
O (log2 k/ log logk)-Approximation Algorithm for Directed Steiner
Tree: A TightQuasi-Polynomial-Time Algorithm

Fabrizio Grandoni

IDSIA

Switzerland

fabrizio@idsia.ch

Bundit Laekhanukit

Institute for Theoretical Computer

Science

Shanghai University of Finance and

Economics

China

bundit@sufe.edu.cn

Shi Li

Department of Computer Science and

Engineering

University at Buffalo

USA

shil@buffalo.edu

ABSTRACT
In the Directed Steiner Tree (DST) problemwe are given ann-vertex
directed edge-weighted graph, a root r , and a collection of k ter-

minal nodes. Our goal is to find a minimum-cost subgraph that

contains a directed path from r to every terminal. We present an

O (log2 k/ log logk)-approximation algorithm for DST that runs in

quasi-polynomial-time, i.e., in time npoly log(k) . By assuming the

Projection Game Conjecture and NP ⊈
⋂

0<ϵ<1
ZPTIME(2n

ϵ
),

and adjusting the parameters in the hardness result of Halperin

and Krauthgamer [STOC’03], we show the matching lower bound

of Ω(log2 k/ log logk) for the class of quasi-polynomial-time algo-

rithms, meaning that our approximation ratio is asymptotically the

best possible. This is the first improvement on the DST problem

since the classical quasi-polynomial-time O (log3 k) approximation

algorithm by Charikar et al. [SODA’98 & J. Algorithms’99]. (The pa-

per erroneously claims anO (log2 k) approximation due to amistake

in prior work.)

Our approach is based on two main ingredients. First, we derive

an approximation preserving reduction to the Group Steiner Tree on
Trees with Dependency Constraint (GSTTD) problem. Compared to

the classic Group Steiner Tree on Trees problem, in GSTTD we are

additionally given some dependency constraints among the nodes

in the output tree that must be satisfied. The GSTTD instance has

quasi-polynomial size and logarithmic height. We remark that, in

contrast, Zelikovsky’s heigh-reduction theorem [Algorithmica’97]

used in all prior work on DST achieves a reduction to a tree instance

of the related Group Steiner Tree (GST) problem of similar height,

however losing a logarithmic factor in the approximation ratio.

Our second ingredient is an LP-rounding algorithm to approxi-

mately solve GSTTD instances, which is inspired by the framework

developed by [Rothvoß, Preprint’11; Friggstad et al., IPCO’14]. We

consider a Sherali-Adams lifting of a proper LP relaxation of GSTTD.

Our rounding algorithm proceeds level by level from the root to the

leaves, rounding and conditioning each time on a proper subset of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6705-9/19/06. . . $15.00

https://doi.org/10.1145/3313276.3316349

label variables. The limited height of the tree and small number of

labels on root-to-leaf paths guarantee that a small enough (namely,

polylogarithmic) number of Sherali-Adams lifting levels is sufficient

to condition up to the leaves.

We believe that our basic strategy of combining label-based

reductions with a round-and-condition type of LP-rounding over

hierarchies might find applications to other related problems.

CCS CONCEPTS
•Theory of computation; •Design and analysis of algorithms;
•Approximation algorithms analysis; •Routing andnetwork
design problems;

KEYWORDS
Directed Steiner Tree, Quasi-Polynomial Time, Sherali-Adams Hi-

erarchy

ACM Reference Format:
Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li. 2019.O (log2 k/ log logk)-
ApproximationAlgorithm for Directed Steiner Tree: A Tight Quasi-Polynomial-

Time Algorithm. In Proceedings of the 51st Annual ACM SIGACT Symposium
on the Theory of Computing (STOC ’19), June 23–26, 2019, Phoenix, AZ, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3313276.3316349

1 INTRODUCTION
In the Directed Steiner Tree (DST) problem, we are given an n-vertex
digraph G = (V ,E) with cost ce on each edge e ∈ E, a root vertex
r ∈ V and a set of k terminals K ⊆ V \ {r }. The goal is to find a

minimum-cost subgraph H ⊆ G that contains an r → t directed
path for every terminal t ∈ K . W.l.o.g. we assume that edge costs

satisfy triangle inequality.

The DST problem is a fundamental problem in the area of net-

work design that is known for its bizarre behaviors. While constant-

approximation algorithms have been known for its undirected

counterpart (see, e.g., [3, 28, 30]), the best known polynomial-time

approximation algorithm for this problem could achieve only an

O

(
kϵ logk

ϵ2

)
approximation ratio in timeO (n1/ϵ) for any 0 < ϵ ≤

1/ log
2
k , due to the classical work of Charikar et al. [5]. Even al-

lowing this algorithm to run in quasi-polynomial-time, the best

approximation ratio remains O (log3 k) [5].1 Since then, there have

1
The original paper claims an O (i2k1/i)-approximation in time O (ni) and an

O (log2 k)-approximation in quasi-polynomial time; however, their result was based on

the initial statement of the Zelikovsky’s height-reduction theorem in [31], which was

https://doi.org/10.1145/3313276.3316349
https://doi.org/10.1145/3313276.3316349

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li

been efforts to get improvements either in the running-time or

in the approximation guarantee of this problem, e.g, using the

the primal-dual method [32], Sum-of-Squares (a.k.a. Lasserre) hi-

erarchy [29], Sherali-Adams and Lovász-Schrijver hierarchies [13].

Despite all these efforts, there has been no significant improve-

ment over the course of the last two decades for both polynomial

and quasi-polynomial time algorithms. In fact, it is known from

the work of Halperin and Krauthgamer [19] that unless NP ⊆

ZPTIME(npolylog(n)), it is not possible to achieve an approximation

ratio O (log2−ϵ k), for any constant ϵ > 0, and such lower bound

applies to both polynomial and quasi-polynomial time algorithms.

This means that there is a huge gap between the upper bound of kϵ

and the lower bound of log
2−ϵ k for polynomial-time algorithms.

All efforts were failed to obtain even an no (1)-approximation algo-

rithm that runs in polynomial-time.

For the class of quasi-polynomial-time algorithms, the approxi-

mation ratio ofO (log3 k) is arguably disappointing. This is because
its closely related special case, namely, the Group Steiner Tree (GST)
problem, is known to admit a quasi-polynomial-time O (log2 k)-
approximation algorithm on general graphs due to the work of

Chekuri and Pal [7]. A natural question would be whether such an

approximation ratio could be achieved in quasi-polynomial-time

for DST as well. Nevertheless, achieving this improvement with

the known techniques seems to be impossible. Indeed, all previous

algorithms for DST [5, 13, 29] rely on the well-known Zelikovsky’s

height-reduction theorem [21, 31]. These algorithms (implicitly)

reduce DST to GST on trees, which loses an Θ(logk) approxima-

tion factor in the process. Furthermore, the Ω(log2−ϵ k)-hardness
of Halperin and Krauthgamer [19] carries over to GST on trees.

We remark that algorithms for many related problems (see, e.g.,

[11, 16]) rely on the same height-reduction theorem.

1.1 Our Results and Techniques
The purpose of this work is to close the gap between the lower and

upper bounds on the approximability of DST in quasi-polynomial

time. Our main result is as follows.

Theorem 1.1. There is a randomizedO
(

log
2 k

log logk

)
-approximation

algorithm for DST with running time nO (log5 k) .

By analyzing the proofs in [19], we also show that this bound

is asymptotically tight under stronger assumptions; the proof is

deferred to the full version of the paper.

Theorem 1.2. Unless NP ⊆
⋂

0<ϵ<1
ZPTIME(2n

ϵ
) or the Pro-

jection Game Conjecture is false, there is no quasi-polynomial-
time algorithm for DST that achieves an approximation ratio of
o(log2 k/ log logk).

Our upper bound is based on two main ingredients. The first one

is a quasi-polynomial-time approximation-preserving reduction to

a novel Group Steiner Tree on Trees with Dependency Constraints
(GSTTD) problem. In GSTTD we are given an instance of GST on a

tree, and additionally we are given many dependency rules of the

form (v, S), where v is a vertex in the input tree and S is a subset

later found to contain a subtle flaw and was restated by Helvig, Robin and Zelikovsky

[21].

of descendants of v . The rule (v, S) requires that if v is selected in

the output tree, then at least one vertex in S must be selected. The

dependency rules will be used to guarantee that a feasible solution

induces a valid solution to the original DST problem. In our reduc-

tion the tree has size npoly log(k) and height h = O (logk/ log logk),
with k terminals. For a comparison, Zelikovsky’s height-reduction

theorem [31], used in all prior work on DST, reduces (implicitly)

the latter problem to a GST instance over a tree of height O (logk).
However, this reduction alone loses a factor Θ(logk) in the approx-

imation (while our reduction is approximation-preserving).

Our second ingredient is a quasi-polynomial-time O (log2 k/
log logk)-approximate LP-rounding algorithm for GSTTD instances

arising from the previous reduction. Herewe exploit the LP-hierarchy

framework developed by Rothvoß [29] (and later simplified by Frig-

gstad et al. [13]). We define a proper LP relaxation for the problem,

and solve an R-level Sherali-Adams lifting of this LP for a parameter

R = poly logk . We then round the resulting fractional solution level

by level from the root to the leaves. At each level wemaintain a small

set of labels that must be provided by the subtree; they correspond

to the set of relevant dependency rules that are not satisfied yet.

