O(log® k/loglog k)-Approximation Algorithm for Directed Steiner
Tree: A Tight Quasi-Polynomial-Time Algorithm

Fabrizio Grandoni Bundit Laekhanukit Shi Li
IDSIA Institute for Theoretical Computer =~ Department of Computer Science and
Switzerland Science Engineering
fabrizio@idsia.ch Shanghai University of Finance and University at Buffalo
Economics USA
China shil@buffalo.edu
bundit@sufe.edu.cn

ABSTRACT

In the Directed Steiner Tree (DST) problem we are given an n-vertex
directed edge-weighted graph, a root r, and a collection of k ter-
minal nodes. Our goal is to find a minimum-cost subgraph that
contains a directed path from r to every terminal. We present an
O(log? k/ log log k)-approximation algorithm for DST that runs in
quasi-polynomial-time, i.e., in time npolylog(k) By assuming the
<e<1ZPTIME(2”€),
and adjusting the parameters in the hardness result of Halperin
and Krauthgamer [STOC 03], we show the matching lower bound
of Q(log? k/ loglog k) for the class of quasi-polynomial-time algo-
rithms, meaning that our approximation ratio is asymptotically the
best possible. This is the first improvement on the DST problem

Projection Game Conjecture and NP ¢

since the classical quasi-polynomial-time O(log® k) approximation
algorithm by Charikar et al. [SODA’98 & J. Algorithms’99]. (The pa-
per erroneously claims an O(log? k) approximation due to a mistake
in prior work.)

Our approach is based on two main ingredients. First, we derive
an approximation preserving reduction to the Group Steiner Tree on
Trees with Dependency Constraint (GSTTD) problem. Compared to
the classic Group Steiner Tree on Trees problem, in GSTTD we are
additionally given some dependency constraints among the nodes
in the output tree that must be satisfied. The GSTTD instance has
quasi-polynomial size and logarithmic height. We remark that, in
contrast, Zelikovsky’s heigh-reduction theorem [Algorithmica’97]
used in all prior work on DST achieves a reduction to a tree instance
of the related Group Steiner Tree (GST) problem of similar height,
however losing a logarithmic factor in the approximation ratio.

Our second ingredient is an LP-rounding algorithm to approxi-
mately solve GSTTD instances, which is inspired by the framework
developed by [Rothvof3, Preprint’11; Friggstad et al., IPCO’14]. We
consider a Sherali-Adams lifting of a proper LP relaxation of GSTTD.
Our rounding algorithm proceeds level by level from the root to the
leaves, rounding and conditioning each time on a proper subset of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC 19, June 23-26, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6705-9/19/06....$15.00
https://doi.org/10.1145/3313276.3316349

label variables. The limited height of the tree and small number of
labels on root-to-leaf paths guarantee that a small enough (namely,
polylogarithmic) number of Sherali-Adams lifting levels is sufficient
to condition up to the leaves.

We believe that our basic strategy of combining label-based
reductions with a round-and-condition type of LP-rounding over
hierarchies might find applications to other related problems.

CCS CONCEPTS

« Theory of computation; - Design and analysis of algorithms;
« Approximation algorithms analysis; « Routing and network
design problems;

KEYWORDS

Directed Steiner Tree, Quasi-Polynomial Time, Sherali-Adams Hi-
erarchy

ACM Reference Format:

Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li. 2019. O (log? k / log log k)-
Approximation Algorithm for Directed Steiner Tree: A Tight Quasi-Polynomial-
Time Algorithm. In Proceedings of the 51st Annual ACM SIGACT Symposium
on the Theory of Computing (STOC ’19), June 23-26, 2019, Phoenix, AZ, USA.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3313276.3316349

1 INTRODUCTION

In the Directed Steiner Tree (DST) problem, we are given an n-vertex
digraph G = (V, E) with cost ¢, on each edge e € E, a root vertex
r € V and a set of k terminals K C V' \ {r}. The goal is to find a
minimum-cost subgraph H C G that contains an r — t directed
path for every terminal ¢t € K. W.l.o.g. we assume that edge costs
satisfy triangle inequality.

The DST problem is a fundamental problem in the area of net-
work design that is known for its bizarre behaviors. While constant-
approximation algorithms have been known for its undirected
counterpart (see, e.g., [3, 28, 30]), the best known polynomial-time
approximation algorithm for this problem could achieve only an

k€ logk

ol—==
€2

1/ log, k, due to the classical work of Charikar et al. [5]. Even al-

lowing this algorithm to run in quasi-polynomial-time, the best

approximation ratio remains O(log3 k) [5].! Since then, there have

approximation ratio in time 0(n'/€) for any 0 < € <

'The original paper claims an O(i’k"/?)-approximation in time O(n’) and an
O(log? k)-approximation in quasi-polynomial time; however, their result was based on
the initial statement of the Zelikovsky’s height-reduction theorem in [31], which was

https://doi.org/10.1145/3313276.3316349
https://doi.org/10.1145/3313276.3316349

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

been efforts to get improvements either in the running-time or
in the approximation guarantee of this problem, e.g, using the
the primal-dual method [32], Sum-of-Squares (a.k.a. Lasserre) hi-
erarchy [29], Sherali-Adams and Lovasz-Schrijver hierarchies [13].
Despite all these efforts, there has been no significant improve-
ment over the course of the last two decades for both polynomial
and quasi-polynomial time algorithms. In fact, it is known from
the work of Halperin and Krauthgamer [19] that unless NP C
ZPTIME (nP°Y1°8(m) it is not possible to achieve an approximation
ratio O(log?~€ k), for any constant e > 0, and such lower bound
applies to both polynomial and quasi-polynomial time algorithms.
This means that there is a huge gap between the upper bound of k€
and the lower bound of log?~€ k for polynomial-time algorithms.
All efforts were failed to obtain even an n°() -approximation algo-
rithm that runs in polynomial-time.

For the class of quasi-polynomial-time algorithms, the approxi-
mation ratio of O(log? k) is arguably disappointing. This is because
its closely related special case, namely, the Group Steiner Tree (GST)
problem, is known to admit a quasi-polynomial-time O(log? k)-
approximation algorithm on general graphs due to the work of
Chekuri and Pal [7]. A natural question would be whether such an
approximation ratio could be achieved in quasi-polynomial-time
for DST as well. Nevertheless, achieving this improvement with
the known techniques seems to be impossible. Indeed, all previous
algorithms for DST [5, 13, 29] rely on the well-known Zelikovsky’s
height-reduction theorem [21, 31]. These algorithms (implicitly)
reduce DST to GST on trees, which loses an ©(log k) approxima-
tion factor in the process. Furthermore, the Q(log?~€ k)-hardness
of Halperin and Krauthgamer [19] carries over to GST on trees.
We remark that algorithms for many related problems (see, e.g.,
[11, 16]) rely on the same height-reduction theorem.

1.1 Our Results and Techniques

The purpose of this work is to close the gap between the lower and
upper bounds on the approximability of DST in quasi-polynomial
time. Our main result is as follows.
. . log? k _
THEOREM 1.1. There is a randomized O | ———— |-approximation
loglog k

algorithm for DST with running time nOog’ k)

By analyzing the proofs in [19], we also show that this bound
is asymptotically tight under stronger assumptions; the proof is

deferred to the full version of the paper.

THEOREM 1.2. Unless NP C m0<6<IZPTIME(2”E) or the Pro-
jection Game Conjecture is false, there is no quasi-polynomial-
time algorithm for DST that achieves an approximation ratio of
o(log? k/ loglog k).

Our upper bound is based on two main ingredients. The first one
is a quasi-polynomial-time approximation-preserving reduction to
a novel Group Steiner Tree on Trees with Dependency Constraints
(GSTTD) problem. In GSTTD we are given an instance of GST on a
tree, and additionally we are given many dependency rules of the
form (v, S), where v is a vertex in the input tree and S is a subset

later found to contain a subtle flaw and was restated by Helvig, Robin and Zelikovsky

[21].

Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li

of descendants of v. The rule (v, S) requires that if v is selected in
the output tree, then at least one vertex in S must be selected. The
dependency rules will be used to guarantee that a feasible solution
induces a valid solution to the original DST problem. In our reduc-
tion the tree has size nP*'Y1°8(%) and height h = O(log k/ log log k),
with k terminals. For a comparison, Zelikovsky’s height-reduction
theorem [31], used in all prior work on DST, reduces (implicitly)
the latter problem to a GST instance over a tree of height O(log k).
However, this reduction alone loses a factor ®(log k) in the approx-
imation (while our reduction is approximation-preserving).

