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Abstract

Makespan minimization on unrelated machines is a clas-
sic problem in approximation algorithms. No polyno-
mial time (2 — §)-approximation algorithm is known for
the problem for constant § > 0. This is true even for
certain special cases, most notably the restricted assign-
ment problem where each job has the same load on any
machine but can be assigned to one from a specified
subset. Recently in a breakthrough result, Svensson [16]
proved that the integrality gap of a certain configura-
tion LP relaxation is upper bounded by 1.95 for the
restricted assignment problem; however, the rounding
algorithm is not known to run in polynomial time.

In this paper we consider the (1, e)-restricted assign-
ment problem where each job is either heavy (p; = 1)
or light (p; = €), for some parameter € > 0. Our main
result is a (2 — d)-approximate polynomial time algo-
rithm for the (1,¢)-restricted assignment problem for
a fixed constant § > 0. Even for this special case, the
best polynomial-time approximation factor known so far
is 2. We obtain this result by rounding the configura-
tion LP relaxation for this problem. A simple reduction
from vertex cover shows that this special case remains
NP-hard to approximate to within a factor better than
7/6.

1 Introduction

In the makespan minimization problem, we are given
a set M of m machines, and a set J of n jobs where
a job j contributes a load of p;; to a machine 4, if
assigned to it. The goal is to assign each job to a
machine, so that the maximum load on any machine
is minimized. Formally, one seeks an allocation o : J —
M minimizing max;e s Ej:o(j):i pij- In 1990, Lenstra,
Shmoys, and Tardos [13] gave a 2-approximation for the
problem, and showed that it is NP-hard to obtain an
approximation factor better than 3/2. Closing this gap

" *Microsoft Research. dechakr@microsoft.com

TDepartment of Computer and Information Science, Uni-
versity of Pennsylvania, Philadelphia, PA 19104. Email:
sanjeev@cis.upenn.edu. Supported in part by National Science
Foundation grant CCF-1116961.

PTTIC. shili@ttic.edu

Shi Lif

Sanjeev Khanna

is an outstanding problem in approximation algorithms.

In order to understand the problem better, re-
searchers have focused on special cases. The most no-
table among them is the restricted assignment problem.
In this problem, each job j7 € J has an inherent load
p; but it can be assigned only to a machine from a
specified subset. Equivalently, each p;; € {p;, 0o} with
pi; = oo for machines ¢ which j cannot be assigned
to. The hardness of 3/2 carries over to the restricted
assignment problem and no polynomial time (2 — §)-
algorithm is known for any constant § > 0. In a break-
through, Svensson [16] proved that the integrality gap
of a certain configuration LP for the restricted assign-
ment problem is at most 33/17. Svensson’s result can
thus be used to efficiently estimate the value of the opti-
mum makespan to within a factor of 33/17; however, no
polynomaial time algorithm to compute a corresponding
schedule is known. Nonetheless, it gives hope! that the
restricted assignment case may have a polynomial time
‘better-than-factor-2’ algorithm.

Our paper makes progress on this front. We study
the (1,e)-restricted assignment problem, in which all
jobs fall in two classes: heavy or light. Every heavy job
has load, p; = 1, and each light job has p; = ¢, for some
parameter € > 0, and the goal is to find a schedule
which minimizes the makespan. We give a (2 — §%)-
approximate polynomial time algorithm for the (1,¢)-
restricted assignment problem for a constant §* > 0.

The (1,¢)-case is interesting because in some sense
it is the simplest case which we do not understand.
If all jobs have the same size, the problem becomes
a matching problem. If there are two job sizes, we
can assume they are 1 and ¢ < 1 by scaling. The
reader should think of ¢ as a number that tends to 0,
as there is a simple (2 — ¢)-approximation if each job
has size either 1 or € (see Appendix A). The (1,¢)-
restricted assignment problem is already hard — it is NP
hard to obtain an approximation factor < 7/6 for this
problem (see Appendix B), and no (2—4)-approximation
is known for any J independent of €. It is plausible
that an understanding of the (1, €)-case might lead to an
understanding of the restricted assignment case; indeed,

TWithout discussing this technically, we refer the reader to the

articles by Feige [9], and Feige and Jozeph [10].



Svensson [16], in his paper, first gives an improved
integrality gap of (5/3 + ¢) for this special case before
proving his result for the general case.

THEOREM 1.1. (Main Result.) There is a polynomial
time (2 — 0*)-approzimation algorithm, where 6* > 0 is
a specific constant, for makespan minimization in the
(1,¢e)-restricted assignment case.

1.1 Our Techniques For concreteness, let us as-
sume for now that the optimal makespan is 1. Note
that once we have an assignment of the heavy jobs to
machines, we can decide in polynomial time whether
there is a (fractional) allocation of light jobs so that the
total makespan is at most (2 — d) or not, for any 6 > 0.
Such an assignment of heavy jobs is called a §-good as-
signment, and given such an assignment one can recover
an integral assignment for light jobs as well such that
the total load on any machine is at most (2 —  + ¢).
The rounding process to recover a d-good assignment
proceeds in three phases.