By randomly rounding label-based variables and conditioning, we

push the set of labels all the way down to the leaves, guaranteeing

that the output tree always satisfies the dependency rules. Thanks

to the limited height of the tree and to the small number of labels

along root-to-leaf paths, a polylogarithmic number of lifting levels

is sufficient to perform the mentioned conditioning up to the leaves.

As in [29], the probability that each terminal appears in the tree we

directly construct is only 1/(h + 1). We need to repeat the process

O (h logk) = O (log2 k/ log logk) times in order to make sure all

labels are included with high probability, leading to the claimed

approximation ratio. Our result gives one more application of using

LP/SDP hierarchies to obtain improved approximation algorithms,

in addition to a few other ones (see, e.g., [2, 9, 10, 15, 25]).

We believe that our basic strategy of combining a label-based

reduction with a round-and-condition rounding strategy as men-

tioned above might find applications to other problems, and it might

therefore be of independent interest.

1.2 Comparison to Previous Work
Our algorithm is inspired by two results. First is the recursive

greedy algortihm of Chekuri and Pal for GST [7], and second is the

hierarchy based LP-rounding techniques by Rothvoß [29].

As mentioned, the algorithm of Chekuri and Pal is the first one

that yields an approximation ratio of O (log2 k) for GST, which is a

special case of DST, in quasi-polynomial-time. This is almost tight

for the class of quasi-polynomial-time algorithms. Their algorithm

exploits the fact that any optimal solution can be shortcut into a

path of length k , while paying only a factor of 2 (such a path exists

in the metric-closure of the input graph). This simple observation

allows them to derive a recursive greedy algorithm. In more detail,

they try to identify a vertex that separates the optimal path into

two equal-size subpaths by iterating over all the vertices; then they

recursively (and approximately) solve two subproblems and pick

the best approximate sub-solution greedily. Their analysis, however,

requires the fact that both recursive calls end at the same depth

(because each subpath has length different by at most one).

O (log2 k/ log logk)-Approximation for Directed Steiner Tree. . . STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

We imitate the recursive greedy algorithm by recursively split-

ting the optimal solution via balanced tree separators. The same

approach as in [7], unfortunately, does not quite work out for us

since subproblem sizes may differ by a multiplicative factor. This

process, somehow, gives us a decision tree that contains a branch-

decomposition of every solution, which is sufficient to devise an

approximation algorithm. Note, however, that not every subtree of

this decision tree can be transformed into a connected graph, and

thus, it is not guaranteed that we can find a feasible DST solution

from this decision tree. We introduce dependency rules specifically

to solve this issue.

The dependency rules could not be handled simply by applying

DST algorithms as a blackbox. This comes to the second component

that is inspired by the framework developed by Rothvoß [29]. While

the framework was originally developed for the Sum-of-Squares

hierarchy, it was shown by Friggstad et al. [13] that it also applies

to Sherali-Adams, which is a weaker hierarchy. We apply the frame-

work of Rothvoß to our Sherali-Adams lifted-LP but taking the

dependency rules into account.

1.3 Related Work
We already mentioned some main results about DST and GST. For

GST there is a polynomial-time algorithm by Garg et al. [14] that

achieves an approximation factor of O (log2 k logn), where k is the

number of groups. Their algorithm first maps the input instance

into a tree instance by invoking the Probabilistic Metric-Tree Em-
beddings [1, 12], thus losing a factor O (logn) in the approximation

ratio. They then apply an elegant LP-based randomized rounding

algorithm to the instance on a tree. A well-known open problem

is whether it is possible to avoid the logn factor in the approxima-

tion ratio. This was later achieved by Chekuri and Pal [7]; however,

their algorithm runs in quasi-polynomial-time. Chekuri and Pal also

mentioned the slight improvement of O (logn/ log logn) for GST
in quasi-polynomial-time using enumeration. One would wish to

achieve the same approximation ratio for the case that the input is a

tree; nevertheless, all the known O (logn/ log logn)-approximation

algorithms [6, 18] run in quasi-polynomial-time, and it has been an

open problem whether there exists a polynomial-time algorithm

that yields such approximation ratio (this would imply an improve-

ment for the general case as well).

Some works were devoted to the survivable network variants of

DST and GST, namely ℓ-DST and ℓ-GST, respectively. Here one

requires to have ℓ edge-disjoint directed (resp., undirected) paths

from the root to each terminal (resp., group). Cheriyan et al. [8]

showed that ℓ-DST admits no 2
log

1−ε n
-approximation, for any ε > 0,

unless NP ⊆ DTIME(2polylog(n)). Laekhanukit [23] showed that the

problem admits no ℓ1/2−ε -approximation for any constant ε > 0,

unless NP = ZPP. Nevertheless, the negative results do not rule

out the possibility of achieving reasonable approximation factors

for small values of ℓ. In particular, Grandoni and Laekhanukit [16]

(exploiting some ideas in [24]) recently devised a poly-logarithmic

approximation algorithm for 2-DST that runs in quasi-polynomial

time.

Concerning ℓ-GST, Gupta et al. [17] presented a Õ (log3 n logk)-
approximation algorithm for 2-GST. The same problem admits

an O (α log
2 n)-approximation algorithm, where α is the largest

cardinality of a group [22]. Chalermsook et al. [4] presented an

LP-rounding bicriteria approximation algorithm for ℓ-GST that

returns a subgraph with cost O (log2 n logk) times the optimum

while guaranteeing a connectivity of at least Ω(ℓ/ logn). They also

showed that ℓ-GST is hard to approximate to within a factor of ℓσ ,

for some fixed constant σ > 0, and if ℓ is large enough, then the

problem is at least as hard as the Label-Cover problem, meaning

that ℓ-GST admits no 2
log

1−ε n
-approximation algorithm, for any

constant ε > 0, unless NP ⊆ DTIME(2polylog(n)).

2 PRELIMINARIES
Given a graph G ′, we denote by V (G ′) and E (G ′) the vertex and

edge set ofG ′, respectively. Throughout this paper, we treat a rooted
tree as an out-arborescence; that is, edges are directed towards the

leaves. Given a rooted treeT , we use root(T) to denote its root. For
any rooted tree T and v ∈ V (T), we shall use T [v] to denote the

sub-tree of T containing v and all descendants of v . For a directed
edge e = (u,v), we use head(e) = u and tail(e) = v to denote the

head and tail of e . Generally, we will use the term vertex to mean a

vertex of a DST instance, and we will use the term node to mean a

vertex in instances obtained from reductions.

Group Steiner Tree on Trees with Dependency Constraint. A new

problem we introduce is the Group Steiner Tree on Trees with

Dependency Constraint (GSTTD) problem. The input consists of a

rooted tree T 0
of size N = |V (T 0) | and height h, a node cost vector

c ∈ R
V (T 0)
≥0

, a set K of k terminals, and a collection of k subsets

(called groups) {Kt }t ∈K , one for each terminal.

If our goal is to find the minimum-cost subtreeT ofT 0
containing

root(T 0) and at least one vertex from each group Kt , then the

problem is exactly GST on trees. In GSTTD, additionally we are

given a set L of dependency rules. Each rule is of the form (v, S),

where v ∈ V (T 0) and S is a subset of descendants of v in T 0
. The

rule (v, S) requires that if v is chosen by T , then at least one vertex

in S must be chosen by T . We say this rule is associated with the

vertexv . The goal of the GSTTD problem is then the same as that of

GST on trees, with the requirement that T must obey all the rules.

In Section 4, we give an O (h logk)-approximation algorithm in

running time (shN)O (sh2)
-time for the GSTTD problem, where s

is the maximum number of rules associated with any given vertex.

Thus, we require s to be small in order to derive a quasi-polynomial-

time algorithm; fortunately, this is the case for the GSTTD instance

reduced from DST.

Balanced Tree Partition. A main tool in our reduction is the fol-

lowing standard balanced-tree-partition lemma, whose proof will

be deferred to the full version of the paper.

Lemma 2.1 (Balanced-Tree-Partition). For any n ≥ 3, for any n-
vertex tree T rooted at a vertex r , there exists a vertex v ∈ V (T) such
that T can be decomposed into two trees T1 and T2 rooted at r and v ,
respectively, in such a way that E (T1)⊎E (T2) = E (T),V (T1)∪V (T2) =
V (T) and V (T1) ∩V (T2) = {v} and |V (T1) |, |V (T2) | < 2n/3 + 1. In
other words,T1 andT2 are sub-trees that form a balanced partition of
(the edges of) T .

Sherali-Adams Hierarchy. In this section, we give some basic

facts about Sherali-Adams hierarchy that we will need. Assume we

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li

have a linear program polytope P defined by Ax ≤ b. We assume

that 0 ≤ xi ≤ 1,∀i ∈ [n] are part of the linear constraints. The set of
integral feasible solutions is defined as X = {x ∈ {0, 1}n : Ax ≤ b}.
It is convenient to think of each i ∈ [n] as an event, and in a solution
x ∈ {0, 1}n , xi indicates whether the event i happens or not.

The idea of Sherali-Adams hierarchy is to strengthen the original

LP Ax ≤ b by adding more variables and constraints. Of course,

each x ∈ X should still be a feasible solution to the strengthened

LP (when extended to a vector in the higher-dimensional space).

For some R ≥ 1, the R-th round of Sherali-Adams lift of the linear

program has variables xS , for every S ∈

(
[n]

≤ R

)
:= {S ⊆ [n] :

|S | ≤ R}. For every solution x ∈ X, xS is supposed to indicate

whether all the events in S happen or not in the solution x ; that

is, xS =
∏

i ∈S
xi . Thus each x ∈ X can be naturally extended

to a 0/1-vector in the higher-dimensional space defined by all the

variables.