Our second ingredient is a quasi-polynomial-time O(log? k/
log log k)-approximate LP-rounding algorithm for GSTTD instances
arising from the previous reduction. Here we exploit the LP-hierarchy
framework developed by Rothvof} [29] (and later simplified by Frig-
gstad et al. [13]). We define a proper LP relaxation for the problem,
and solve an R-level Sherali-Adams lifting of this LP for a parameter
R = poly log k. We then round the resulting fractional solution level
by level from the root to the leaves. At each level we maintain a small
set of labels that must be provided by the subtree; they correspond
to the set of relevant dependency rules that are not satisfied yet.
By randomly rounding label-based variables and conditioning, we
push the set of labels all the way down to the leaves, guaranteeing
that the output tree always satisfies the dependency rules. Thanks
to the limited height of the tree and to the small number of labels
along root-to-leaf paths, a polylogarithmic number of lifting levels
is sufficient to perform the mentioned conditioning up to the leaves.
As in [29], the probability that each terminal appears in the tree we
directly construct is only 1/(h + 1). We need to repeat the process
O(hlogk) = O(log? k/loglogk) times in order to make sure all
labels are included with high probability, leading to the claimed
approximation ratio. Our result gives one more application of using
LP/SDP hierarchies to obtain improved approximation algorithms,
in addition to a few other ones (see, e.g., [2, 9, 10, 15, 25]).

We believe that our basic strategy of combining a label-based
reduction with a round-and-condition rounding strategy as men-
tioned above might find applications to other problems, and it might
therefore be of independent interest.

1.2 Comparison to Previous Work

Our algorithm is inspired by two results. First is the recursive
greedy algortihm of Chekuri and Pal for GST [7], and second is the
hierarchy based LP-rounding techniques by Rothvof; [29].

As mentioned, the algorithm of Chekuri and Pal is the first one
that yields an approximation ratio of O(log? k) for GST, which is a
special case of DST, in quasi-polynomial-time. This is almost tight
for the class of quasi-polynomial-time algorithms. Their algorithm
exploits the fact that any optimal solution can be shortcut into a
path of length k, while paying only a factor of 2 (such a path exists
in the metric-closure of the input graph). This simple observation
allows them to derive a recursive greedy algorithm. In more detail,
they try to identify a vertex that separates the optimal path into
two equal-size subpaths by iterating over all the vertices; then they
recursively (and approximately) solve two subproblems and pick
the best approximate sub-solution greedily. Their analysis, however,
requires the fact that both recursive calls end at the same depth
(because each subpath has length different by at most one).

O(log? k/ log log k)-Approximation for Directed Steiner Tree. ..

We imitate the recursive greedy algorithm by recursively split-
ting the optimal solution via balanced tree separators. The same
approach as in [7], unfortunately, does not quite work out for us
since subproblem sizes may differ by a multiplicative factor. This
process, somehow, gives us a decision tree that contains a branch-
decomposition of every solution, which is sufficient to devise an
approximation algorithm. Note, however, that not every subtree of
this decision tree can be transformed into a connected graph, and
thus, it is not guaranteed that we can find a feasible DST solution
from this decision tree. We introduce dependency rules specifically
to solve this issue.

The dependency rules could not be handled simply by applying
DST algorithms as a blackbox. This comes to the second component
that is inspired by the framework developed by Rothvof [29]. While
the framework was originally developed for the Sum-of-Squares
hierarchy, it was shown by Friggstad et al. [13] that it also applies
to Sherali-Adams, which is a weaker hierarchy. We apply the frame-
work of Rothvof3 to our Sherali-Adams lifted-LP but taking the
dependency rules into account.

1.3 Related Work

We already mentioned some main results about DST and GST. For
GST there is a polynomial-time algorithm by Garg et al. [14] that
achieves an approximation factor of O(log? k log n), where k is the
number of groups. Their algorithm first maps the input instance
into a tree instance by invoking the Probabilistic Metric-Tree Em-
beddings [1, 12], thus losing a factor O(log n) in the approximation
ratio. They then apply an elegant LP-based randomized rounding
algorithm to the instance on a tree. A well-known open problem
is whether it is possible to avoid the log n factor in the approxima-
tion ratio. This was later achieved by Chekuri and Pal [7]; however,
their algorithm runs in quasi-polynomial-time. Chekuri and Pal also
mentioned the slight improvement of O(log n/loglogn) for GST
in quasi-polynomial-time using enumeration. One would wish to
achieve the same approximation ratio for the case that the inputis a
tree; nevertheless, all the known O(log n/ log log n)-approximation
algorithms [6, 18] run in quasi-polynomial-time, and it has been an
open problem whether there exists a polynomial-time algorithm
that yields such approximation ratio (this would imply an improve-
ment for the general case as well).

Some works were devoted to the survivable network variants of
DST and GST, namely ¢-DST and £-GST, respectively. Here one
requires to have ¢ edge-disjoint directed (resp., undirected) paths
from the root to each terminal (resp., group). Cheriyan et al. [8]

showed that £-DST admits no 2°¢" " -approximation, for any ¢ > 0,
unless NP C DTIME(2P°Y108(")) Laekhanukit [23] showed that the
problem admits no £ v 2=¢_approximation for any constant £ > 0,
unless NP = ZPP. Nevertheless, the negative results do not rule
out the possibility of achieving reasonable approximation factors
for small values of £. In particular, Grandoni and Laekhanukit [16]
(exploiting some ideas in [24]) recently devised a poly-logarithmic
approximation algorithm for 2-DST that runs in quasi-polynomial
time.

Concerning £-GST, Gupta et al. [17] presented a O(log> nlogk)-
approximation algorithm for 2-GST. The same problem admits
an O(« log? n)-approximation algorithm, where « is the largest

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

cardinality of a group [22]. Chalermsook et al. [4] presented an
LP-rounding bicriteria approximation algorithm for ¢-GST that
returns a subgraph with cost O(log? nlog k) times the optimum
while guaranteeing a connectivity of at least Q(¢/log n). They also
showed that ¢£-GST is hard to approximate to within a factor of £,
for some fixed constant ¢ > 0, and if ¢ is large enough, then the
problem is at least as hard as the Label-Cover problem, meaning

that £-GST admits no 216 " -approximation algorithm, for any
constant € > 0, unless NP C DTIME(ZPO]YIOg(")).

2 PRELIMINARIES

Given a graph G’, we denote by V(G’) and E(G’) the vertex and
edge set of G’, respectively. Throughout this paper, we treat a rooted
tree as an out-arborescence; that is, edges are directed towards the
leaves. Given a rooted tree T, we use root(T) to denote its root. For
any rooted tree T and v € V(T), we shall use T[v] to denote the
sub-tree of T containing v and all descendants of v. For a directed
edge e = (u,v), we use head(e) = u and tail(e) = v to denote the
head and tail of e. Generally, we will use the term vertex to mean a
vertex of a DST instance, and we will use the term node to mean a
vertex in instances obtained from reductions.

Group Steiner Tree on Trees with Dependency Constraint. A new
problem we introduce is the Group Steiner Tree on Trees with
Dependency Constraint (GSTTD) problem. The input consists of a
rooted tree T° of size N = |V(T?)| and height h, a node cost vector

c € R‘Z/(()To)
(called groups) {K:}:ek, one for each terminal.

, a set K of k terminals, and a collection of k subsets

If our goal is to find the minimum-cost subtree T of T° containing
root(T%) and at least one vertex from each group K;, then the
problem is exactly GST on trees. In GSTTD, additionally we are
given a set L of dependency rules. Each rule is of the form (v, S),
where v € V(T°) and S is a subset of descendants of v in T. The
rule (v, S) requires that if v is chosen by T, then at least one vertex
in S must be chosen by T. We say this rule is associated with the
vertex v. The goal of the GSTTD problem is then the same as that of
GST on trees, with the requirement that T must obey all the rules.

In Section 4, we give an O(hlog k)-approximation algorithm in
running time (shN)O(Shz)—time for the GSTTD problem, where s
is the maximum number of rules associated with any given vertex.
Thus, we require s to be small in order to derive a quasi-polynomial-
time algorithm; fortunately, this is the case for the GSTTD instance
reduced from DST.

Balanced Tree Partition. A main tool in our reduction is the fol-
lowing standard balanced-tree-partition lemma, whose proof will
be deferred to the full version of the paper.

Lemma 2.1 (Balanced-Tree-Partition). For anyn > 3, for any n-
vertex tree T rooted at a vertexr, there exists a vertexv € V(T) such
that T can be decomposed into two trees Ty and Ty rooted at r and v,
respectively, in such a way that E(Ty)WE(T2) = E(T), V(T1)UV (T2) =
V(T) and V(T1) N V(T2) = {v} and |V (T1)|, |V(T2)| < 2n/3 + 1. In
other words, T1 and Ty are sub-trees that form a balanced partition of

(the edges of) T.