In the first phase, we ‘reduce’ our instance to a
canonical instance where for each heavy job there is a
distinct (private) set of machines to which it can be
assigned to, and for each unassigned light job, there are
at most two machines to which it can be assigned to.
Such a pre-processing technique has also been used in
tackling the max-min allocation problem [4, 6]. There
are two main parameters of interest in a canonical
instance, namely, a parameter p that asserts that the
positive fractional assignment of a heavy job to a
machine is at least 1/p, and a parameter ¢, that asserts
that the total load of light jobs shared by any two
machines is either 0 or is at least 1/q.

The second phase of the rounding process is a
coarsening of the parameters p and ¢ of the canonical
instance where we ensure that whenever a heavy job
is fractionally assigned to a machine, the assignment
is sufficiently large (at least 1/qy for some constant
qo). Furthermore, the total light load shared by any
pair machines is either 0 or at least 1/qyo. The flip
side is the total fractional load on a single machine
could increase from 1 to roughly 1+ \/logqo/qo. The
technique used to achieve this coarsening is essentially
due to Feige [8] in his work on max-min allocation, and
is done by iteratively assigning heavy jobs and ‘merging’
light jobs. The proof uses the asymmetric Lovasz Local
Lemma (LLL), and polynomial time algorithms to do
the same are guaranteed by the recent works of Moser
and Tardos [14] and Haeupler, Saha, and Srinivasan [11].

The heart of our approach and our main technical
contribution is the third and the final phase of rounding.
At this point we have a canonical instance where each
heavy job is assigned to a constant number ¢y of

machines that are private to it, each light job has
constant size, and is shared between at most two
machines. Note that if the fractional load on each
machine was at most 1, then things are trivial — assign
the heavy job to the machine which is fractionally
assigned more than 1/gg of it, and the total load on it
become 2—1/qg. However, the second step has increased
the fractional load from 1 to 14+/logqo/qo, and this
‘extra’ load swamps the gain of 1/gg. This issue does
not arise in the max-min allocation where one targets a
constant factor; however, it defeats our goal of beating
the factor 2-approximation for makespan minimization.

Nevertheless, if we could find an assignment such
that the total light load on any machine receiving a
heavy job is at most 1 — 1/polyloggy, then we are
in good shape, and this is what we do. We find
such an assignment by randomized rounding and again
use the (asymmetric) LLL. A key and difficult aspect
of making this entire approach work is to have only
a small degree of dependence between various “bad”
events in the final rounding step. This reduction in
dependence is the essence of our approach, and is
accomplished by the structure of canonical instances,
and further simplifying this structure before picking the
final random assignment.

1.2 Relevant Related Work We briefly note some
other works on makespan minimization. Ebenlendr,
Krcédl, and Sgall [7] consider the special case of the
restricted assignment makespan minimization problem
where each job could be assigned to at most 2 machines,
and design a polynomial time 1.75-approximation al-
gorithm for the same. Interestingly, even when
jobs can go to at most two machines, the general
makespan minimization problem seems difficult; Ver-
schae and Wiese [17] show that the configurational LP
has integrality gap tending to 2. Kolliopoulos and
Moysoglou [12] consider the restricted assignment prob-
lem with two jobs sizes as well; they show that Svens-
son’s estimation algorithm can be improved to 1.883 for
this case. See Appendix A for a slightly better factor.
The ‘dual’ problem to makespan minimization,
max-min allocation, where jobs need to be allocated to
maximize the minimum load, has seen interesting de-
velopments recently. A constant factor approximation is
known for the ‘restricted assignment’ case (the so-called
Santa Claus problem), where each job has the same load
for all the machines it can go to. This follows from
the works of Bansal and Sviridenko [4], Feige [8], and
the constructive LLL version due to [14, 11]. Our work
closely follows this line and exhibits its utility for the
makespan minimization problem. Another line of work
on the Santa Claus problem is via local search; Asad-



pour, Feige, and Saberi [2] show an upper bound of 4
on the integrality gap via a not-known-to-be-polynomial
time local search algorithm. Polacek and Svensson [15]
use these ideas to give a quasipolynomial time, 4 + e-
approximation. Very recently, Annamalai, Kalaitzis,
and Svensson [1] improve this to get a polynomial time
13-approximation. For the general max-min allocation
problem, Chakrabarty, Chuzhoy, and Khanna [6], im-
proving upon earlier results by Asadpour and Saberi [3]
and Bateni, Charikar, and Guruswami [5], give a O(n*)-
approximation algorithm which runs in O(n'/¢)-time.

2 Linear Programming Relaxation

Recall that we denote the set of all machines by M and
the set of all jobs by J. We assume that J is partitioned
into the set of heavy jobs by Jy, and the set of light jobs
by Ji. We consistently use j to index jobs, and ¢, h and
k to index machines. For any job j € J, we denote by
M; the set of machines to which job j can be assigned.

Given a guess T > 1 for the optimal makespan,
the configuration LP w.r.t. T is as follows. For every
machine i, %; contains subsets of jobs of total load at
most 7" which can be assigned to ¢ . We have a variable
y;,c for each machine ¢ and subset C' € €.