To derive the set of constraints, let us focus on the j-th constraint
n∑
i=1

aj,ixi ≤ bj in the original linear program. Consider two subsets

S,T ⊆ [n] such that |S |+ |T | ≤ R − 1. Then the following constraint

is valid for X; i.e, all x ∈ X, the constraint is satisfied:∏
i ∈S xi

∏
i ∈T (1 − xi)

(∑n
i=1 aj,ixi − bj

)
≤ 0.

To linearize the above constraint, we expand the left side of the

above inequality and replace each monomial with the correspond-

ing xS ′ variable. Then, we obtain the following :∑
T ′⊆T (−1)

|T ′ |
(∑n

i=1 aj,ixS∪T ′∪{i } − bjxS∪T ′
)
≤ 0. (1)

The R-th round of Sherali-Adams lift contains the above con-

straint for all j, S,T such that |S | + |T | ≤ R − 1, and the trivial

constraint that x∅ = 1. For a polytope P and an integer R ≥ 1, we

use SA(P,R) to denote the polytope obtained by the R-th round

Sherali-Adams lift of P. For every i ∈ [n], we identify the variable

xi in the original LP and x {i } in a lifted LP.

Let x ∈ SA(P,R) for some linear program P on n variables and

R ≥ 2. Let i ∈ [n] be an event such that xi > 0; then we can define

a solution x ′ ∈ SA(P,R − 1) obtained from x by “conditioning" on

the event i . For every S ∈

(
[n]

R − 1

)
, x ′S is defined as x ′S :=

xS∪{i }

xi
.

We shall show that x ′ will be in SA(P,R − 1) (Property (2.2e)).

It is useful to consider the ideal case where x corresponds to a

convex combination of integral solutions in X. Then we can view

x as a distribution over X. Conditioning on the event i over the
solution x corresponds to conditioning on i over the distribution x .
The following standard facts hold.

Claim 2.2. For any x ∈ SA(P,R) with R ≥ 2, the following state-
ments hold:

(2.2a) xS ≥ xS ′ for every S ⊆ S ′ ∈

(
[n]

≤ R

)
.

(2.2b) If xi = 1 for some i ∈ [n], then x {i,i′ } = xi′ for every i ′ ∈ [n].

(2.2c) If every x̂ ∈ P has x̂i ≤ x̂i′ , then x {i,i′ } = xi .

Letting x ′ be obtained from x by conditioning on some event i ∈ [n],
the following holds:

(2.2d) x ′i = 1.

(2.2e) x ′ ∈ SA(P,R − 1).

(2.2f) If xi′ ∈ {0, 1} for some i ′ ∈ [n], then x ′i′ = xi′ .

Keep in mind that the three properties (2.2a), (2.2d) and (2.2f)

will be used over and over again, often without referring to them.

(2.2d) says that conditioning on i will fix xi to 1. (2.2f) says that

once a variable is fixed to 0 or 1, then it can not be changed by

conditioning operations.

All the proofs that are omitted due to space constraints will

appear in the full version of the paper.

3 REDUCING DIRECTED STEINER TREE TO
GROUP STEINER TREE ON TREES WITH
DEPENDENCY CONSTRAINT

In this section, we present a reduction from DST to GSTTD. In

Section 3.1, we define a decomposition tree, which corresponds to

a recursive partitioning of a Steiner tree T of G. We show that the

DST problem is equivalent to finding a minimum cost decompo-

sition tree. Due to the balanced-partition lemma (Lemma 2.1), we

can guarantee that decomposition trees have depth O (logk), a cru-
cial property needed to obtain a quasi-polynomial-time algorithm.

Then in Section 3.2 we show that the task of finding a small cost

decomposition tree can be reduced to an GSTTD instance on a tree

of depth O (logk). Roughly speaking, for a decomposition tree to

be valid, we require that the separator vertex appears in both parts

of a partition: as a root in one part and possibly a non-root in the

other. This can be captured by a dependency rule.

We shall use T to denote a Steiner tree in the original graph G,
andu,v to denote vertices inG . We use τ to denote a decomposition

tree, and α , β to denote nodes of a decomposition tree. T0 will be
used for the input tree of the GSTTD instance. We use T for a

sub-tree of T0 and p,q,o for nodes in T0. The convention extends

to variants of these notations as well.

3.1 Decomposition Trees
We now define decomposition trees. Recall that in the DST problem,

we are given a graphG = (V ,E), a root r ∈ V , and a set K ⊆ V \ {r }
of k terminals.

Definition 3.1. A decomposition tree τ is a rooted tree where each

node α is associated with a vertex µα ∈ V (G) and each leaf-node

α is associated with an edge eα ∈ E (G). Moreover, the following

conditions are satisfied:

(3.1a) µ
root(τ) = r .

(3.1b) For every leaf β of τ , we have µβ = head(eβ).

(3.1c) For every non-leaf α of τ and every child α2 of α with

µα2
, µα the following holds. There is a child α1 of α

with µα1
= µα such that µα2

= tail(eβ) for some leaf β ∈
V (τ [α1]). In particular, this implies that α has at least one

child α1 with µα1
= µα .

The cost of a decomposition tree τ is defined as

cost(τ) :=
∑

α a leaf of τ
c (eα).

We say a vertex v is involved in a sub-tree τ [α] of a decom-

position tree τ if either v = µα or there is a leaf β of τ [α] such

O (log2 k/ log logk)-Approximation for Directed Steiner Tree. . . STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

r

a

b c

d

e

f

g h

i

j

{r, a, b, c, d, e, f, g, h, i, j}

{r, a, b, c, d, e, j} {e, f, g, h, i}

{r, a, b, c} {r, d, e, j}

{r, a} {a, b, c}

{a, b} {a, c}

{r, d} {d, e, j}

{d, e} {d, j}

{e, f, i} {f, g, h}

{f, g} {f, h}{e, f} {e, i}

T ∗ τ ∗

Figure 1: An example for construction of τ ∗. For each node
τ ∗, the set denotes the vertices in the sub-tree of T ∗ corre-
spondent to the node; the µ value of the node is the first ele-
ment in the set. For a leaf node, its e value is the edge from
the first element to the second element in the set.

that v = tail(eβ). So the second sentence in Property (3.1c) can be

changed to the following: There is a child α1 of α with µα1
= µα

such that µα2
is involved in τ [α1].

We show that the DST problem can be reduced to the problem

of finding a small-cost decomposition tree of depth O (logk) that
involves all terminals. This is done in two directions.

From Directed Steiner Tree to Decomposition Tree. We first show

that the optimum directed Steiner tree T ∗ of G gives a good de-

composition tree τ ∗ of cost at most that of T ∗, which we denote

by opt. Since we assumed costs of edges in G satisfy triangle in-

equalities, we can assume every vertex v ∈ V (T ∗) \ ({r } ∪ K) has
at least two children in T ∗. This implies |V (T ∗) | ≤ 2k . The decom-

position tree τ ∗ can be constructed by applying Lemma 2.1 on T ∗

recursively until we obtain trees with singular edges. Formally, we

set τ ∗ ← cstr-opt-dcmp-tree(T ∗), where cstr-opt-dcmp-tree is de-
fined in Algorithm 1. Notice that the algorithm is only for analysis

purpose and is not a part of our algorithm for DST.

Algorithm 1 cstr-opt-dcmp-tree(T)

1: if T consists of a single edge (u,v) then
2: return a node β with µβ = u and eβ = (u,v)
3: else
4: create a node α with µα = root(T)
5: apply Lemma 2.1 to find two rooted trees T1 and T2 with

root(T1) = root(T)
6: τ1 ← cstr-opt-dcmp-tree(T1)
7: τ2 ← cstr-opt-dcmp-tree(T2)
8: return tree rooted at α with two sub-trees τ1 and τ2

Claim 3.2. τ ∗ is a full binary decomposition tree of height O (logk)
and cost opt that involves all terminals in K . Moreover, for every
t ∈ K , there is exactly one leaf β of τ ∗ with tail(eβ) = t .

From Decomposition Tree to Directed Steiner Tree. For the other
direction, we proof the following lemma in the full version of the

paper:

Lemma 3.3. Given a decomposition tree τ that involves all termi-
nals in K , we can efficiently construct a directed Steiner tree T in G
connecting r to all terminals in K with cost at most cost(τ).

Thus, our goal is to find a decomposition tree of small cost

involving all terminals in K . To do so, we construct an instance of

the GSTTD problem.

3.2 Construction of GSTTD Instance
Let

¯h be theO (logk) term in Claim 3.2 that upper bounds the height

of τ ∗. To save the factor of log logk in the approximation ratio, we

shall “collapse” every д :=
⌈
log

2
log

2
k
⌉
levels of a decomposition

tree into one level. It motivates the definition of a twig, which
corresponds to a full binary tree of depth at most д that can appear

as a part of a decomposition tree:

Definition 3.4. A twig is a rooted full binary tree η of depth at

most д, where

• each α ∈ V (η) is associated with a µα ∈ V (G), such that

for every internal node α in η, at least one child α ′ of α has

µα ′ = µα , and

• each leaf β of η may or may not be associated with a value

eβ ∈ E (G); if eβ is defined then head(eβ) = µβ .