Sherali-Adams Hierarchy. In this section, we give some basic
facts about Sherali-Adams hierarchy that we will need. Assume we

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

have a linear program polytope # defined by Ax < b. We assume
that 0 < x; < 1,Vi € [n] are part of the linear constraints. The set of
integral feasible solutions is defined as X = {x € {0, 1}" : Ax < b}.
It is convenient to think of each i € [n] as an event, and in a solution
x € {0,1}", x; indicates whether the event i happens or not.

The idea of Sherali-Adams hierarchy is to strengthen the original
LP Ax < b by adding more variables and constraints. Of course,
each x € X should still be a feasible solution to the strengthened
LP (when extended to a vector in the higher-dimensional space).
For some R > 1, the R-th round of Sherali-Adams lift of the linear

[n]
SR) = {5 ¢ [n] :
[S| < R}. For every solution x € X, xs is supposed to indicate
whether all the events in S happen or not in the solution x; that

program has variables xg, for every S €

is, x5 = res i Thus each x € X can be naturally extended
to a 0/1-vector in the higher-dimensional space defined by all the
variables.

To derive the set of constraints, let us focus on the j-th constraint
n

Z aj,ix; < bj in the original linear program. Consider two subsets

i=1
S,T C [n] such that |S| +|T| < R— 1. Then the following constraint
is valid for X;i.e, all x € X, the constraint is satisfied:

[Ties xi [Tier (1 — xi) (Z?:I 4j,iXi — bj) <0.

To linearize the above constraint, we expand the left side of the
above inequality and replace each monomial with the correspond-
ing xs variable. Then, we obtain the following :

Srer(-1)IT (ZL aj,iXsuTIuliy — bijUT’) <0. (1)

The R-th round of Sherali-Adams lift contains the above con-
straint for all j, S, T such that |S| + |[T| < R — 1, and the trivial
constraint that x¢ = 1. For a polytope # and an integer R > 1, we
use SA(P, R) to denote the polytope obtained by the R-th round
Sherali-Adams lift of P. For every i € [n], we identify the variable
x; in the original LP and x{;, in a lifted LP.

Let x € SA(P, R) for some linear program % on n variables and
R > 2. Let i € [n] be an event such that x; > 0; then we can define
a solution x” € SA(P, R — 1) obtained from x by “conditioning" on

. () . r . Xsuli)
the event i. For every S € (R B 1), xg is defined as xXg = x—l
We shall show that x” will be in SA(®P, R — 1) (Property (2.2e)).

It is useful to consider the ideal case where x corresponds to a
convex combination of integral solutions in X. Then we can view
x as a distribution over X. Conditioning on the event i over the
solution x corresponds to conditioning on i over the distribution x.
The following standard facts hold.

Claim 2.2. For any x € SA(P,R) with R > 2, the following state-
ments hold:

(2.2a) xs = xg foreveryS C S’ € (Bl}\))

2.2b) Ifx; = 1 for somei € [n], then x(; y, = x;» for everyi’ € [n].
{i, i’} Y

(2.2c) Ifevery X € P has X; < Xy, then xy; i1y = Xi.

Letting x” be obtained from x by conditioning on some event i € [n],
the following holds:

Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li

(2.2d) x] = 1.
(2.2¢) x' € SA(P,R-1).
(2.2f) Ifxp € {0,1} for somei’ € [n], then x], = x;.

Keep in mind that the three properties (2.2a), (2.2d) and (2.2f)
will be used over and over again, often without referring to them.
(2.2d) says that conditioning on i will fix x; to 1. (2.2f) says that
once a variable is fixed to 0 or 1, then it can not be changed by
conditioning operations.

All the proofs that are omitted due to space constraints will
appear in the full version of the paper.

3 REDUCING DIRECTED STEINER TREE TO
GROUP STEINER TREE ON TREES WITH
DEPENDENCY CONSTRAINT

In this section, we present a reduction from DST to GSTTD. In
Section 3.1, we define a decomposition tree, which corresponds to
a recursive partitioning of a Steiner tree T of G. We show that the
DST problem is equivalent to finding a minimum cost decompo-
sition tree. Due to the balanced-partition lemma (Lemma 2.1), we
can guarantee that decomposition trees have depth O(log k), a cru-
cial property needed to obtain a quasi-polynomial-time algorithm.
Then in Section 3.2 we show that the task of finding a small cost
decomposition tree can be reduced to an GSTTD instance on a tree
of depth O(log k). Roughly speaking, for a decomposition tree to
be valid, we require that the separator vertex appears in both parts
of a partition: as a root in one part and possibly a non-root in the
other. This can be captured by a dependency rule.

We shall use T to denote a Steiner tree in the original graph G,
and u, v to denote vertices in G. We use 7 to denote a decomposition
tree, and a, § to denote nodes of a decomposition tree. T® will be
used for the input tree of the GSTTD instance. We use T for a
sub-tree of T® and p, g, o for nodes in T’. The convention extends
to variants of these notations as well.

3.1 Decomposition Trees

We now define decomposition trees. Recall that in the DST problem,
we are given a graph G = (V,E),arootr € V,andaset K C V'\ {r}
of k terminals.

Definition 3.1. A decomposition tree 7 is a rooted tree where each
node « is associated with a vertex p, € V(G) and each leaf-node
a is associated with an edge e, € E(G). Moreover, the following
conditions are satisfied:

(3.12) Hroot(r) =T

(3.1b) For every leaf f of 7, we have pg = head(eg).

(3.1c) For every non-leaf a of 7 and every child az of a with
Heay # Mo the following holds. There is a child a; of «
with pia, = pig such that yi4, = tail(eg) for some leaf § €
V(r[a1]). In particular, this implies that « has at least one
child a1 with pgo, = pg.

The cost of a decomposition tree 7 is defined as

COSt(T) = Za a leaf of rc(ea)'

We say a vertex v is involved in a sub-tree 7[a] of a decom-
position tree 7 if either v = g4 or there is a leaf § of 7[a] such

O(log? k/ log log k)-Approximation for Directed Steiner Tree. ..

{r.ab.e.de, fg.hij}

{e, f.g,h.i}

7

Figure 1: An example for construction of r*. For each node
¥, the set denotes the vertices in the sub-tree of T* corre-
spondent to the node; the i value of the node is the first ele-
ment in the set. For a leaf node, its e value is the edge from
the first element to the second element in the set.

that v = tail(eﬁ). So the second sentence in Property (3.1c) can be
changed to the following: There is a child a; of & with p14, = pig
such that 14, is involved in 7[a].

We show that the DST problem can be reduced to the problem
of finding a small-cost decomposition tree of depth O(log k) that
involves all terminals. This is done in two directions.

From Directed Steiner Tree to Decomposition Tree. We first show
that the optimum directed Steiner tree T* of G gives a good de-
composition tree 7* of cost at most that of T*, which we denote
by opt. Since we assumed costs of edges in G satisfy triangle in-
equalities, we can assume every vertex v € V(T") \ ({r} UK) has
at least two children in T*. This implies |V(T*)| < 2k. The decom-
position tree 7" can be constructed by applying Lemma 2.1 on T*
recursively until we obtain trees with singular edges. Formally, we
set T* « cstr-opt-dcmp-tree(T"), where cstr-opt-dcmp-tree is de-
fined in Algorithm 1. Notice that the algorithm is only for analysis
purpose and is not a part of our algorithm for DST.

Algorithm 1 cstr-opt-decmp-tree(T)

1: if T consists of a single edge (u, v) then
2 return a node § with g = u and eg = (u,v)

3: else

4 create a node a with 4 = root(T)

5 apply Lemma 2.1 to find two rooted trees T; and T with
root(Ty) = root(T)

6: 71 « cstr-opt-demp-tree(T7)
7 Ty « cstr-opt-demp-tree(T3)
8: return tree rooted at a with two sub-trees 71 and

Claim 3.2. 7" is a full binary decomposition tree of height O(log k)
and cost opt that involves all terminals in K. Moreover, for every
t € K, there is exactly one leaf B of t* with tail(eg) = t.

From Decomposition Tree to Directed Steiner Tree. For the other
direction, we proof the following lemma in the full version of the
paper:

Lemma 3.3. Given a decomposition tree T that involves all termi-
nals in K, we can efficiently construct a directed Steiner tree T in G
connecting r to all terminals in K with cost at most cost(7).

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

Thus, our goal is to find a decomposition tree of small cost
involving all terminals in K. To do so, we construct an instance of
the GSTTD problem.

3.2 Construction of GSTTD Instance

Let h be the O(log k) term in Claim 3.2 that upper bounds the height
of *. To save the factor of loglog k in the approximation ratio, we
shall “collapse” every g := [log, log, k] levels of a decomposition
tree into one level. It motivates the definition of a twig, which
corresponds to a full binary tree of depth at most g that can appear
as a part of a decomposition tree:

Definition 3.4. A twig is a rooted full binary tree 1 of depth at
most g, where

e each @ € V() is associated with a py € V(G), such that
for every internal node « in 7, at least one child @’ of « has
Ha’ = pa> and

o each leaf f of n may or may not be associated with a value
eg € E(G); if eg is defined then head(eg) = pp.

