed networks. In fact,
Cap-NDP is label-cover hard for directed graphs even when there is a single pair of
terminals [5,3].

For undirected graphs, algorithmically nothing better is known, and the hardness
results were weaker. Hajiaghayi et al. [8] showed that the single pair Cap-NDP is as
hard as the group Steiner tree problem. This implies a h(Z(log2 n) hardness. At this point
we should stress that we are disallowing picking multiple copies of an edge; if this were
allowed, then a O(log k)-approximation algorithm is known for undirected graphs [3].
In this paper, we prove that the single source-sink pair Cap-NDP is label-cover hard
even in undirected graphs. More precisely, unless NP C DTIM E(nP°Y'°8™), for any

. -6 . .
§ > 0, there is no 2!°8" "-approximation for the problem.

1.1 A Source Location Problem

Consider a capacitated network with a dedicated sink ¢ and a subset of terminals S C V.
Given a subset X C S, let f(X) € R denote the maximum flow that can be sent from
X tot. We use f; as a shorthand for f({¢}). It is a standard fact that f is monotone and
submodular: indeed, f is monotone because adding a new source can only increase the
total flow, and f is submodular since the marginal flow due to a terminal decreases as
X becomes larger.

We consider the following problem: find the minimum cardinality subset X C S
such that f(X) = f(S). This is a special case of Cap-NDP where we create a super-
source s1 and connect it to each source s € S by an edge of cost 1 and capacity f({s}).
Each edge in the original graph has cost 0 and capacity equal to its original capacity.
The sink ¢; is the vertex ¢, and the requirement is r; is set to f(S). Then the minimum
cost graph H which can support a flow of 1 between s; and ¢; exactly corresponds to
the minimum cardinality set of sources which can send a flow f(.5) to the sink ¢.

The above problem is a special case of a widely studied class of problems known
as source location problems. In its generality, each vertex v € G has a cost ¢(v) and
demand d(v), and the goal is to pick a minimum cost subset X such that for all v,
f(X,v) > d(v). We obtain the above problem by setting ¢(v) = 1 for v € S, and infin-
ity otherwise, and demands d(t) = 1, and 0 otherwise. Source location problems have
been studied extensively (see, for instance, [12]), and many special cases are known to
be polynomial time solvable ([11,14,15,2]). For example, Kortsarz et al. [11] showed
that the problem is polynomial time solvable when the maximum demand is at at most
3, and Arata et al. showed that the problem is easy if the set .S of terminals is V. In
general, the problem is as hard as set cover ([13,1]), and in fact, the reductions therein
show that the above special case is also set-cover hard. Algorithmically, there is a loga-
rithmic approximation [13], and for the above problem such a result follows by noting
that problem is a special case of submodular set cover [16].



Irreducible Sets In order to understand the above problem better, in this paper we
study the behavior of the function f on undirected graphs. In particular, given a set
X C S, can we lower bound f(X) in terms of the f;’s for i € X? Our main result
answers this question affirmatively for a natural class of terminal sets X which we call
irreducible sets. A subset X C V' is irreducible if f(X) > f(X') for all strict subsets
X' C X. That is, removing any vertex from X strictly decreases the maximum flow
that can be sent to the sink.

We now state our main positive result which shows that on such sets, the submodular
function f behaves ‘almost’ additively.

Theorem 1. Given an undirected graph G and any irreducible set X,

1
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Furthermore, there is an (X, t) flow of value f(X) such that the total out-flow from
terminal i is at least f;/2 for all i € X.

We note that an analogous result is not true for directed graphs; in fact, the ratio
> iex fi/ f(X) may be as large as | X|. To see this consider a collection of terminals
with an arc to a vertex v and an arc from vertex v to ¢t. All these arcs have capacity 1.
Furthermore, each terminal has a direct arc to ¢ of capacity €. Note that X is irreducible;
each terminal sends nonzero flow through its ‘private’ arc. However, > .y fi/ f(X)
tends to | X| as ¢ tends to 0. It is instructive to note that if the arcs were undirected,
then the set X becomes reducible; the direct arcs aren’t private anymore and other
terminals can send flow through them. Thus the above example also shows irreducibility
is necessary for the above theorem to hold.

We believe the condition of irreducibility is a natural extremal condition. For in-
stance, in the source location problem above, it is easy to see that any reasonable so-
lution will be irreducible. Therefore, we believe the theorem above can have many ap-
plications, we will illustrate the source location application in the following section. To
take another example, in a telecommunication setting, the above theorem states that in
an undirected capacitated network, any irreducible set of transmitters can transmit con-
currently at, at least, half their maximum rates. The condition of irreducibility may be
imposed by the central designer interested in the total throughput, to reduce operative
costs.