With the twigs defined, our GSTTD instance T0 is constructed by
calling T0 ← cstr-gsttd-inst(r , 0), where cstr-gsttd-inst is defined
in Algorithm 2. See Figure 2 for illustration of one recursion of

cstr-gsttd-inst.
We give some intuition behind the construction of T0. We can

partition the edges of a decomposition tree τ into an O (¯h/д)-depth
tree H of twigs. For each η in the tree, we apply the following

operation: replace η with a node q with ηq = η, and insert a virtual

parent p of q withup = µ
root(η) between this q and its actual parent.

Then idea behind the construction of T0 is that no matter what the

decomposition tree τ is, we can find copy of the resulting tree in T0.
So there are two types of nodes in T0: (1) p-nodes are those created
in Step 1, which correspond to the virtual parents created and (2)

q-nodes are those created in Step 4, which correspond to the actual

twigs of H. Thus, we reduced the problem of finding H (and thus

τ) to the problem of finding a subtree T of T0. The p-nodes will
be useful when we define the dependency rules L, which are used

to guarantee that T will correspond to a valid τ . In particular, the

rules created in Step 14 guarantee that if p is selected then so is

at least one child of p (for the optimum solution τ ∗, exactly one is

chosen). The rules created in Step 9 for a fixed q guarantees that if

q is selected, then all children of q must be selected, while the rules

created in Step 13 guarantee Property (3.1c) of τ . The collection of

groups {Kv }v ∈K are constructed in Step 6, where we add a node q
to a group Kv if ηq contains a leaf β with tail(eβ) = v .

Remark 3.5. The u and η values of nodes in T0 are irrelevant for
the GSTTD instance. They will, however, help us in mapping the

decomposition tree to its corresponding solution to GSTTD.

A simple observation we can make is the following:

Claim 3.6. T0 is a rooted tree with nO (log2 k/ log logk) vertices and
height O (¯h/д) = O (logk/ log logk), where n = |V (G) |.

It is easy to see that a node p will be associated with exactly one

rule created in Step 14, while a node q can be associated with up

to O (2д) = O (logk) rules. So, the parameter s , i.e, the maximum

number of rules a node is associated with, is O (logk).

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li

Algorithm 2 cstr-gsttd-inst(u, j)

1: create a new node p with cp = 0 and up = u

2: if j =
⌈
¯h/д

⌉
then return p

3: for each possible non-singular twig η with µ
root(η) = u do

4: create a new child q of p with cq =
∑

leaf β of η:eβ defined

c (eβ) and ηq = η

5: for every leaf β of η with eβ defined do
6: if tail(eβ) ∈ K then add the node q to the group K

tail(eβ)

7: for every leaf β of η with eβ undefined do
8: Tqβ ← cstr-gsttd-inst(µβ , j + 1), let root(T

q
β) be a child of q

9: add a new rule

(
q,

{
root(Tqβ)

})
to L

10: for every internal node α of η do
11: let α1 be a child of α with µα1

= µα and α2 be the other child
12: if µα2

, µα and ∄ leaf β of η[α1] with eβ defined and tail(eβ) = µα2
then

13: add the rule (q, S) to L, where

S :=

{
q′ : ∃β ∈ ηα1

with eβ undefined,q′ ∈ Tqβ contains a leaf β ′ with eβ ′ defined and tail(eβ ′) = µα2

}
.

14: add the rule (p, {q : q is a child of p}) to L
15: return the tree rooted at p

q-nodes

η η η

p-node

u u u u u u

u

p-nodes

Figure 2: Illustration for one recursion of cstr-gsttd-inst. Each
p-node has a up value, and each q-node is associated with a
twig ηq with µ

root(ηq) being the u value of its parent p-node.
Each child p′ of q corresponds to a leaf β of ηq with eβ unde-
fined.

We then show that the problem of finding a decomposition tree

can be reduced to that of finding a valid sub-tree of T0. Again, this
is done in two directions.

From Decomposition Tree to GSTTD. To show that there is a valid

subtree T∗ of T0, we need to construct a tree of twigs from τ ∗. This
is done as follows. For every i = 0, 1, 2, · · · , and every internal node

α in τ ∗ of depth iд, we create a twig rooted at α containing all

descendants of α at depth iд, iд + 1, iд + 2, · · · , (i + 1)д. LetV be

the set of twigs created. A rooted tree H overV can be naturally

defined: a twig η is a parent of η′ if and only if root(η′) is a leaf in

η. So, H has depth at most

⌈
¯h/д

⌉
.

T∗ can be found naturally by calling cstr-opt-gsttd(root(T0), root(H))
(with T∗ being empty initially), where cstr-opt-gsttd is defined in

Algorithm 3, and the trees Tqβ are as defined in Algorithm 2. The

recursive procedure takes two parameters: a node p in T0 and a

twig η ∈ V . It is guaranteed that up = µ
root(η) : The root recur-

sion satisfy this condition since u
root(T0) = µ

root(root(H)) = r ; in

Algorithm 3 cstr-opt-gsttd(p,η)

1: add p and the child q of p with ηq = η to T∗ ▷ such a q exists

since µ
root(η) = up

2: for every leaf β of η such that eβ is not defined do
3: let η′ be the twig inV with root(η′) = β
4: cstr-opt-gsttd(root(Tqβ),η

′)

Step 4, we also have u
root(Tqβ)

= µβ = µ
root(η′) . The tree can be

constructed as H has depth at most

⌈
¯h/д

⌉
. Again, this algorithm

is only for analysis purpose and is not a part of our algorithm for

DST.

Lemma 3.7. T∗ is a sub-tree of T0 obeying all the dependency rules
and having cost exactly cost(τ ∗) = opt. Moreover, for every t ∈ K ,
T∗ contains exactly one node in Kt .

From GSTTD to Decomposition Tree. The following lemma gives

the other direction.

Lemma 3.8. Given any feasible solution T to the GSTTD instance
T0, in time poly(|V (T) |) we can construct a decomposition tree τ with
cost(τ) = cost(T). Moreover, if a group Kt , for t ∈ K , is spanned by
T, then τ involves t .

Wrapping up. We prove the following theorem in the next sec-

tion. Recall that N and h are respectively the size and height of the

input treeT 0
to the GSTTD instance, and k is the number of groups.

Theorem 3.9. There is an O (h logk)-approximation algorithm in
running time (shN)O (sh2) for the Group Steiner Tree on Trees with
Dependency Constraint problem where s is the maximum number of
rules associated with a given vertex.

O (log2 k/ log logk)-Approximation for Directed Steiner Tree. . . STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

With this theorem at hand, we finish our O (log2 k/ log logk)-
approximation for DST that runs in quasi-polynomial time. Given

a DST instance, we shall construct the GSTTD instance T0 of size
N = nO (log2 k/ log logk)

and height h = O (logk/ log logk) as in
Algorithm 2. Notice that for the GSTTD instance, we have s =
O (logk). By Claim 3.2 and Lemma 3.7, there is a solution T∗ to
the GSTTD instance T0 of cost at most opt. Applying Theorem 3.9,

we can obtain a feasible solution T of cost at most O (h logk) ·

opt = O (log2 k/ log logk) ·opt in time (shN)O (sh2) = nO (log5 k)
(as

s = O (logk)). Applying Lemma 3.8 and Lemma 3.3, we can obtain a

Directed Steiner treeT inG of cost at mostO (log2 k/ log logk) ·opt

connecting r to all terminals inK . This gives anO (log2 k/ log logk)-

approximation for DST in running time nO (log5 k)
, finishing the

proof of Theorem 1.1.

4 APPROXIMATION ALGORITHM FOR
GROUP STEINER ON TREES WITH
DEPENDENCY CONSTRAINT

The goal of this section is to prove Theorem 3.9, which is repeated

below.

Theorem 3.9. There is an O (h logk)-approximation algorithm in
running time (shN)O (sh2) for the Group Steiner Tree on Trees with
Dependency Constraint problem where s is the maximum number of
rules associated with a given vertex.

Since we are not dealing with the original DST problem anymore,

we use T 0,T (instead of T0,T) for trees and u,v (instead of p,q) for

nodes in this section: T 0
is the input tree while T is the tree we

need to output. Let V leaf
and V int

respectively be the sets of leaves

and internal nodes ofT 0
. For every node v ∈ V int

, let Λv be the set

of children of v . For every v ∈ V (T 0), let Λleaf

v = V (T 0
[v]) ∩V leaf

be the set of descendants of v that are leaves.

For convenience of description, we shall introduce two types of

labels: each rule in L corresponds to a rule label and each terminal

t ∈ K corresponds to a terminal label. So, we also view L and K
as the set of rule labels and terminal labels respectively. For each

rule ℓ = (v, S) ∈ L, we say that v is demanding the rule label ℓ, and

all the vertices in S are supplying ℓ. For every terminal t ∈ K , we
also say all vertices in Kt are supplying the terminal label t . For

every node v ∈ V (T 0), let dem(v) ⊆ L be the set of labels that v is

demanding. Thus, we have s = max

v ∈V (T 0)
|dem(v) |.

We can assume that the demand labels are only at the internal

nodes: a rule associated with a leaf is either useless or can never be

satisfied if the leaf is contained in T . We can assume only leaves

can supply labels and each leaf is supplying exactly one label. A

leaf that does not supply a label can be removed. For a non-leaf

v supplying some labels, we can attach many leaves of cost 0 to

v and let each leaf supply one label. Similarly, if a leaf v supplies

more than one labels, we can attach many new leaves to v and let

each of them supply one label. With this property, we can define

av ∈ L be the unique label that v supplies, for every v ∈ V leaf
.

Thus, a subtree T of T 0
with root(T) = root(T 0) is valid if the

following two conditions are satsfied.