With the twigs defined, our GSTTD instance T° is constructed by
calling T® « cstr-gsttd-inst(r, 0), where cstr-gsttd-inst is defined
in Algorithm 2. See Figure 2 for illustration of one recursion of
cstr-gsttd-inst.

We give some intuition behind the construction of T°. We can
partition the edges of a decomposition tree 7 into an O(h/g)-depth
tree H of twigs. For each 7 in the tree, we apply the following
operation: replace 7 with a node g with g4 = 5, and insert a virtual
parent p of g with up = ji01(;) between this g and its actual parent.
Then idea behind the construction of T is that no matter what the
decomposition tree 7 is, we can find copy of the resulting tree in 1.
So there are two types of nodes in T°: (1) p-nodes are those created
in Step 1, which correspond to the virtual parents created and (2)
g-nodes are those created in Step 4, which correspond to the actual
twigs of H. Thus, we reduced the problem of finding H (and thus
7) to the problem of finding a subtree T of T°. The p-nodes will
be useful when we define the dependency rules L, which are used
to guarantee that T will correspond to a valid . In particular, the
rules created in Step 14 guarantee that if p is selected then so is
at least one child of p (for the optimum solution 7", exactly one is
chosen). The rules created in Step 9 for a fixed g guarantees that if
q is selected, then all children of g must be selected, while the rules
created in Step 13 guarantee Property (3.1c) of 7. The collection of
groups {Ky }o ek are constructed in Step 6, where we add a node ¢
to a group Ky if ng contains a leaf § with tail(eg) = v.

Remark 3.5. The u and 7 values of nodes in T are irrelevant for
the GSTTD instance. They will, however, help us in mapping the
decomposition tree to its corresponding solution to GSTTD.

A simple observation we can make is the following:

Claim 3.6. TO is a rooted tree with nO0g" k/loglog k)
height O(h/g) = O(logk/loglogk), wheren = |V (G)|.

It is easy to see that a node p will be associated with exactly one
rule created in Step 14, while a node g can be associated with up
to 0(29) = O(logk) rules. So, the parameter s, i.e, the maximum
number of rules a node is associated with, is O(log k).

vertices and

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li

Algorithm 2 cstr-gsttd-inst(u, j)

1: create a new node p withcp = 0and up = u

2 if j = [ﬁ/g] then return p

3: for each possible non-singular twig 7 with piot(;) = u do
4 create a new child g of p with ¢g =

5 for every leaf § of n with eg defined do

leaf 8 of n:eg defined C(eﬁ) and Ng =1

6: if tail(eg) € K then add the node g to the group (Ktaﬂ(eﬁ)

7: for every leaf § of) with eg undefined do

8: Tz cstr-gsttd-inst(ug, j + 1), let root(Tz) be a child of g

9 add a new rule (q, {root(T%)}) toL

10: for every internal node « of do

11: let oty be a child of & with piq, = p¢ and a2 be the other child

12: if pig, # pg and E leaf f of n[a1] with eg defined and tail(eﬁ) = g, then
13: add the rule (g, S) to L, where

S:= {q’ : AP € ng, with eg undefined, ¢’ € T4 contains a leaf §” with ep defined and tail(ep) = llaz} .

B

14: add the rule (p,{q : g is a child of p}) to L
15: return the tree rooted at p

__-p-node
q—11pdes

Figure 2: Illustration for one recursion of cstr-gsttd-inst. Each
p-node has a u), value, and each g-node is associated with a
twig ng with Hroot(14) being the u value of its parent p-node.
Each child p’ of g corresponds to a leaf § of 14 with e 5 unde-
fined.

We then show that the problem of finding a decomposition tree
can be reduced to that of finding a valid sub-tree of T°. Again, this
is done in two directions.

From Decomposition Tree to GSTTD. To show that there is a valid
subtree T* of T°, we need to construct a tree of twigs from 7*. This
is done as follows. For every i = 0, 1,2, - - -, and every internal node
a in * of depth ig, we create a twig rooted at a containing all
descendants of « at depth ig,ig + 1,ig + 2,- -, (i + 1)g. Let V be
the set of twigs created. A rooted tree H over V can be naturally
defined: a twig 7 is a parent of 5’ if and only if root(y”) is a leaf in
1. So, H has depth at most [ﬁ/g}.

T* can be found naturally by calling cstr-opt-gsttd (root(T?), root(H))
(with T* being empty initially), where cstr-opt-gsttd is defined in

Algorithm 3, and the trees Tz are as defined in Algorithm 2. The

recursive procedure takes two parameters: a node p in T and a
twig n € V. It is guaranteed that up = i01(5): The root recur-
sion satisfy this condition since urqot(10) = Hroot(root(H)) = 73 in

Algorithm 3 cstr-opt-gsttd(p,)

1: add p and the child g of p with ng = nto T* » such a g exists
since proot(y) = Up

2: for every leaf f of i such that eg is not defined do

3: let n’ be the twig in V with root(n’) =

4 cstr-opt-gsttd (root(Tz), 1)

Step 4, we also have umot(T%) = Hg = Hroot(y)- The tree can be

constructed as H has depth at most [fz/g]. Again, this algorithm
is only for analysis purpose and is not a part of our algorithm for
DST.

Lemma 3.7. T* is a sub-tree of T° obeying all the dependency rules
and having cost exactly cost(r*) = opt. Moreover, for everyt € K,
T* contains exactly one node in K.

From GSTTD to Decomposition Tree. The following lemma gives
the other direction.

Lemma 3.8. Given any feasible solution T to the GSTTD instance
T°, in time poly(IV(T)|) we can construct a decomposition tree T with
cost(r) = cost(T). Moreover, if a group K;, fort € K, is spanned by
T, then t involves t.

Wrapping up. We prove the following theorem in the next sec-
tion. Recall that N and h are respectively the size and height of the
input tree T° to the GSTTD instance, and k is the number of groups.

THEOREM 3.9. There is an O(hlog k)-approximation algorithm in
running time (shN)O(Shz) for the Group Steiner Tree on Trees with
Dependency Constraint problem where s is the maximum number of
rules associated with a given vertex.

O(log? k/ log log k)-Approximation for Directed Steiner Tree. ..

With this theorem at hand, we finish our O(log? k/ loglog k)-
approximation for DST that runs in quasi-polynomial time. Given
a DST instance, we shall construct the GSTTD instance TO of size
N = nOUog’ k/loglogk) 5 g height » = O(logk/loglogk) as in
Algorithm 2. Notice that for the GSTTD instance, we have s =
O(logk). By Claim 3.2 and Lemma 3.7, there is a solution T* to
the GSTTD instance T° of cost at most opt. Applying Theorem 3.9,
we can obtain a feasible solution T of cost at most O(hlogk) -
opt = O(log? k/ log log k) - opt in time (shN)O(Shz) = pOlog’ k) (as

P 8 glog P
s = O(log k)). Applying Lemma 3.8 and Lemma 3.3, we can obtain a
Directed Steiner tree T in G of cost at most O(log? k/ loglog k) - opt
connecting r to all terminals in K. This gives an O(log? k/ log log k)-

a - . N O(log® k) g s qns
pproximation for DST in running time n , finishing the
proof of Theorem 1.1.

4 APPROXIMATION ALGORITHM FOR
GROUP STEINER ON TREES WITH
DEPENDENCY CONSTRAINT

The goal of this section is to prove Theorem 3.9, which is repeated
below.

THEOREM 3.9. There is an O(hlog k)-approximation algorithm in
running time (shN)O(Shz) for the Group Steiner Tree on Trees with
Dependency Constraint problem where s is the maximum number of
rules associated with a given vertex.

Since we are not dealing with the original DST problem any more,
we use T°, T (instead of T°, T) for trees and u, v (instead of p,q) for
nodes in this section: T is the input tree while T is the tree we
need to output. Let vleaf ang yint respectively be the sets of leaves
and internal nodes of T°. For every node v € Vint, let Ay, be the set
of children of v. For every v € V(T?), let Aljaf = V(T°[v]) n vieaf
be the set of descendants of v that are leaves.

For convenience of description, we shall introduce two types of
labels: each rule in L corresponds to a rule label and each terminal
t € K corresponds to a terminal label. So, we also view L and K
as the set of rule labels and terminal labels respectively. For each
rule £ = (v, S) € L, we say that v is demanding the rule label ¢, and
all the vertices in S are supplying ¢. For every terminal ¢t € K, we
also say all vertices in K} are supplying the terminal label ¢. For
every node v € V(T°), let dem(v) C L be the set of labels that v is

demanding. Thus, we have s = max |dem(v)|.
veV(T?)