Application to the above Source Location Problem. Our main corollary of Theo-
rem 1 is the following. Call an instance of the problem p-regular, if all the f;’s are
within a p-multiplicative factor of each other.

Corollary 1. For p-regular instances, there is a 2p-approximation to the source loca-
tion problem.

Proof. The algorithm is extremely simple: starting with S, keep on deleting vertices in
any order as long as the deletion doesn’t decrease the total flow to ¢, ending with a subset
X C S. Now, by the nature of this procedure, f(X) = f(.5), and also X is irreducible



as deleting any more vertices decreases the flow. We can now appeal to Theorem 1
to get that f(S) = f(X) > %ZiEX fi > %|X‘fm1na where fy,i, = min; f;. This
gives |X| < 2f(S)/ fmin. However, any solution X* with f(X*) = f(T) satisfies
X fraz > Siex- fi > F(S). implying |X*| > f(5)/fmas > |X] - 2= The
proof follows from the p-regularity assumption.

We remark that even with this regularity assumption., the directed version is inap-
proximable to within a factor of o(logn).! Furthermore, our approximation factor is
optimal (assuming the unique games conjecture [10]): source location on undirected
regular instances captures the vertex cover problem in regular graphs, which is inap-
proximable to within a factor of 2 — ¢, assuming the unique games conjecture [10,6].

Proof Technique How would one prove a theorem as Theorem 1? Arguably, one needs
a handle on the structure of the cuts separating a subset of terminals from a given ver-
tex. In undirected graphs the structure of cuts has been extensively investigated. For
instance, there exist cactus representations for all the minimum cuts of the graph, and
the Gomory-Hu tree captures the local edge connectivities of the graph. However, we
are unaware of structural results capturing cuts separating a set of terminals from a sink.

Another syntactic way would be to deduce inequalities involving the flow function
for various subsets of the irreducible set and combine them to obtain the stated result.
For instance, suppose |X| = 3. Then, essentially, there are a constant number of types
of vertices and edges, depending on which cuts they appear in. Subsequently, one can
write inequalities capturing the cut conditions, and can obtain Theorem 1 for this special
case. In fact, it may be a illuminating exercise for the reader to try this out. However,
for larger sets, although this process is possible, it may not be feasible to do in a ‘brute
force’ manner.

Our approach can be thought of as a clever way of performing the above ‘inequality
setting’. We first show a mapping from every graph on to the k-dimensional hypercube,
where £ is the number of terminals. This mapping is ‘cut-expanding’: for every subset
of terminals, the min-cut separating their images from the image of the sink is larger
than that in the original graph. Furthermore, and this is the non-trivial part, certain min-
cuts remain unchanged. This includes, in particular, the cut separating all the terminals
from the sink. With this mapping, we show that the theorem need only be proved for
the ‘hypercube networks’ that we construct. Our mapping is very similar to those used
to generate what are called mimicking networks, and was first described by [7]. Once
we go to the hypercube network, we show that the setting up of inequalities can be
performed easily.

2 Proof of Theorem 1

Let G be an undirected network with an irreducible set 7" of terminals. We let k£ denote
the number of terminals, that is, |T'|. Also, for a subset S C V(G), let ¢(.S) denote
the capacity of the cut (S, V(G) \ S) in G.

!'Set cover is hard even restricted to instances with the regularity property, i.e., instances with
uniform set sizes, via a simple approximation-preserving reduction from general instances.



We let Hyp, be the graph associated with the k-dimensional Boolean hypercube
{0,1}*. The vertices of Hyp,, are the k-dimensional Boolean vectors, and there is an
edge between two vectors if and only if they differ in exactly one coordinate. We let Hy,
denote the graph Hyp,. along with an extra vertex ¢* connected to the all 1s vector, 1.

2.1 From Graphs to Hypercubes

We now describe a mapping @ : V(G) — V(Hy) along with a capacity assignment
to the edges of Hy. Let S; C V(G) be the inclusion-wise minimal min-cut separating
the terminal set 7; := T \ ¢ from ¢. Obviously, all j € T \ i lies in .S;. Note that
06(S;) = f(T\i) < f(T) by the irreducibility of T'. Therefore, i ¢ S;, since otherwise
the minimum cut separating 7" from ¢ would be strictly less than f(7T), violating the
max-flow-min-cut theorem. This is the place where irreducibility is crucially used.