• (dependency rules) All the demand rule labels in T are supplied

byT : if for every u ∈ V (T)∩V int
and ℓ ∈ dem(u), there is a node

v ∈ V (T) ∩ Λleaf

u with av = ℓ.

• (terminal conditions) All the terminal labels are supplied by T :

for every t ∈ K , there is a v ∈ V (T) ∩V leaf
with av = t .

Recall that we are given a node-cost vector c ∈ R
V (T 0)
≥0

. The cost

of a sub-tree T of T 0
, denoted as cost(T), is defined as cost(T) :=∑

v ∈V (T)
cv . Thus, the goal of GSTTD is to find the minimum cost

valid subtree T of T 0
.

A small note is that we changed the height and size ofT 0
slightly

when we attach new leaves to T 0
. We consider these changes now.

Abusing notations slightly, we shall use N ′ and h′ to store the size

and height of the oldT 0
(i.e, theT 0

before we apply the operations),

and N and h be the size and height of the new T 0
(i.e, the T 0

after

we apply the operations). Notice that we only attached leaves to

the nodes in the originalT 0
. So, we have h ≤ h′ + 1. The number of

internal nodes in the new T 0
is at most N ′. If a node has many leaf

childrenv with the same av , we only need to keep the one with the

smallest cost. Since each u has |dem(u) | ≤ s and the height of the

oldT 0
is h′, we can assume that the number of leaves in the newT 0

is at most s (h′+ 1)N ′+k . So N ≤ s (h′+ 1)N ′+N ′+k = O (sh′N ′).
Let T ∗ be the optimum tree for the given instance. Let opt =

cost(T ∗) be the cost of the T ∗.2 We can assume the following:

(4.1a) For every label ℓ ∈ L ∪ K , at most one node in T ∗ supplies
ℓ.

Indeed, if there are multiple such nodes v , we can keep any one

without breaking the validity of the tree. Notice that for a terminal

label t ∈ K , exactly one node supplies t by terminal conditions.

The main theorem we shall prove is the following

Theorem 4.2. There is an (sN)O (sh2)-time algorithm that outputs
a random tree T̃ obeying the dependency rules such that, E

[
c (T̃)

]
≤

opt, and for every t ∈ K , T̃ supplies t with probability at least
1

h + 1
.

With theorem 4.2, we can finish the proof of Theorem 3.9.

Proof of Theorem 3.9. We run O (h logk) times the algorithm

stated in Theorem 4.2 and let T ′ be the union of all the trees T̃
produced. It is easy to see that T ′ obeys the dependency rules. The

expected cost of T ′ is

E
[
cost(T ′)

]
≤ O (h logk)opt.

If the O (h logk) term is sufficiently large, by the union bound, we

can obtain

Pr

[
T ′ supplies all labels in K

]
≥ 1/2. (2)

We repeatedly run the above procedure until T ′ supplies all

labels in K and output T ′. Let T final
be this tree. Then we have

E
[
cost(T final)

]
≤ O (h logk)opt due to (2). In expectation we only

need to run the procedure twice.

2
We remark that it is easy to check whether a valid solution exists or not: an u ∈ V int

is useless if for some ℓ ∈ dem(u) there is no v ∈ Λleaf

u with av = ℓ. We repeatedly

remove useless nodes and their descendents until no such nodes exist. There is a valid

solution iff the remaining T 0
supplies all the terminal labels. So, we can assume that

the instance has a valid solution.

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li

Thus, we obtain an O (h logk)-approximation for GSTTD. The

running time of the algorithm is (sN)O (sh2) = (sh′N ′)O (sh′2)
. Re-

call that h′ and N ′ are the height and size of T 0
before we applied

the operations; thus the theorem follows. □

Thus, our goal is to prove Theorem 4.2. Our algorithm is very

similar to that of [29] for GST on trees. We solve the lifted LP

relaxation for the GSTTD problem and then round the fractional

solution via a recursive procedure. In the procedure, we focus on

some sub-tree T 0
[u], and we are given a set L′ ⊆ L of rule labels

that must appear in T̃ [u], where T̃ is our output tree. We are also

given a lifted LP solution x ; we can restrict x on the tree T 0
[u].

The set L′ of labels appear in T 0
[u] fully according to x . Then, for

every ℓ ∈ L′, we randomly choose child v of u that is responsible

for this ℓ and then apply some conditioning operations on x . We

recursively call the procedure for the children ofu. This way, we can
guarantee that the tree T̃ we output always obeys the dependency

rules. Finally, we show that each terminal label v ∈ K appears in T̃
with large probability, using a technique that is very similar to that

of [29].
3

4.1 Basic LP Relaxation
The remaining part of the section is dedicated to the proof of

Theorem 4.2. We formulate an LP relaxation that aims at find-

ing the T ∗, where the variables of the LP are indexed by D =

V (T 0) ∪ (V (T 0) × (L ∪ K)). We view every element in D also as

an event. Supposedly, an event u ∈ V (T 0) happens if and only if

u ∈ V (T ∗), and an event (u, ℓ) ∈ V (T 0) × (L ∪ K) happens if and

only if u ∈ V (T ∗) and T ∗[u] supplies ℓ (i.e, Λleaf

u ∩V (T ∗) contains
a v with label av = ℓ; such a node is unique if it exists by Property

(4.1a)). For every e ∈ D, xe ∈ {0, 1} is supposed to indicate whether

event e happens or not. Then the following linear constraints are

valid:

xv ≤ xu , ∀u ∈ V int,v ∈ Λu (3)

x (u, ℓ) ≤ xu , ∀u ∈ V (T 0), ℓ ∈ L ∪ K (4)

x (u, ℓ) = xu , ∀u ∈ V int, ℓ ∈ dem(u) (5)

x (v,av) = xv , ∀v ∈ V leaf
(6)

x (u, ℓ) =
∑
v ∈Λu

x (v, ℓ) , ∀u ∈ V int, ℓ ∈ L ∪ K (7)

x (v, ℓ) = 0, ∀v ∈ V leaf , ℓ , av (8)

x (root(T 0), ℓ) = 1, ∀ℓ ∈ K (9)

(3) holds since T ∗ is rooted sub-tree of T 0
with root(T ∗) =

root(T 0), (4) holds by definition of events, (5) follows from that

T ∗ obey the dependency rules, and (6) holds trivially. (7) follows

from Property (4.1a). (8) holds trivially and (9) follows from the

terminal conditions.

3
Notice that in previous work, we either apply the basic LP relaxation for the quasi-

polynomial size instances on trees obtained by expanding the original instance, or

apply LP/SDP hierarchy on the original instance on general graphs [13, 29]. Our

algorithm does both: it applies Sherali-Adams hierarchy on the expanded instance.

LetP be the polytope containing all vectorsx ∈ [0, 1]D satisfying
constraints (3) to (9). The following simple observation can be made:

Claim 4.3. For every x ∈ P, u ′ ∈ V (T 0), and ℓ′ ∈ L ∪ K , we have∑
v ∈Λleaf

u′

xv, ℓ′ = xu′, ℓ′ .

Proof. The claim holds trivially if u ′ ∈ V leaf
. When u ′ < V leaf

,

summing up (7) over all internal nodes u inT 0
[u ′] and ℓ = ℓ′ gives

the equality. □

4.2 Rounding a Lifted Fractional Solution
Let R = O (sh2) be large enough. Since P contains an integral solu-

tion of cost at most opt, we can find a solution x∗ ∈ SA(P,R) with∑
v ∈V (T 0)

cvx
∗
v ≤ opt in running time |D|O (sh2) = (sN)O (sh2)

.

Remark 4.4. Indeed, our algorithm only needs to use variables that

correspond to paths of T0 starting at the root. Using this one can
remove a logk/ log logk factor from the exponent of the running

time. However, we choose to use the Sherali-Adams hierarchy as it

is much easier to describe.

In the main rounding algorithm (Algorithm 4), we start with Ṽ =

∅ and then call solve(root(T 0), dem(root(T 0)),x∗), as described in

Algorithm 5. We output the subtree T̃ of T 0
induced by Ṽ .

Algorithm 4 Main Rounding

Given: x∗ ∈ SA(P,R).
Output: subtree T̃ of T 0

obeying dependency rules

1: Ṽ ← ∅
2: solve(root(T 0), dem(root(T 0)),x∗)
3: return the tree T̃ induced by Ṽ

Algorithm 5 solve(u,L′,x)

1: Ṽ ← Ṽ ∪ {u}
2: if u ∈ V leaf then return
3: let Sv ← ∅ for every v ∈ Λu
4: for every ℓ ∈ L′ do
5: randomly choose a child v of u, so that v is chosen with

probability x (v, ℓ) (see Property (4.5b))

6: Sv ← Sv ∪ {ℓ}
7: x ← x conditioned on the event (v, ℓ)

8: for every v ∈ Λu , with probability xv do
9: solve(v, Sv ∪ dem(v),x conditioned on event v)

In the recursive algorithm solve(u,L′,x), u is the current node

we are dealing with. L′ is the set of labels that must be supplied in

T̃ [u]; in particular, we shall guarantee that dem(u) ⊆ L′. x is the

LP hierarchy solution that is passed to u, which satisfies xu = 1

and x (u, ℓ) = 1 for every ℓ ∈ L′ (Property (4.5a) in Claim 4.5 that

appears later). We add u to Ṽ in Step 1; thus the final T̃ contains

the set of nodes for which we called solve.
If u ∈ V leaf

, we then do nothing; so focus on the case u < V leaf
.