We can assume that the demand labels are only at the internal
nodes: a rule associated with a leaf is either useless or can never be
satisfied if the leaf is contained in T. We can assume only leaves
can supply labels and each leaf is supplying exactly one label. A
leaf that does not supply a label can be removed. For a non-leaf
v supplying some labels, we can attach many leaves of cost 0 to
v and let each leaf supply one label. Similarly, if a leaf v supplies
more than one labels, we can attach many new leaves to v and let
each of them supply one label. With this property, we can define
ay € L be the unique label that v supplies, for every v € yleaf,

Thus, a subtree T of T° with root(T) = root(T?) is valid if the
following two conditions are satsfied.

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

o (dependency rules) All the demand rule labels in T are supplied
by T:if for every u € V(T) N V™ and ¢ € dem(u), there is a node
v e V(T) N A with a,, = ¢.

o (terminal conditions) All the terminal labels are supplied by T:
for every t € K, thereisav € V(T) N vieal with ap =t.

0
Recall that we are given a node-cost vector ¢ € R‘Z/(()T). The cost
of a sub-tree T of T°, denoted as cost(T), is defined as cost(T) :=
Zvev (T)c”' Thus, the goal of GSTTD is to find the minimum cost

valid subtree T of T°.

A small note is that we changed the height and size of T slightly
when we attach new leaves to T’. We consider these changes now.
Abusing notations slightly, we shall use N’ and h’ to store the size
and height of the old T? (i.e, the T° before we apply the operations),
and N and h be the size and height of the new T° (i.e, the T® after
we apply the operations). Notice that we only attached leaves to
the nodes in the original T°. So, we have k < h’ + 1. The number of
internal nodes in the new T? is at most N’. If a node has many leaf
children v with the same a,,, we only need to keep the one with the
smallest cost. Since each u has |[dem(u)| < s and the height of the
old T is b/, we can assume that the number of leaves in the new T°
is at most s(h’ +1)N’ +k.So N < s(h’ +1)N' + N’ +k = O(sh’N’).

Let T* be the optimum tree for the given instance. Let opt =
cost(T*) be the cost of the T*.? We can assume the following:

(4.1a) For every label £ € L U K, at most one node in T* supplies
L.

Indeed, if there are multiple such nodes v, we can keep any one

without breaking the validity of the tree. Notice that for a terminal

label ¢ € K, exactly one node supplies ¢ by terminal conditions.
The main theorem we shall prove is the following

THEOREM 4.2. There is an (sN)O(Shz) -time algorithm that outputs
a random tree T obeying the dependency rules such that, E [c(f)] <

opt, and for every t € K, T supplies t with probability at least

1
h+1

With theorem 4.2, we can finish the proof of Theorem 3.9.

Proor oF THEOREM 3.9. We run O(hlog k) times the algorithm
stated in Theorem 4.2 and let T’ be the union of all the trees T

produced. It is easy to see that T’ obeys the dependency rules. The
expected cost of T’ is

E [cost(T")] < O(hlogk)opt.

If the O(hlog k) term is sufficiently large, by the union bound, we
can obtain

Pr [T’ supplies all labels in K| > 1/2. (2)

We repeatedly run the above procedure until T’ supplies all
labels in K and output T’. Let T be this tree. Then we have
E [cost(Tﬁnal)] < O(hlog k)opt due to (2). In expectation we only
need to run the procedure twice.

2We remark that it is easy to check whether a valid solution exists or not: an u € V™
is useless if for some ¢ € dem(u) thereisno v € Aljﬂf with a,, = €. We repeatedly
remove useless nodes and their descendents until no such nodes exist. There is a valid
solution iff the remaining T° supplies all the terminal labels. So, we can assume that
the instance has a valid solution.

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

Thus, we obtain an O(hlog k)-approximation for GSTTD. The
running time of the algorithm is (sN)O(Shz) = (sh'N’)O(Shlz). Re-
call that h’ and N’ are the height and size of T° before we applied
the operations; thus the theorem follows. O

Thus, our goal is to prove Theorem 4.2. Our algorithm is very
similar to that of [29] for GST on trees. We solve the lifted LP
relaxation for the GSTTD problem and then round the fractional
solution via a recursive procedure. In the procedure, we focus on
some sub-tree T[], and we are given a set L’ C L of rule labels
that must appear in T[u], where T is our output tree. We are also
given a lifted LP solution x; we can restrict x on the tree TO[u].
The set L’ of labels appear in T°[4] fully according to x. Then, for
every £ € L’, we randomly choose child v of u that is responsible
for this ¢ and then apply some conditioning operations on x. We
recursively call the procedure for the children of u. This way, we can
guarantee that the tree T we output always obeys the dependency
rules. Finally, we show that each terminal label v € K appears in T
with large probability, using a technique that is very similar to that
of [29]. 3

4.1 Basic LP Relaxation

The remaining part of the section is dedicated to the proof of
Theorem 4.2. We formulate an LP relaxation that aims at find-
ing the T*, where the variables of the LP are indexed by D =
V(T% U (V(T°) x (L U K)). We view every element in I also as
an event. Supposedly, an event u € V(T°) happens if and only if
u € V(T*), and an event (u,£) € V(T°) x (L U K) happens if and
only if u € V(T*) and T*[u] supplies ¢ (i.e, Al,faf N V(T*) contains
a v with label a,, = €; such a node is unique if it exists by Property
(4.1a)). For every e € D, x, € {0, 1} is supposed to indicate whether
event e happens or not. Then the following linear constraints are
valid:

Xy < Xy, Yue Vi o e A, (3)
X(u,b) < Xu, Vu e V(T%),0 e LUK (4)
X(u,£) = Xus Vu € VI ¢ € dem(u) (5)

X(v,a,) = Xvs Vo e yleaf (6)

X(u,0) = Z X(v,£) Yu € Vint,f eLUK (7)

veEN,
X(o.0) =0, Vo e v 4, (8)
x(root(To),l’) =1, YVl e K (9)

(3) holds since T* is rooted sub-tree of T° with root(T*) =
root(T?), (4) holds by definition of events, (5) follows from that
T* obey the dependency rules, and (6) holds trivially. (7) follows
from Property (4.1a). (8) holds trivially and (9) follows from the
terminal conditions.

3Notice that in previous work, we either apply the basic LP relaxation for the quasi-
polynomial size instances on trees obtained by expanding the original instance, or
apply LP/SDP hierarchy on the original instance on general graphs [13, 29]. Our
algorithm does both: it applies Sherali-Adams hierarchy on the expanded instance.

Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li

Let P be the polytope containing all vectors x € [0, 11 satisfying
constraints (3) to (9). The following simple observation can be made:

Claim 4.3. Foreveryx € P, u' e V(TO), and ¢’ € LUK, we have

Z Xo, &' = Xy, ¢’ -

venkeaf
u

Proor. The claim holds trivially if u e viel When o' ¢ Vleaf,
summing up (7) over all internal nodes u in TO[u’'] and ¢ = ¢’ gives
the equality. O

4.2 Rounding a Lifted Fractional Solution

Let R = O(sh?) be large enough. Since # contains an integral solu-
tion of cost at most opt, we can find a solution x* € SA(P, R) with

" . N O(sh?) _ O(sh?)
ZveV(To)cvxv < opt in running time |D| = (sN) .

Remark 4.4. Indeed, our algorithm only needs to use variables that
correspond to paths of T starting at the root. Using this one can
remove a log k/loglog k factor from the exponent of the running
time. However, we choose to use the Sherali-Adams hierarchy as it
is much easier to describe.

In the main rounding algorithm (Algorithm 4), we start with V =
0 and then call solve(root(T?), dem(r~oot(T0)), x*), as degcribed in
Algorithm 5. We output the subtree T of T® induced by V.

Algorithm 4 Main Rounding
Given: x* € SA(P,R).
Output: subtree T of T® obeying dependency rules

1: ‘7 — 0
2. solve(root(T?), d~em(root(T0)),~x*)
3: return the tree T induced by V'

Algorithm 5 solve(u, L', x)

. VeVu {u}
2 if u € V' then return
3: let Sy, « O for every v € Ay
4 forevery £ € L' do
5 randomly choose a child v of u, so that v is chosen with
probability x(,, ¢y (see Property (4.5b))
Sy — Sp U {£)
x « x conditioned on the event (v, {)

N

=3

: for every v € Ay, with probability x,, do
9 solve(v, Sy, U dem(v), x conditioned on event v)

In the recursive algorithm solve(u, L', x), u is the current node
we are dealing with. L’ is the set of labels that must be supplied in
T[u]; in particular, we shall guarantee that dem(u) C L. x is the
LP hierarchy solution that is passed to u, which satisfies x;, = 1
and x(,, ¢) = 1forevery £ € L’ (Property (4.5a) in Claim 4.5 that
appears later). We add u to V in Step 1; thus the final T contains
the set of nodes for which we called solve.