Let S denote the inclusion-wise min-cut separating 1" from ¢. We claim that S; C §
forall i € T. Suppose S;  S. The sets .S;US and S; NS respectively separate 7" and T;
from the sink, so 6¢(S; US) > 0¢(S) and (SN S;) > d¢(S;). Note that the second
inequality is strict, thanks to the minimality of .S;. Thus 65 (S; U S) + 0¢(S; N S) >
0¢(S) + d¢(S;), contradicting the submodularity of the cut function.

Given S and S;’s for all i € T, we define the mapping @ as follows. If v ¢ S, then
&(v) = t*. For v € S, &(v) is the element of Hyp,, such that #(v); = 0if v € S;;
@(v) = 1 otherwise. Observe the following: (a) ¢(t) = t*; (b) for ¢ € T, (i) is the
unit vector e; which has 0’s in all but the ith coordinate. This follows from our previous
discussion that ¢ ¢ .S; but i € S; forall j # i.

We now describe the capacities on the edges of Hy. Initially all edges have capacity
0. For each edge (u,v) € E(G) of capacity ¢,,, we will add capacities on the edges
of E(Hy). If both u and v are outside S, we do nothing. If both « and v are in S,
and thus @(u) and @(v) lie in V (Hyp,,), then we add capacity c,, on all the edges of
the canonical path between ®(u) to @(v). The canonical path from x to y in Hyp,, is
x =: xg,T1,...,2T = y where x; agrees with y on the first ¢ coordinates, and with x
in the last (k — 4) coordinates. Note that x; could be the same as ;1 if « and y have
the same ith coordinate. If u € S and v ¢ S, then we add a capacity ¢, on all edges
on the canonical path from @(u) to 1¥, and also to the edge (1%, ¢*).

To differentiate between G and Hy, given a subset X of terminals, we henceforth
let fo(X) denote f(X), that is, the maximum flow from X to ¢ in G. We let fr(X)
denote the maximum flow from @(X) to t* in H), with edge capacities as described
above. Here, we use ¢(X) as a shorthand for {&(z) : © € X }.

Theorem 2. Given a graph G = (V| E) and an irreducible set of terminals T C V of
size k, the mapping @ : V(G) — V(Hy) as described above along with the capacity
assignment on E(Hy},), has the following properties.

1. fa(X) < fu(X) for all subsets X C T. In particular, for singletons X = {i}.

2. fo(T) = fu(T).
3. fa(T") = fu(T") for all subsets T' C T of size k — 1.

Proof. 1. Consider any flow in the graph G from X to ¢. For any edge (u, v) € E(G)
carrying positive flow, if v and v are both outside S, then ®(u) = ®(v) = t*, so



we do nothing. If both are inside S, then send the same amount of flow from ®(u)
to @(v) along the canonical path in the hypercube. By the capacity assignment, this
is a feasible flow. If exactly one of them, say u, is in S, then we use the canonical
path from u to 1%, followed by the edge (1%, ¢*). This shows a feasible flow of value
fa(X) from &(X) to t* in Hy,.

2. From part (1), it suffices to show that the capacity of the (1¥,*) edge in H}, equals
the (7, t) min-cut 55 (S). By our construction, the (1¥,#*) gets capacity c,, only
for edges (u, v) with exactly one end point in S. This is precisely d¢ (.9).

3. Let 7" =T\ i. From part (1), it suffices to exhibit a cut in Hy, separating &(T \ 1)

and t* of value fo(T \ i) = dc(S;). We claim that the ith dictator cut suffices.
That is, the cut separating vertices D; := {z € Hyp, : x; = 0} from the rest of
the vertices in Hy. Firstly note that D; contains @(T \ ¢) and ¢* lies outside D;.
So this is a valid (@(T \ ¢),t*) cut. Furthermore, the only edges crossing this cut
belong to Hyp,,.
Consider an edge (x, y) in Hyp,, crossing D; with say ; = 0. The capacity on this
edge is contributed by edges (u,v) which have (x,y) in the canonical path from
&(u) to P(v). In particular, P(u); = 0 and $(v); = 1; thatis, v € S; and v ¢ S;
and (u,v) € d¢(S;). Furthermore, since this is a dictator cut, no canonical path
crosses this cut more than once. In particular, the capacity of this cut is exactly the
total capacity of these edges (u, v), and thus is precisely g (.S;).

2.2 Bounding the Flow on the Hypercube Graph Hy

Lemma 1. fy(T) > 33, cq fu(i).