To guarantee that a label ℓ ∈ L′ is supplied in T̃ [u], we need to

O (log2 k/ log logk)-Approximation for Directed Steiner Tree. . . STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

specify one child v of u such that T̃ [v] supplies ℓ; we say that v is

responsible for this label ℓ. This is done via a random procedure

by using the solution x as a guide: the probability that v is chosen

is exactly x (v, ℓ) (Step 5). We shall show that

∑
v ∈Λu

xv, ℓ = 1

(Property (4.5b)) and thus the process is well-defined. After choosing

the v for this ℓ ∈ L′, we update x by conditioning on the event

(v, ℓ) (Step 7). So far the number of nested conditioning operations

we apply on x is |L′ |; we will see soon that |L′ | is small and thus

we can apply these operations.

For every v ∈ Λu , let Sv be the set of labels in L′ that v is

responsible for. In Loop 8, we independently and recursively call

solve on the children of u. Notice that xv is the extent to which v is

included in V (T ∗). So we only call solve on v with probability xv ;
the LP solution passed to the sub-recursion is x conditioned on the

event v . In particular if Sv , ∅ then xv = 1. We remark that the

conditioning operations for all children v of u are done “in parallel”

and thus we “lose only 1 level” of our Sherali-Adams lifting.

We now analyze the algorithm. To prove Theorem 4.2, we need

to show that T̃ obeys the dependency rules and has small expected

cost; moreover, every label t ∈ K is provided by T̃ with large enough

probability. Let us first assume that the number R of rounds is large

enough so that all the conditioning operations can be applied. We

start from some simple observations for the algorithm.

Claim 4.5. For every recursion of solve that the algorithm invokes,

(4.5a) at the beginning the recursion, we have xu = 1 and x (u, ℓ) = 1

for all ℓ ∈ L′, and

(4.5b) the random sampling process in Step 5 is well-defined: we have∑
v ∈Λu

x (v, ℓ) = 1 before the step.

Proof. (4.5a) holds for the root recursion as (9) impliesx∗
root(T 0)

=

1 and (5) impliesx∗
root(T 0), ℓ

= x∗
root(T 0)

= 1 for every ℓ ∈ dem(root(T 0)).

Now assume (4.5a) holds for some recursion for u < V leaf
. So, at

the beginning of an iteration of Loop 4, we have xu, ℓ = 1 for every

ℓ ∈ L′. Thus, by (7), we have
∑
v ∈Λu

xv, ℓ = 1, implying (4.5b) for this

recursion.

Sincewe conditioned on the event (v, ℓ) in Step 7 after adding ℓ to
Sv , we have x (v, ℓ) = 1 for every v ∈ Λu and ℓ ∈ Sv after finishing

Loop 4. (Notice that Property (2.2f) says that once a variable has

value 0 or 1, conditioning operations do not change its value.) Focus

on Step 9 for some v ∈ Λu , and let x ′ be the x passed to the sub-

recursion, i.e, x ′ is obtained from x by conditioning on the event

v . Then we have that x ′v = 1 and x ′(v, ℓ) = 1 for every ℓ ∈ Sv . Also,

x ′(v, ℓ) = x ′v = 1 for every ℓ ∈ dem(v) by (5). Since L′ = Sv∪dem(v)

in the sub-recursion of solve forv , (4.5a) holds for the sub-recursion
for v . □

Claim 4.6. The tree T̃ returned by Algorithm 4 obeys the dependency
rules.

Proof. Whenwe call solve for anu, it is guaranteed that dem(u) ⊆
L′ (by Step 2 in Algorithm 4 and Step 9 in Algorithm 5). By the way

we construct Sv ’s in Loop 4 of Algorithm 5, each label ℓ ∈ dem(u)

will be passed down all theway to some leaf nodev ∈ Λleaf

u . By Prop-

erty (4.5a) for the recursion of solve forv , we must have xv, ℓ = 1 at

the beginning of this recursion. Then by (8), ℓ = av must hold. □

Claim 4.7. If R = O (sh2) is large enough, then all the conditioning
operations can be performed.

Proof. Notice that for the recursion of solve foru, the size of |L′ |
passed to the recursion is at most s (depth(u) + 1), where depth(u)

is the depth of u in the tree T 0
, i.e, the distance from root(T 0) to

u. This holds since in a recursion of solve for u, Sv ’s are subsets of
L′, and the L′ passed to the sub-recursion for v is Sv ∪ dem(v) and
|dem(v) | ≤ s .

Inside each recursion of solve, the number of nested conditioning

operations is |L′ |+1 ≤ s (depth(u)+1) ≤ s (h+2). Since the recursion
can take up to h + 1 levels, the number R of rounds we need is at

most s (h + 2) (h + 1) + 1 = O (sh2). □

Notations and Maintenance of Marginal Probabilities. We say

that an event e ∈ D is inside T 0
[u] for some u ∈ V (T 0) if either

e = v ∈ V (T 0
[u]) or e = (v, ℓ) for some v ∈ V (T 0

[u]). For every

integer i ∈ [0, sh], let x (u,i) be the value of x after the i-th iteration

of Loop 4 in the recursion solve(u, ·, ·). If this recursion does not

exist, then let x (u,i) be the all-0 vector overD; if this recursion exists
but Loop 4 terminates in less than i iterations in the recursion, then

let x (u,i) be the value of x at the end of the loop. Notice that Loop 4

terminates in at most sh iterations from the proof of Claim 4.7.

The randomness of the algorithm comes from Steps 5 and 8 in

solve. Each time we run Step 5 or 8, we assume we first generate

a random number and then use it to make the decision. We say

a random number is generated before x (u,i) , if the random num-

ber is generated in solve(u ′, ·, ·) for some ancestor u ′ of u, or in
solve(u, ·, ·) before or at the i-th iteration of Loop 4. Notice that

each x (u,i) is completely determined by the random numbers gen-

erated before it. The following two claims state that the marginal

probabilities of events are maintained in our random process.

Claim 4.8. Let u ∈ V (T 0), i ∈ [sh], xold = x (u,i−1) and xnew =

x (u,i) . Let E be any event determined by the random numbers gener-
ated before xold = x (u,i−1) . Then, for every e ∈ D, we have

E[xnewe |xolde , E] = xolde .

Proof. Conditioned on that the i-th iteration of solve(u, ·, ·)
does not exist, the equality holds trivially. So we condition on that

the iteration exists. Let L′ be the L′ passed to solve(u, ·, ·); then the

ℓ handled in the i-th iteration is determined by L′ and i . So,

E
[
xnewe

���x
old,L′

]
=

∑
v ∈Λu

xold(v, ℓ) ·
xold
{e, (v, ℓ) }

xold
(v, ℓ)

=
∑
v ∈Λu

xold
{e, (v, ℓ) } = xold

{e, (u, ℓ) } = xolde .

The first equality is by the random process for choosing v and

the definition of the conditioning operation. The second-to-last

equality follows from Constraint (7), and the last equality follows

from xold(u, ℓ) = 1 and Property (2.2b).

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li

Also, given xold and L′, the random process in the i-th iter-

ation of solve(u, ·, ·) does not depend on the random numbers

generated before xold, and thus does not depend on E. Therefore,

E
[
xnewe

���x
old,L′, E

]
= xolde . Deconditioning over L′ and the compo-

nents inside xold other than xolde gives

E
[
xnewe

���x
old

e , E
]
= xolde . □

Claim 4.9. Let u ∈ V int,v ∈ Λu ,x
old = x (u,sh) and xnew = x (v,0) .

Let E be any event determined by the random numbers generated
before xold = x (u,sh) . Then, for any event e inside T 0

[v], we have

E
[
xnewe

���x
old

e , E
]
= xolde .

Proof. Again we can condition on the event that the recur-

sion solve(u, ·, ·) exists. Consider the iteration of Loop 8 for v in

solve(u, ·, ·). We have

E
[
xnewe

���x
old, E

]
= xoldv ×

xold
{e,v }

xoldv
= xold
{e,v } = xolde .

The first equality holds since we make the recursive call for v

with probability xoldv ; given xold, this is independent of E. The last

equality comes from that event e is inside T 0
[v] and thus x̂e ≤ x̂v

for every x̂ ∈ P; Property (2.2c) gives the equality.

Again, deconditioning over the components inside xold other

than xolde gives E
[
xnewe

���x
old

e , E
]
= xolde . □

Corollary 4.10. For every v ∈ V (T 0), we have Pr[v ∈ Ṽ] = x∗v .

Proof. Let u1 = root(T 0),u2, · · · ,ut = v be the path from

root(T 0) to v in T 0
. Applying Claims 4.8 and 4.9, we can obtain

that the sequence x
(u1,0)
v , x

(u1,1)
v , · · · , x

(u1,sh)
v , x

(u2,0)
v , x

(u2,1)
v , · · · ,

x
(u2,sh)
v , · · · , x

(ut−1,0)
v , x

(ut−1,1)
v , · · · , x

(ut−1,sh)
v , x

(ut ,0)
v forms a mar-

tingale. This holds since all variables before a variable x (u
′,i)

in

the sequence are determined only by random numbers generated

before x (u
′,i)

. Thus Pr[v ∈ Ṽ] = E
[
x
(v,0)
v

]
= x (root(T

0),0) = x∗v as

x
(root(T 0),0)
v is deterministic. □

Then it is immediately true that the expected cost of T̃ is small.

Corollary 4.11. E[cost(T̃)] ≤ opt.