Ifue Vleaf, we then do nothing; so focus on the case u ¢
To guarantee that a label £ € L’ is supplied in T[u], we need to

Vleaf)

O(log? k/ log log k)-Approximation for Directed Steiner Tree. ..

specify one child v of u such that T[] supplies £; we say that v is
responsible for this label ¢. This is done via a random procedure
by using the solution x as a guide: the probability that v is chosen
is exactly x(,, ¢y (Step 5). We shall show that ZveAuxv’[=1

(Property (4.5b)) and thus the process is well-defined. After choosing
the v for this £ € L’, we update x by conditioning on the event
(v, £) (Step 7). So far the number of nested conditioning operations
we apply on x is |L’|; we will see soon that |L’| is small and thus
we can apply these operations.

For every v € Ay, let Sy, be the set of labels in L’ that v is
responsible for. In Loop 8, we independently and recursively call
solve on the children of u. Notice that x;, is the extent to which v is
included in V(T*). So we only call solve on v with probability x,,;
the LP solution passed to the sub-recursion is x conditioned on the
event v. In particular if S;, # 0 then x,, = 1. We remark that the
conditioning operations for all children v of u are done “in parallel”
and thus we “lose only 1 level” of our Sherali-Adams lifting.

We now analyze the algorithm. To prove Theorem 4.2, we need
to show that T obeys the dependency rules and has small expected
cost; moreover, every label ¢t € K is provided by T with large enough
probability. Let us first assume that the number R of rounds is large
enough so that all the conditioning operations can be applied. We
start from some simple observations for the algorithm.

Claim 4.5. For every recursion of solve that the algorithm invokes,

(4.5a) at the beginning the recursion, we have x, = 1 and x(, ¢) = 1
foralll e L, and

(4.5b) the random sampling process in Step 5 is well-defined: we have

vep X0 =1 before the step.

PROOF. (4.5a) holds for the root recursion as (9) implies xjoot (1) =

: : * — *
1and (5) implies Xroot(T9), £ = Froot(T?)

Now assume (4.5a) holds for some recursion for u ¢ yleaf So, at
the beginning of an iteration of Loop 4, we have x,, o = 1 for every
¢ € L. Thus, by (7), we have Z Xp,¢ = 1, implying (4.5b) for this

veEN,
recursion.

Since we conditioned on the event (v, £) in Step 7 after adding £ to
Su, we have x(,, ¢y = 1 for every v € Ay, and ¢ € S, after finishing
Loop 4. (Notice that Property (2.2f) says that once a variable has
value 0 or 1, conditioning operations do not change its value.) Focus
on Step 9 for some v € Ay, and let x” be the x passed to the sub-
recursion, i.e, x” is obtained from x by conditioning on the event
v. Then we have that x,, = 1 and x('v’ p=1 for every £ € S,,. Also,

x('v 0= x,, = 1for every £ € dem(v) by (5). Since L” = S, Udem(v)
in the sub-recursion of solve for v, (4.5a) holds for the sub-recursion
for v. O

Claim 4.6. The tree T returned by Algorithm 4 obeys the dependency
rules.

Proor. When we call solve for an u, it is guaranteed that dem(u) C
L’ (by Step 2 in Algorithm 4 and Step 9 in Algorithm 5). By the way
we construct S;,’s in Loop 4 of Algorithm 5, each label £ € dem(u)

= 1forevery ¢ € dem(root(T?)).

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

will be passed down all the way to some leaf node v € Al,faf. By Prop-
erty (4.5a) for the recursion of solve for v, we must have x,, , = 1 at
the beginning of this recursion. Then by (8), £ = a;, must hold. O

Claim 4.7. IfR = O(sh?) is large enough, then all the conditioning
operations can be performed.

Proor. Notice that for the recursion of solve for u, the size of |L’|
passed to the recursion is at most s(depth(u) + 1), where depth(u)
is the depth of u in the tree TO, i.e, the distance from root(To) to
u. This holds since in a recursion of solve for u, S;,’s are subsets of
L’, and the L’ passed to the sub-recursion for v is S;, U dem(v) and
|dem(v)| < s.

Inside each recursion of solve, the number of nested conditioning
operationsis [L’|+1 < s(depth(u)+1) < s(h+2). Since the recursion
can take up to h + 1 levels, the number R of rounds we need is at
most s(h + 2)(h + 1) + 1 = O(sh?). o

Notations and Maintenance of Marginal Probabilities. We say
that an event e € D is inside T°[u] for some u € V(T°) if either
e=ve V(Tu]) ore = (v,£) for some v € V(T°[u]). For every
integer i € [0, sh], let x(% 1) be the value of x after the i-th iteration
of Loop 4 in the recursion solve(u, -, -). If this recursion does not
exist, then let %1 be the all-0 vector over D; if this recursion exists
but Loop 4 terminates in less than i iterations in the recursion, then
let x(*) be the value of x at the end of the loop. Notice that Loop 4
terminates in at most sh iterations from the proof of Claim 4.7.

The randomness of the algorithm comes from Steps 5 and 8 in
solve. Each time we run Step 5 or 8, we assume we first generate
a random number and then use it to make the decision. We say
a random number is generated before x®D_if the random num-
ber is generated in solve(u’, -, -) for some ancestor u’ of u, or in
solve(u, -, -) before or at the i-th iteration of Loop 4. Notice that
each x(*1) is completely determined by the random numbers gen-
erated before it. The following two claims state that the marginal
probabilities of events are maintained in our random process.

Claim 4.8. Letu € V(T°),i € [sh], x°M = x(#®171 gpg x"eV =
x®D Let & be any event determined by the random numbers gener-

ated before x°4 = x4~V Then, for every e € D, we have

E[x2¢%|xMd, £] = %94,

Proor. Conditioned on that the i-th iteration of solve(u,-,)
does not exist, the equality holds trivially. So we condition on that
the iteration exists. Let L’ be the L’ passed to solve(, -, -); then the
¢ handled in the i-th iteration is determined by L’ and i. So,

xold()
new|_old y/] _ old | {e,(v,0)}
B [, 1] = UEZA: Xw.0)" T old
u (’U,f)
_ old _ old _ .old
= ZA Fle,(,0) T Xe,(u,0)) = Fe
vEA,

The first equality is by the random process for choosing v and
the definition of the conditioning operation. The second-to-last

equality follows from Constraint (7), and the last equality follows

from xz)id 0= 1 and Property (2.2b).

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

Also, given x4 and I/, the random process in the i-th iter-
ation of solve(u, -,-) does not depend on the random numbers
generated before x° and thus does not depend on &. Therefore,
E [xrgew|xold,L/ 8] _
old

x°ld. Deconditioning over L’ and the compo-

other than xOIO1 gives

E [xgew|xgld, 8] = x?ld. |

nents inside x

Claim 4.9. Letu € Vint, v E Au,xOld = x(Wsh) g mew _ (2,0),
Let & be any event determined by the random numbers generated

old — y(wsh) Tphep, for any event e inside T°[v], we have

E [xgew|xgld, 8] = xgld.

before x

Proor. Again we can condition on the event that the recur-
sion solve(u, -, -) exists. Consider the iteration of Loop 8 for v in
solve(u, -, -). We have

Hold
new| old o] _ . old, “{&0) _ old _ old
E[xe |x ,8] =x5 X od ~ Flew) =X .

The first equality holds since we make the recursive call for v
with probability x3'%; given x°'¢, this is independent of &. The last
equality comes from that event e is inside T°[v] and thus %, < %,

for every X € P; Property (2.2c) gives the equality.
Again, deconditioning over the components inside x°4 other

than x99 gives E [new|x°1d 8] xS, o

Corollary 4.10. For everyv € V(T%), we have Pr[v € V] = x5,

Proor. Let u; = root(TO),uz, --+,uy = v be the path from

root(T?) to v in T°. Applying Claims 4.8 and 4.9, we can obtain
(ul,o) (141,1) (ul’Sh) (quO) (uz,1)

that the sequence x, . Xy , Xy sttt
(uz,sh) (u 0) (u ,1) (u ,Sh) (u4r,0)
x2S et et -1 xy - forms a mar-

tingale. This holds since all varlables before a variable x> in
the sequence are determined only by random numbers generated

before x(*)) Thus Pr[v € V] [(o, 0)] x(root(T%),0) _ X, as
ngOt(TO)’O) is deterministic. |

Then it is immediately true that the expected cost of T is small.
Corollary 4.11. E[cost(T)] < opt.
Z Pr[v € V] Z XpCo <

veV(TY) veV(T?)
opt. O

Proor. E[cost(T)] =

Bounding Probability of a t € K Appearing in T. To finish the
proof of Theorem 4.2, it suffices to show that the probability that a
terminal label ¢ € K is provided by T with high probability. Till the
end of the proof, we shall fix a labelt € K.