Proof. For 1 < i < k, let L; denote the set of edges (x,y) € E(Hyp;,) such that
has precisely i ones and y has (i + 1) ones. Moreover, let Ly, consist of the single edge
(1% *). We abuse notation and let L; also denote the total capacity of the edges in L;.
Recall, (i) = e;. Thus the ‘singleton cut’ separating e; from the remaining vertices
is an upper bound on f (7). Furthermore, all these singleton cuts are disjoint, and their

union is Lo U Ly. This gives
Lo+ L1 > fuli). (1)

i€T
Observe that for any 1 < ¢ < k, the edge set L; separates t* from &(T'). Therefore,
we get

Li > fu(T). @
Finally, recall from the proof of (iii) of Theorem 2, that each dictator cut D; has

value fo(T \ i) < fa(T) = fu(T). Since each edge of the hypercube appears in
exactly one dictator cut D;, by adding this over all 1 < ¢ < k, we get

> Li<k- fu(T). 3)
0<i<k—1
Using (2) for 2 < i < k — 1, the above inequality becomes
Lo+ Li <2 fu(T). (€]

Comparing (1) and (4) gives the lemma.



Theorem 2 and Lemma 1 imply the first part of Theorem 1.

To prove the second part, we introduce a dummy source s to G and connect it to
every vertex in 1" with capacity of (s, i) edge being f;/2. We claim that the minimum
cut in this network is of value precisely ), ;. fi/2. If so, then the resulting max-flow
will imply the second part of Theorem 1.

Suppose not, and let the min-cutbe (Z, VUs\Z) withs € Z.Let X := TNZ.Let F
be the edges in §(Z) which have endpoints in V. Let C be the total capacity of the edges
in F. Since the mincut is < ), . fi/2, we get that C' < ), f;/2. However, F
separates X from ¢, and thus the maxflow from X to¢is < C.But X C T is irreducible
as well, and thus this violates part one of Theorem 1. To see this irreducibility of X note
that if f(X \ ¢) = f(X), by submodularity of f, this would imply f(7T"\ i) = f(T) as
well.

3 Hardness of single source-sink pair Cap-NDP

We show that the single source undirected Cap-NDP is label cover hard. The reduction
is actually from the directed instances which showed label-cover hardness for directed
Cap-NDP [5,3].

Consider a collection G of graphs obtained as follows. V' consists of the following
vertices. A set A of nodes partitioned into sets A, ..., Ax. A set B partitioned into
By, ..., By. There are directed arcs of cost 0 and capacity 1 all of which are directed
from some node in A; to some node in B;. There are nodes a1, ..., a; and similarly
b1,...,bk. There is an arc (a;, v) of capacity co and cost C, for all v € A;. Similarly,
there is an arc (v, b;) of capacity oo and cost C, for all v € B;. Finally, there is an arc
(s, a;) of cost 0, capacity oo for all ¢ € [k], and an arc (b;, ) of cost 0, capacity oo for
all j € [k]. Let’s call the capacity oo edges big edges. There is only one pair (s, t) with
requirement R for some R (see Figure 1(a)). The reductions of [5,3] show that single
source Cap-NDP is label-cover hard even on these instances.

Theorem 3 ([5,3]). Unless NP C DTIME (np"lylog(”) ), there is no olog'™* (”)—approximation
algorithm for Cap-NDP for directed graphs coming from class G.

We now show how we obtain the hardness result for undirected graphs. If we simply
make all edges undirected, the instance is not necessarily hard since the flows may travel
along reverse directions. Given an undirected graph G obtained from the above instance
by removing directions, we describe a simple trick that makes all capacity-1 edges (the
edges between A and B) directed from left to right. This is enough for the hardness
result.

Let M denote the number of capacity-1 edges. We add nodes s’ and ¢’ to V, edges
(s,8"),(t',t) of cost O and capacity M /2. Furthermore, we add edges (s’,v) for all
v € B and (t,v) for all v € A. The capacity of these edges are d(v)/2, where d(v)
is the number of capacity-1 edges incident to v. The costs of all these edges are 0.
Finally, we change the capacities of the capacity-1 edges to 1/2. The demand r; is set
to R + M /2 (see Figure 1(b)).

The intuition for the above construction is as follows. Since the capacity-1/2 edges
(original capacity-1 edges) and the newly added edges have cost 0, we can assume they



Fig. 1. The graph on the left side is the hard instance of Cap-NDP for directed graphs, and the
graph on the right side is the hard instance of Cap-NDP for undirected graphs. Solid lines rep-
resent edges of cost C' and dashed lines represent edges of cost 0. All edges in the left graph
have capacities 0o, except for the edges from A to B, which have capacities 1. In the right graph,
(s,s") and (¥, t) have capacities M /2, where M is the number of edges between A and B. An
edge between s’ and v € B has capacity d(v)/2, where d(v) is the number of edges between v
and A. An edge between v € A and ¢’ has capacity d(v)/2, where d(v) is the number of edges
between v and B. The edges between A and B have capacities 1/2. All other edges have capacity
00.