Proof. E[cost(T̃)] =
∑

v ∈V (T 0)

Pr[v ∈ Ṽ] · cv =
∑

v ∈V (T 0)

x∗vcv ≤

opt. □

Bounding Probability of a t ∈ K Appearing in T̃ . To finish the

proof of Theorem 4.2, it suffices to show that the probability that a

terminal label t ∈ K is provided by T̃ with high probability. Till the
end of the proof, we shall fix a label t ∈ K .

Letmt =
���{v ∈ Ṽ ∩V

leaf
: av = t }��� be the number of nodes in

Ṽ ∩V leaf
with label t . Our goal is to prove thatmt ≥ 1 with high

probability. The proof is almost the same as the counterpart in [29];

we include it here for completeness.

Lemma 4.12. E [mt] = 1.

Proof. By Corollary 4.10, we have

E[mt] = E
[���{v ∈ Ṽ ∩V

leaf
: av = t }���

]
=

∑
v ∈V leaf

:av=t

Pr[v ∈ Ṽ]

=
∑

v ∈V leaf
:av=t

x∗v = x∗
(root(T 0),t) = 1,

where the second-to-last equality follows from Claim 4.3, and the

last equality is by (9). □

Lemma 4.13. For everyw ∈ V leaf with aw = t , we have E[mt |w ∈
Ṽ] ≤ h + 1.

Proof. Assumew is at depth h′ in the tree T 0
. We partition the

set {w ′ ∈ V leaf\{w } : aw ′ = t } of leaves intoh′ setsU0,U1, · · · ,Uh′−1
according to the LCA ofw ′ andw :w ′ is inUi if the LCA ofw ′ and

w has depth i in the tree T 0
(the root root(T 0) has depth 0). Notice

thatw ′ , w and thus the LCA has depth between 0 and h′ − 1. We

show that for every i = 0, 1, · · · ,h′ − 1,

E
[
|Ui ∩ Ṽ |

���w ∈ Ṽ
]
≤ 1. (10)

Summing up the inequality over all i = 0, 1, · · · ,h′ − 1 and taking

w itself into account implies E[mt |w ∈ Ṽ] ≤ h′ + 1 ≤ h + 1.
Thus, it remains to prove (10). We fix an i ∈ {0, 1, · · · ,h′−1} and

let u be the ancestor ofw with depth i . Focus on anyw ′ ∈ Ui ; thus
u is the LCA of w ′ and w . Let (Sv)v ∈Λu be the vector (Sv)v ∈Λu
before Loop 8 in solve(u, ·, ·).

Given {Sv }v ∈Λu and x (u,sh) , the two eventsw ∈ Ṽ andw ′ ∈ Ṽ
are independent. Thus,

Pr

[
w ′ ∈ Ṽ ���{Sv }v ∈Λu ,x

(u,sh) ,w ∈ Ṽ
]

= Pr

[
w ′ ∈ Ṽ ���{Sv }v ∈Λu ,x

(u,sh)
]

= E
[
x
(w ′,0)
w ′

���{Sv }v ∈Λu ,x
(u,sh)

]
= x

(u,sh)
w ′ .

To see the third equality, consider the path u,u1,u2, · · · ,ut = w ′

from u tow ′ in T 0
. Then Claims 4.8 and 4.9 imply that conditioned

on {Sv }v ∈Λu and x (u,sh) , the sequence x (u1,0) ,

x (u1,1) , · · · ,x (u1,sh) ,x (u2,0) ,x (u2,1) · · · ,x (um−1,sh) ,x (ut ,0) is a mar-

tingale.

Summing up over allw ′ ∈ Ui , we have

E
[
|Ui ∩ Ṽ |

���{Sv }v ∈Λu ,x
(u,sh) ,w ∈ Ṽ

]
=

∑
w ′∈Ui

x
(u,sh)
w ′

=
∑

w ′∈Ui

x
(u,sh)
(w ′,t) ≤ x

(u,sh)
(u,t) ≤ 1.

The first inequality used Claim 4.3 andUi ⊆ Λleaf

u . Deconditioning

gives (10). □

Lemma 4.14. For every t ∈ K , we have E[mt |mt ≥ 1] ≤ h + 1.

O (log2 k/ log logk)-Approximation for Directed Steiner Tree. . . STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

Proof. In the following, w and w ′ in summations are over all

nodes in V leaf
with label t .

E[mt |mt ≥ 1]
2

≤ E[m2

t |mt ≥ 1] =
∑
w,w ′

Pr[w ∈ Ṽ ,w ′ ∈ Ṽ |mt ≥ 1]

(by Jansen’s inequality and the definition ofmt)

=
∑
w

Pr[w ∈ Ṽ |mt ≥ 1]

∑
w ′

Pr[w ′ ∈ Ṽ |w ∈ Ṽ ,mt ≥ 1]

=
∑
w

Pr[w ∈ Ṽ |mt ≥ 1]E[mt |w ∈ Ṽ]

(by the definition ofmt and thatw ∈ Ṽ impliesmt ≥ 1)

≤ (h + 1)
∑
w

Pr[w ∈ Ṽ |mt ≥ 1] (by Lemma 4.13)

= (h + 1) E[mt |mt ≥ 1] (by the definition ofmt).

This implies E[mt |mt ≥ 1] ≤ h + 1. □

Corollary 4.15. Pr[mt ≥ 1] ≥
1

h + 1
for every t ∈ K .

Proof. Notice that 1 = E[mt] = E[mt |mt ≥ 1] · Pr[mt ≥ 1].

The corollary follows from Lemma 4.14. □

Thus we have finished the proof of Theorem 4.2.

5 DISCUSSION AND OPEN PROBLEMS
In this paper, we close the gap on the approximability of DST

for the class of quasi-polynomial-time algorithms. However, there

is still a huge gap between the lower and upper bounds on ap-

proximation ratios for the class of polynomial-time algorithms. In

particular, it has been an open problem that perplexes many re-

searchers whether DST admits a polylogarithmic approximation

algorithm that runs in polynomial-time. There are both positive

and negative evidences that suggest DST may or may not admit

such algorithm. On one hand, Rothvoß [29] observes that despite an

algorithm based on hierarchical techniques (i.e., Sum-of-Squares)

runs in super polynomial-time due to the size of the lifted linear

program, the rounding algorithm itself reads only a polynomial

number of variables of the fractional solution with high probability.

This also applies to all the LP techniques including the folklore

path-tree formulation (please see, e.g., [24]). Thus, some may be-

lieve that DST admits polylogarithmic approximation algorithms

that run in polynomial-time. On the other hand, the factor nϵ /ϵ
that appears in the approximation ratio shows the same behavior

as in other problems whose trade-off between approximation ratio

and running-time are tight under the Exponential-Time Hypothe-

sis, e.g., Dense CSP [27] and Densest k-Subgraph [26]
4
. Our result

removes the factor 1/ϵ from the approximation ratio, suggesting

that DST may have a different behavior than the other problems

mentioned above. Nevertheless, our technique does not yield a

good trade-off between approximation ratio and running-time as

it requires exactly quasi-polynomial-time to remove such factor.

It seems that there is still a major barrier in answering the open

question.

4
In [27], the trade-off is slightly weaker, say O (nϵ

3

/ϵ)-approximation ratio versus

n1/ϵ
-running time.

ACKNOWLEDGMENTS
We would like to thank Uriel Feige for useful discussions over two

years, and we would like to thank Jittat Fakcharoenphol for useful

discussion on the balanced tree separator. We would like to thank

Pasin Manurangsi for pointing out the inapproximability results of

Dense CSPs and Densest k-Subgraphs.
F. Grandoni is partially supported by the SNSF Grants

200021_159697/1 and 200020B_182865/1.

B. Laekhanukit is supported by the National 1000-Youth Award

by the Chinese government. Parts of this work was done when

Laekhanukit was at the Weizmann Institute of Science, partially

supported by ISF grant #621/12 and I-CORE grant #4/11, while he

was visiting the Simons Institute for the Theory of Computing,

which was partially supported by the DIMACS/Simons Collabora-

tion on Bridging Continuous and Discrete Optimization through

NSF grant #CCF-1740425, and while he was at the Max-Plack Insti-

tute for Informatics.

S. Li is supported by NSF grant CCF-1566356 and CCF-1717134.

Some critical parts of this work were done while Li was visiting the

Institute for Theoretical Computer Science at Shanghai University

of Finance and Economics.

REFERENCES
[1] Yair Bartal. 1996. Probabilistic Approximations of Metric Spaces and Its Al-

gorithmic Applications. In 37th Annual Symposium on Foundations of Com-
puter Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October, 1996. 184–193.
https://doi.org/10.1109/SFCS.1996.548477

[2] MohammadHossein Bateni, Moses Charikar, and Venkatesan Guruswami. 2009.

MaxMin allocation via degree lower-bounded arborescences. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009. 543–552. https://doi.org/10.1145/1536414.1536488

[3] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. 2013.

Steiner Tree Approximation via Iterative Randomized Rounding. J. ACM 60, 1

(2013), 6:1–6:33. https://doi.org/10.1145/2432622.2432628

[4] Parinya Chalermsook, Fabrizio Grandoni, and Bundit Laekhanukit. 2015. On

Survivable Set Connectivity. In SODA. 25–36.
[5] Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel, Sudipto

Guha, and Ming Li. 1999. Approximation Algorithms for Directed Steiner Prob-

lems. J. Algorithms 33, 1 (1999), 73–91. https://doi.org/10.1006/jagm.1999.1042

[6] Chandra Chekuri, Guy Even, and Guy Kortsarz. 2006. A greedy approximation

algorithm for the group Steiner problem. Discrete Applied Mathematics 154, 1
(2006), 15–34. https://doi.org/10.1016/j.dam.2005.07.010

[7] Chandra Chekuri and Martin Pál. 2005. A Recursive Greedy Algorithm for Walks

in Directed Graphs. In 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings. 245–253.
https://doi.org/10.1109/SFCS.2005.9

[8] Joseph Cheriyan, Bundit Laekhanukit, Guyslain Naves, and Adrian Vetta. 2014.