Let m; = |{v evnve . g = t}| be the number of nodes in

V n V' with label t. Our goal is to prove that m; > 1 with high
probability. The proof is almost the same as the counterpart in [29];
we include it here for completeness.

Lemma 4.12. E[m;] = 1.

Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li

Proor. By Corollary 4.10, we have

weill = 3

veVief.q =t

E[m:] =E “{v e Vvl

_ *
= xv

veVleal.g =t

Prlv e V]
= xzroot(TU),t) =1

where the second-to-last equality follows from Claim 4.3, and the
last equality is by (9). O

Lemma 4.13. For every w € V'

V]<h+1.

with a,, = t, we have E[m;|w €

PROOF. Assume w is at depth A’ in the tree T°. We partition the
set {w’ € Vleaf\{w} : ayy = t}ofleavesinto b’ sets Uy, Uy, - -+ , Upr_4
according to the LCA of w’ and w: w’ is in Uj; if the LCA of w’ and
w has depth i in the tree T9 (the root root(T°) has depth 0). Notice
that w” # w and thus the LCA has depth between 0 and b’ — 1. We
show that for every i = 0,1,--- ,h’ — 1,

E[lUinVijwe V] <1. (10)

Summing up the inequality over all i = 0,1,--- ,h’ — 1 and taking
witself into account implies E[m;|w € V] <A +1 < h+ 1.

Thus, it remains to prove (10). We fixani € {0,1,--- ,h’—1} and
let u be the ancestor of w with depth i. Focus on any w’ € U;; thus
u is the LCA of w’ and w. Let (Sy)pen,, be the vector (Sy)pea,
before Loop 8 in solve(u, -, -).

(u,sh)

Given {Sy}yen, and x ,the two events w € Vand w’ € V

are independent. Thus,

Pr [w’ € V|{Sv}v€Au,x(”’Sh),w € \7]
=DPr [w' € V|{Sv}v€Au,x(”’5h)]

g [xiv‘f"o)|{5v}veAu’x(“ sh)] (u sh).

To see the third equality, consider the path u, uy,ug, -+ ,u; = w’

from u to w” in T°. Then Claims 4.8 and 4.9 imply that conditioned
on {Sylper, and xsh) - the x(U1:0),
wln) oo unsh) o (u2,0) (un1)
tingale.

Summing up over all w’ € U;, we have

sequence

wlm15h) 3 @r0) i 0 mar

E[1U; nVI[(So}oen,:

_ (u,sh) (u,sh)
= Z Xty SXwy ST
w’ eU;

x(®sh) 4 e \7] =

Z xf:/,sh)

w’ eU;

The first inequality used Claim 4.3 and U; C Alzfaf. Deconditioning
gives (10). O

Lemma 4.14. Foreveryt € K, we have E[m;|m; > 1] < h + 1.

O(log? k/ log log k)-Approximation for Directed Steiner Tree. ..

Proor. In the following, w and w’ in summations are over all
nodes in V!¢ with label .

E[m;|m; > 1]?

< E[m§|mt

\%

1] = Z Priw e V,w’ € V|m; > 1]
w,w

(by Jansen’s inequality and the definition of m;)

= ZPr[w e Vims > 1] ZPr[w' eViweV,ms > 1]
™ ;

w

= ZPr[w € Vims > 11E[ms|w € V]
w

(by the definition of m; and that w € V implies m; > 1)

<(h+1) Z Pr[w € V|m; > 1] (by Lemma 4.13)
w

= (h+ 1) E[m¢|m; = 1] (by the definition of m;).

This implies E[m;|m; > 1] < h + 1. |
1
Corollary 4.15. Pr[m; > 1] > P foreveryt € K.
Proor. Notice that 1 = E[m;] = E[m¢|m; > 1] - Pr[ms > 1].
The corollary follows from Lemma 4.14. O

Thus we have finished the proof of Theorem 4.2.

5 DISCUSSION AND OPEN PROBLEMS

In this paper, we close the gap on the approximability of DST
for the class of quasi-polynomial-time algorithms. However, there
is still a huge gap between the lower and upper bounds on ap-
proximation ratios for the class of polynomial-time algorithms. In
particular, it has been an open problem that perplexes many re-
searchers whether DST admits a polylogarithmic approximation
algorithm that runs in polynomial-time. There are both positive
and negative evidences that suggest DST may or may not admit
such algorithm. On one hand, Rothvof [29] observes that despite an
algorithm based on hierarchical techniques (i.e., Sum-of-Squares)
runs in super polynomial-time due to the size of the lifted linear
program, the rounding algorithm itself reads only a polynomial
number of variables of the fractional solution with high probability.
This also applies to all the LP techniques including the folklore
path-tree formulation (please see, e.g., [24]). Thus, some may be-
lieve that DST admits polylogarithmic approximation algorithms
that run in polynomial-time. On the other hand, the factor n€/e
that appears in the approximation ratio shows the same behavior
as in other problems whose trade-off between approximation ratio
and running-time are tight under the Exponential-Time Hypothe-
sis, e.g., Dense CSP [27] and Densest k-Subgraph [26]*. Our result
removes the factor 1/e from the approximation ratio, suggesting
that DST may have a different behavior than the other problems
mentioned above. Nevertheless, our technique does not yield a
good trade-off between approximation ratio and running-time as
it requires exactly quasi-polynomial-time to remove such factor.
It seems that there is still a major barrier in answering the open
question.

3
“In [27], the trade-off is slightly weaker, say O(n" /€)-approximation ratio versus

n'/€-running time.

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

ACKNOWLEDGMENTS

We would like to thank Uriel Feige for useful discussions over two
years, and we would like to thank Jittat Fakcharoenphol for useful
discussion on the balanced tree separator. We would like to thank
Pasin Manurangsi for pointing out the inapproximability results of
Dense CSPs and Densest k-Subgraphs.

F. Grandoni is partially supported by the SNSF Grants
200021_159697/1 and 200020B_182865/1.

B. Laekhanukit is supported by the National 1000-Youth Award
by the Chinese government. Parts of this work was done when
Laekhanukit was at the Weizmann Institute of Science, partially
supported by ISF grant #621/12 and I-CORE grant #4/11, while he
was visiting the Simons Institute for the Theory of Computing,
which was partially supported by the DIMACS/Simons Collabora-
tion on Bridging Continuous and Discrete Optimization through
NSF grant #CCF-1740425, and while he was at the Max-Plack Insti-
tute for Informatics.

S. Li is supported by NSF grant CCF-1566356 and CCF-1717134.
Some critical parts of this work were done while Li was visiting the
Institute for Theoretical Computer Science at Shanghai University
of Finance and Economics.

REFERENCES

[1] Yair Bartal. 1996. Probabilistic Approximations of Metric Spaces and Its Al-
gorithmic Applications. In 37th Annual Symposium on Foundations of Com-
puter Science, FOCS 96, Burlington, Vermont, USA, 14-16 October, 1996. 184-193.
https://doi.org/10.1109/SFCS.1996.548477

[2] MohammadHossein Bateni, Moses Charikar, and Venkatesan Guruswami. 2009.
MaxMin allocation via degree lower-bounded arborescences. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009. 543-552. https://doi.org/10.1145/1536414.1536488

[3] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvof, and Laura Sanita. 2013.
Steiner Tree Approximation via Iterative Randomized Rounding. 7 ACM 60, 1
(2013), 6:1-6:33. https://doi.org/10.1145/2432622.2432628

[4] Parinya Chalermsook, Fabrizio Grandoni, and Bundit Laekhanukit. 2015. On
Survivable Set Connectivity. In SODA. 25-36.

[5] Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel, Sudipto
Guha, and Ming Li. 1999. Approximation Algorithms for Directed Steiner Prob-
lems. J. Algorithms 33, 1 (1999), 73-91. https://doi.org/10.1006/jagm.1999.1042

[6] Chandra Chekuri, Guy Even, and Guy Kortsarz. 2006. A greedy approximation
algorithm for the group Steiner problem. Discrete Applied Mathematics 154, 1
(2006), 15-34. https://doi.org/10.1016/j.dam.2005.07.010

[7] Chandra Chekuri and Martin Pal. 2005. A Recursive Greedy Algorithm for Walks
in Directed Graphs. In 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings. 245-253.
https://doi.org/10.1109/SFCS.2005.9

[8] Joseph Cheriyan, Bundit Laekhanukit, Guyslain Naves, and Adrian Vetta. 2014.
Approximating Rooted Steiner Networks. ACM Transactions on Algorithms 11, 2
(2014), 8:1-8:22.

[9] Eden Chlamtac. 2007. Approximation Algorithms Using Hierarchies of Semidefi-

nite Programming Relaxations. In 48th Annual IEEE Symposium on Foundations of

Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings.