are included in the solution. With these edges, we can send M /2 units flow from s to ¢
in the natural way: the flows go from s to s/, then to vertices in B, then to vertices in
A, to ¢’ and finally to ¢. The flows use all the capacities of these edges. The remaining
task is to select some other edges so that we can send R units flow in the residual
graph. Notice that in the residual graph, all the capacity-1/2 edges are directed from
left to right, with capacities 1. It is easy to see that the new added edges are useless in
the residual graph. Thus, the remaining problem is equivalent to the original instance
(Figure 1(a)) of Cap-NDP for directed graphs.

Now we give a more formal proof. Consider a solution to the undirected Cap-NDP.
We may assume all the cost 0 edges are picked. Let I’ be the non-zero cost edges in the
solution. Note that all of these are of the form (a;,v) for some v € A;, or (v,b;) for
some v € B;. We abuse notation and let F' also denote the corresponding arcs in the
original digraph.

Claim. F', along with the 0O-cost arcs, is a valid solution for the directed Cap-NDP
instance.

Proof. Let S C A be the set {v : (a;,v) € F forsomei}. Similarly, let T C B
be the set of endpoints in B neighboring to some edge in F'. We claim that the edges
with one endpoint in S and the other in 7', which we denote as E(S : T), satisfies
|E(S : T)| > R. Assuming this, we are done since the arcs are indeed directed from
S to T', and since each vertex in S can receive R units of flow from s, and each vertex
in T can send R units of flow to ¢ (since these are neighboring to F'), we get a feasible
solution for the directed case.

Consider the following cut in the undirected graph with F' and 0-cost edges. On the
s side we have s, {a1,...,ax},s and S U B\ T. The ¢ side contains the complement,
thatis, ¢, {b1,..., b5}, and T U A\ S. Observe there are no big edges in the cut. Big
edges are either of the form (s, a;),(t, b;) or (a;,v),(b;,v). The first type are inside the
s side or the ¢ side; the second type has only F' and the endpoints are made sure to be
on the same side of the cut.

Therefore, the cut edges are precisely E(S : T), E(A\ S : B\ T) and the new
edges E(s' : T) U E(S : t'). Let the capacities of these three sets be Cy ,Cs, and Cs
respectively. Now, C; = |E(S : T)| is the quantity of interest, and C3 = 3d(5) +
1d(T), where d(X) is a shorthand for )~ _  d(v). Also,

205 = d(A\ S) — [E(A\ S : T)| = d(A) - d(S) — (d(T) — |E(S : T))
=d(A)—d(S)—d(T)+|E(S:T)|.

Thus the total capacity of this cutis C; +C+C5 = § (d(A) +2|E(S : T)|) = M/2+

|E(S : T)|, since d(A) is nothing but the number of capacity 1 edges. The capacity of

the cut is > M/2 + R since F is a feasible solution, which implies |[E(S : T))| > R.
Therefore, F' with the 0-cost arcs form a valid solution to the directed problem as well.

The above claim, along with Theorem 3, gives the following theorem.

Theorem 4. Unless NP C DTIM E(nP°Y'8(") there is no glog' ™’ (")_approximation
for undirected, single source-sink pair Cap-NDP.



4 Conclusion

We conclude the note with a few observations. There is a special case of Cap-NDP,
which has been called the k-bipartite flow problem by [8], where given a bipartite graph
with node costs and unit capacity edges, the goal is to find subsets of nodes A, B from
the left and right part of minimum total cost such that the edge connectivity between A
and B is at least k. In directed graphs this generalizes the densest k-subgraph problem
(the version where one needs to pick the minimum number of vertices which has at least
k induced edges). A similar reduction as above shows that the undirected case, and thus
undirected, single source Cap-NDP, is as hard as the densest k-subgraph problem. If
the goal is to just pick a min-cost subset A from one part and the set B is fixed, then
a logarithmic approximation exists, and a reduction as above shows that the problem is
as hard as the set cover problem.

However, one should note that the inapproximability described above only rules out
unicriteria results. For instance, we haven’t ruled out a solution of cost polylog(n)OPT
which sends > R/2 flow. In fact, for the k-bipartite flow stated above, there is a solu-
tion [1] via the Récke decomposition into trees, which obtains a solution of cost equal-
ing OPT and sends R/polylog(n) flow. We think this direction may be feasible; as a
starting point we ask whether there is a (O(polylog(n)), O(1))-approximation for the
k-bipartite flow problem.
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