Approximating Rooted Steiner Networks. ACM Transactions on Algorithms 11, 2
(2014), 8:1–8:22.

[9] Eden Chlamtac. 2007. Approximation Algorithms Using Hierarchies of Semidefi-

nite Programming Relaxations. In 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings.
691–701. https://doi.org/10.1109/FOCS.2007.13

[10] Marek Cygan, Fabrizio Grandoni, and Monaldo Mastrolilli. 2013. How to Sell

Hyperedges: The Hypermatching Assignment Problem. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013. 342–351. https://doi.org/10.1137/
1.9781611973105.25

[11] Alina Ene, Deeparnab Chakrabarty, Ravishankar Krishnaswamy, and Debmalya

Panigrahi. 2015. Online Buy-at-Bulk Network Design. In IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-
20 October, 2015, Venkatesan Guruswami (Ed.). IEEE Computer Society, 545–562.

https://doi.org/10.1109/FOCS.2015.40

[12] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. 2004. A tight bound on

approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69, 3 (2004),
485–497. https://doi.org/10.1016/j.jcss.2004.04.011

[13] Zachary Friggstad, Jochen Könemann, Young Kun-Ko, Anand Louis, Mohammad

Shadravan, and Madhur Tulsiani. 2014. Linear Programming Hierarchies Suffice

for Directed Steiner Tree. In Integer Programming and Combinatorial Optimization

https://doi.org/10.1109/SFCS.1996.548477
https://doi.org/10.1145/1536414.1536488
https://doi.org/10.1145/2432622.2432628
https://doi.org/10.1006/jagm.1999.1042
https://doi.org/10.1016/j.dam.2005.07.010
https://doi.org/10.1109/SFCS.2005.9
https://doi.org/10.1109/FOCS.2007.13
https://doi.org/10.1137/1.9781611973105.25
https://doi.org/10.1137/1.9781611973105.25
https://doi.org/10.1109/FOCS.2015.40
https://doi.org/10.1016/j.jcss.2004.04.011

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li

- 17th International Conference, IPCO 2014, Bonn, Germany, June 23-25, 2014.
Proceedings. 285–296. https://doi.org/10.1007/978-3-319-07557-0_24

[14] Naveen Garg, Goran Konjevod, and R. Ravi. 2000. A Polylogarithmic Approxi-

mation Algorithm for the Group Steiner Tree Problem. J. Algorithms 37, 1 (2000),
66–84. https://doi.org/10.1006/jagm.2000.1096

[15] Shashwat Garg, Janardhan Kulkarni, and Shi Li. [n. d.]. Lift and Project Algo-

rithms for Precedence Constrained Scheduling to Minimize Completion Time. In

Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, New Orleans, Louisiana, USA, January 6-8, 2019.

[16] Fabrizio Grandoni and Bundit Laekhanukit. 2017. Surviving in directed graphs:

a quasi-polynomial-time polylogarithmic approximation for two-connected di-

rected Steiner tree, See [20], 420–428. https://doi.org/10.1145/3055399.3055445

[17] Anupam Gupta, Ravishankar Krishnaswamy, and R. Ravi. 2010. Tree Embeddings

for Two-Edge-Connected Network Design. In Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas,
USA, January 17-19, 2010. 1521–1538. https://doi.org/10.1137/1.9781611973075.

124

[18] Mohammad Taghi Hajiaghayi, Rohit Khandekar, and Guy Kortsarz. [n. d.]. Ap-

proximating Group Steiner Tree via Configuration LP. ([n. d.]). Personal Com-

munication.

[19] Eran Halperin and Robert Krauthgamer. 2003. Polylogarithmic inapproximability.

In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, June
9-11, 2003, San Diego, CA, USA, Lawrence L. Larmore and Michel X. Goemans

(Eds.). ACM, 585–594. https://doi.org/10.1145/780542.780628

[20] Hamed Hatami, Pierre McKenzie, and Valerie King (Eds.). 2017. Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017. ACM. https://doi.org/10.1145/3055399

[21] Christopher S. Helvig, Gabriel Robins, and Alexander Zelikovsky. 2001. An

improved approximation scheme for the Group Steiner Problem. Networks 37, 1
(2001), 8–20. https://doi.org/10.1002/1097-0037(200101)37:1<8::AID-NET2>3.0.

CO;2-R

[22] Rohit Khandekar, Guy Kortsarz, and Zeev Nutov. 2012. Approximating fault-

tolerant group-Steiner problems. Theorerical Computer Science 416 (2012), 55–64.
[23] Bundit Laekhanukit. 2014. Parameters of Two-Prover-One-Round Game and The

Hardness of Connectivity Problems. In SODA. 1626–1643.

[24] Bundit Laekhanukit. 2016. Approximating Directed Steiner Problems via Tree

Embedding. In 43rd International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2016, July 11-15, 2016, Rome, Italy (LIPIcs), Ioannis Chatzi-
giannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi (Eds.),

Vol. 55. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 74:1–74:13. https:

//doi.org/10.4230/LIPIcs.ICALP.2016.74

[25] Elaine Levey and Thomas Rothvoss. 2016. A (1+epsilon)-approximation for

makespan scheduling with precedence constraints using LP hierarchies. In

Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2016, Cambridge, MA, USA, June 18-21, 2016. 168–177. https:

//doi.org/10.1145/2897518.2897532

[26] Pasin Manurangsi. 2017. Almost-polynomial ratio ETH-hardness of approxi-

mating densest k-subgraph, See [20], 954–961. https://doi.org/10.1145/3055399.

3055412

[27] PasinManurangsi and Prasad Raghavendra. 2017. A Birthday Repetition Theorem

and Complexity of Approximating Dense CSPs. In 44th International Colloquium
on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw,
Poland (LIPIcs), Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca

Muscholl (Eds.), Vol. 80. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

78:1–78:15. https://doi.org/10.4230/LIPIcs.ICALP.2017.78

[28] Gabriel Robins and Alexander Zelikovsky. 2005. Tighter Bounds for Graph

Steiner Tree Approximation. SIAM J. Discrete Math. 19, 1 (2005), 122–134. https:

//doi.org/10.1137/S0895480101393155

[29] Thomas Rothvoß. 2011. Directed Steiner Tree and the Lasserre Hierarchy. CoRR
abs/1111.5473 (2011). http://arxiv.org/abs/1111.5473

[30] Alexander Zelikovsky. 1993. An 11/6-Approximation Algorithm for the Network

Steiner Problem. Algorithmica 9, 5 (1993), 463–470. https://doi.org/10.1007/

BF01187035

[31] Alexander Zelikovsky. 1997. A Series of Approximation Algorithms for the

Acyclic Directed Steiner Tree Problem. Algorithmica 18, 1 (1997), 99–110. https:

//doi.org/10.1007/BF02523690

[32] Leonid Zosin and Samir Khuller. 2002. On directed Steiner trees. In Proceedings
of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January
6-8, 2002, San Francisco, CA, USA., David Eppstein (Ed.). ACM/SIAM, 59–63.

http://dl.acm.org/citation.cfm?id=545381.545388

https://doi.org/10.1007/978-3-319-07557-0_24
https://doi.org/10.1006/jagm.2000.1096
https://doi.org/10.1145/3055399.3055445
https://doi.org/10.1137/1.9781611973075.124
https://doi.org/10.1137/1.9781611973075.124
https://doi.org/10.1145/780542.780628
https://doi.org/10.1145/3055399
https://doi.org/10.1002/1097-0037(200101)37:1<8::AID-NET2>3.0.CO;2-R
https://doi.org/10.1002/1097-0037(200101)37:1<8::AID-NET2>3.0.CO;2-R
https://doi.org/10.4230/LIPIcs.ICALP.2016.74
https://doi.org/10.4230/LIPIcs.ICALP.2016.74
https://doi.org/10.1145/2897518.2897532
https://doi.org/10.1145/2897518.2897532
https://doi.org/10.1145/3055399.3055412
https://doi.org/10.1145/3055399.3055412
https://doi.org/10.4230/LIPIcs.ICALP.2017.78
https://doi.org/10.1137/S0895480101393155
https://doi.org/10.1137/S0895480101393155
http://arxiv.org/abs/1111.5473
https://doi.org/10.1007/BF01187035
https://doi.org/10.1007/BF01187035
https://doi.org/10.1007/BF02523690
https://doi.org/10.1007/BF02523690
http://dl.acm.org/citation.cfm?id=545381.545388

	Abstract
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Comparison to Previous Work
	1.3 Related Work

	2 Preliminaries
	3 Reducing Directed Steiner Tree to Group Steiner Tree on Trees with Dependency Constraint
	3.1 Decomposition Trees
	3.2 Construction of GSTTD Instance

	4 Approximation Algorithm for Group Steiner on Trees with Dependency Constraint
	4.1 Basic LP Relaxation
	4.2 Rounding a Lifted Fractional Solution

	5 Discussion and Open Problems
	Acknowledgments
	References