691-701. https://doi.org/10.1109/FOCS.2007.13

Marek Cygan, Fabrizio Grandoni, and Monaldo Mastrolilli. 2013. How to Sell

Hyperedges: The Hypermatching Assignment Problem. In Proceedings of the

Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,

New Orleans, Louisiana, USA, January 6-8, 2013. 342-351. https://doi.org/10.1137/

1.9781611973105.25

Alina Ene, Deeparnab Chakrabarty, Ravishankar Krishnaswamy, and Debmalya

Panigrahi. 2015. Online Buy-at-Bulk Network Design. In IEEE 56th Annual

Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-

20 October, 2015, Venkatesan Guruswami (Ed.). IEEE Computer Society, 545-562.

https://doi.org/10.1109/FOCS.2015.40

Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. 2004. A tight bound on

approximating arbitrary metrics by tree metrics. 7. Comput. Syst. Sci. 69, 3 (2004),

485-497. https://doi.org/10.1016/].jcss.2004.04.011

Zachary Friggstad, Jochen Kénemann, Young Kun-Ko, Anand Louis, Mohammad

Shadravan, and Madhur Tulsiani. 2014. Linear Programming Hierarchies Suffice

for Directed Steiner Tree. In Integer Programming and Combinatorial Optimization

[10

[11

[12

(13

https://doi.org/10.1109/SFCS.1996.548477
https://doi.org/10.1145/1536414.1536488
https://doi.org/10.1145/2432622.2432628
https://doi.org/10.1006/jagm.1999.1042
https://doi.org/10.1016/j.dam.2005.07.010
https://doi.org/10.1109/SFCS.2005.9
https://doi.org/10.1109/FOCS.2007.13
https://doi.org/10.1137/1.9781611973105.25
https://doi.org/10.1137/1.9781611973105.25
https://doi.org/10.1109/FOCS.2015.40
https://doi.org/10.1016/j.jcss.2004.04.011

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

[14]

[15]

[16

=
=

[18]

[19]

[20

(21

[22

[23

- 17th International Conference, IPCO 2014, Bonn, Germany, June 23-25, 2014.
Proceedings. 285-296. https://doi.org/10.1007/978-3-319-07557-0_24

Naveen Garg, Goran Konjevod, and R. Ravi. 2000. A Polylogarithmic Approxi-
mation Algorithm for the Group Steiner Tree Problem. J. Algorithms 37, 1 (2000),
66-84. https://doi.org/10.1006/jagm.2000.1096

Shashwat Garg, Janardhan Kulkarni, and Shi Li. [n. d.]. Lift and Project Algo-
rithms for Precedence Constrained Scheduling to Minimize Completion Time. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, New Orleans, Louisiana, USA, January 6-8, 2019.

Fabrizio Grandoni and Bundit Laekhanukit. 2017. Surviving in directed graphs:
a quasi-polynomial-time polylogarithmic approximation for two-connected di-
rected Steiner tree, See [20], 420-428. https://doi.org/10.1145/3055399.3055445
Anupam Gupta, Ravishankar Krishnaswamy, and R. Ravi. 2010. Tree Embeddings
for Two-Edge-Connected Network Design. In Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas,
USA, January 17-19, 2010. 1521-1538. https://doi.org/10.1137/1.9781611973075.
124

Mohammad Taghi Hajiaghayi, Rohit Khandekar, and Guy Kortsarz. [n. d.]. Ap-
proximating Group Steiner Tree via Configuration LP. ([n. d.]). Personal Com-
munication.

Eran Halperin and Robert Krauthgamer. 2003. Polylogarithmic inapproximability.
In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, June
9-11, 2003, San Diego, CA, USA, Lawrence L. Larmore and Michel X. Goemans
(Eds.). ACM, 585-594. https://doi.org/10.1145/780542.780628

Hamed Hatami, Pierre McKenzie, and Valerie King (Eds.). 2017. Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017. ACM. https://doi.org/10.1145/3055399
Christopher S. Helvig, Gabriel Robins, and Alexander Zelikovsky. 2001. An
improved approximation scheme for the Group Steiner Problem. Networks 37, 1
(2001), 8-20. https://doi.org/10.1002/1097-0037(200101)37:1<8::AID-NET2>3.0.
CO;2-R

Rohit Khandekar, Guy Kortsarz, and Zeev Nutov. 2012. Approximating fault-
tolerant group-Steiner problems. Theorerical Computer Science 416 (2012), 55-64.
Bundit Laekhanukit. 2014. Parameters of Two-Prover-One-Round Game and The
Hardness of Connectivity Problems. In SODA. 1626-1643.

[24

[25

[27

Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li

Bundit Laekhanukit. 2016. Approximating Directed Steiner Problems via Tree
Embedding. In 43rd International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2016, July 11-15, 2016, Rome, Italy (LIPIcs), Ioannis Chatzi-
giannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi (Eds.),
Vol. 55. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 74:1-74:13. https:
//doi.org/10.4230/LIPIcs.ICALP.2016.74

Elaine Levey and Thomas Rothvoss. 2016. A (1+epsilon)-approximation for
makespan scheduling with precedence constraints using LP hierarchies. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2016, Cambridge, MA, USA, June 18-21, 2016. 168-177. https:
//doi.org/10.1145/2897518.2897532

Pasin Manurangsi. 2017. Almost-polynomial ratio ETH-hardness of approxi-
mating densest k-subgraph, See [20], 954-961. https://doi.org/10.1145/3055399.
3055412

Pasin Manurangsi and Prasad Raghavendra. 2017. A Birthday Repetition Theorem
and Complexity of Approximating Dense CSPs. In 44th International Colloquium
on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw,
Poland (LIPIcs), Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca
Muscholl (Eds.), Vol. 80. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
78:1-78:15. https://doi.org/10.4230/LIPIcs.ICALP.2017.78

Gabriel Robins and Alexander Zelikovsky. 2005. Tighter Bounds for Graph
Steiner Tree Approximation. SIAM . Discrete Math. 19, 1 (2005), 122-134. https:
//doi.org/10.1137/S0895480101393155

Thomas Rothvof3. 2011. Directed Steiner Tree and the Lasserre Hierarchy. CoRR
abs/1111.5473 (2011). http://arxiv.org/abs/1111.5473

Alexander Zelikovsky. 1993. An 11/6-Approximation Algorithm for the Network
Steiner Problem. Algorithmica 9, 5 (1993), 463-470. https://doi.org/10.1007/
BF01187035

Alexander Zelikovsky. 1997. A Series of Approximation Algorithms for the
Acyclic Directed Steiner Tree Problem. Algorithmica 18, 1 (1997), 99-110. https:
//doi.org/10.1007/BF02523690

Leonid Zosin and Samir Khuller. 2002. On directed Steiner trees. In Proceedings
of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January
6-8, 2002, San Francisco, CA, USA., David Eppstein (Ed.). ACM/SIAM, 59-63.
http://dl.acm.org/citation.cfm?id=545381.545388

https://doi.org/10.1007/978-3-319-07557-0_24
https://doi.org/10.1006/jagm.2000.1096
https://doi.org/10.1145/3055399.3055445
https://doi.org/10.1137/1.9781611973075.124
https://doi.org/10.1137/1.9781611973075.124
https://doi.org/10.1145/780542.780628
https://doi.org/10.1145/3055399
https://doi.org/10.1002/1097-0037(200101)37:1<8::AID-NET2>3.0.CO;2-R
https://doi.org/10.1002/1097-0037(200101)37:1<8::AID-NET2>3.0.CO;2-R
https://doi.org/10.4230/LIPIcs.ICALP.2016.74
https://doi.org/10.4230/LIPIcs.ICALP.2016.74
https://doi.org/10.1145/2897518.2897532
https://doi.org/10.1145/2897518.2897532
https://doi.org/10.1145/3055399.3055412
https://doi.org/10.1145/3055399.3055412
https://doi.org/10.4230/LIPIcs.ICALP.2017.78
https://doi.org/10.1137/S0895480101393155
https://doi.org/10.1137/S0895480101393155
http://arxiv.org/abs/1111.5473
https://doi.org/10.1007/BF01187035
https://doi.org/10.1007/BF01187035
https://doi.org/10.1007/BF02523690
https://doi.org/10.1007/BF02523690
http://dl.acm.org/citation.cfm?id=545381.545388

	Abstract
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Comparison to Previous Work
	1.3 Related Work

	2 Preliminaries
	3 Reducing Directed Steiner Tree to Group Steiner Tree on Trees with Dependency Constraint
	3.1 Decomposition Trees
	3.2 Construction of GSTTD Instance

	4 Approximation Algorithm for Group Steiner on Trees with Dependency Constraint
	4.1 Basic LP Relaxation
	4.2 Rounding a Lifted Fractional Solution

	5 Discussion and Open Problems
	Acknowledgments
	References