Vie M
VjedJ

(Conf LP 1) Yceq, Yic=1
(Conf LP 2) > ,cps ZCE‘&:]‘EC yic =1

Given an instance |, we let OPT; be the smallest T
for which the configuration LP has a feasible solu-
tion; OPT# can be found by binary search. Trivially,
1 < OPT; < OPT, where OPT denotes the optimal
(integral) makespan.

In this paper, we use the following simpler
parametrized LP relaxation LP(p,d) tailored for (1,¢)-
instances.

(2.1) Diem,; Tig =1 ViedJ
(2.2) ZjeJH:ieMj i =2 Vie M
(2.3) <1 Vie M
(2.4)
zi+ € jegiem; Tij < 1+ po Vie M
(25) (1-pzit+ax; <1 Vi€ Ju,i € M;
T2 > 0 Vj e J,ie€ M

To get some intuition, consider the LP with p =
6 = 0. We claim there exists a feasible solution if
OPT = OPT; = 1. In this case, it must be that every
machine either gets one heavy job or at most |1/¢] light
jobs. In particular, any machine getting a light job
cannot get a heavy job. Constraint (2.5) encodes this.

The connection between LP(p,d) and the configuration
LP is captured by the following lemma.

LEMMA 2.1. Given an (1,e)-restricted assignment in-
stance | with OPTy < 14 pé, there is a polynomial time
procedure which returns another (1,¢)-instance I which
has a feasible solution to LP(p,d). Furthermore, given
a schedule for " with makespan T, the procedure returns
a schedule for | of makespan <T 4.

Proof. Let y be the solution to the configuration LP
at OPTy < 1+ pd. Call a configuration C' heavy if it
contains a heavy job. Define z; := 3 ¢ i jeavy ¥i,c for
all 4, and z; ; := Zc:jec y;,c for all ¢,j. Note that for
all i € M, we have z; +€ZjEJL x5 < 14 pd since each
configuration has load < 1+ pd.

Now, if for some light job j, >~ heavy:jeC Yi,C >
pz;, we remove j from Jy and set o(j) = 4. Let J| be the
set of remaining jobs. The new instance is I' = (M, JyU
J{). For any job jin Ji, i j < 3 00t heavy ¥i.C T P21 =
1—(1—p)z, that is, (1 — p)z; + z;; < 1. Thus, (z,2)
is a feasible solution for LP(p,d) for I'. Now, given an
assignment of jobs for I, we augment it to get one for |
by assigning job j € J_\ J| to o(j). Note

5|a*1(i)|<s Z Z

j light C heavy :j€C
3 i.C
== Y Ll onp<s
Zq

C': heavy

Yi,c
Pzi

since €|C' N J.| < pd for heavy C.

The remainder of the paper is devoted to proving
the following theorem.

THEOREM 2.1. There is a constant o9 € (0,1), such
that given an instance | and a feasible solution to LP(p=
0.6,d0), in polynomial time one can obtain a schedule
for | of makespan at most (2—2dy).

We conclude this section by showing that the pre-
ceding theorem suffices to establish our main result.

Proof of Theorem 1.1. Set §* = §p/2, where Jp is
the constant specified in Theorem 2.1. Fix an instance
| and the corresponding OPT;. If OPT; > 1 + pdo,
then the classic result of Lenstra et al. [13] returns
a schedule whose makespan is at most OPT; + 1 <
OPT; (14 745 ) < (2 6*) OPT,. IFOPT < 148y,
then Lemma 2.1 can be used to get an instance I’
for which LP(p,dp) is feasible. Theorem 2.1 returns a
schedule for I’ with makespan at most (2 — 2dp), which
when fed to Lemma 2.1 gives a schedule for | of makesan
at most (2 —dg) < (2—6*)OPT/ since OPT; > 1. This
proves Theorem 1.1.



3 Canonical Instances and §-good Assignments

In this section we introduce the notion of canonical in-
stances and formalize the notion of a §-good assignment
of heavy jobs for these instances.

In a canonical instance, heavy jobs have size p; = 1.
Light jobs can be scheduled fractionally and any light
job can be assigned to at most two machines. Thus
each light job is of type-(h,k) for some h,k € M; it
can only be assigned to h or k. It is possible that
h =k; when h#k, (h,k) and (k,h) are two different
job types. Subsequently, it will be clear that these types
are differentiated and defined by how the LP assigns the
jobs; for now the reader may think of wy, 1, as the load of
light jobs which ‘belong to k& but can be assigned to h if
k gets a heavy job’. Given h, k, we will merge the light
jobs of type-(h, k) into a single job of total size equal to
the sum of the light jobs. We call this the light load of
type-(h, k). Henceforth, we use “light load” instead of
“light jobs” in a canonical instance.

DEFINITION 3.1. A canonical instance is defined by
a triple ({M; : J € Ju},w,z), where

(A1) for every heavy job j € Ju, M; C M is the set
of machines that j can be assigned to; for any pair
heavy jobs j # j', we have M; N M; = 0;

(A2) wGRgIOXM a matriz, where wy, 1 1s the light load
of type-(h, k). If zi = 0 and h # k, then wy,  =0;
if zn, > 0 then wpp =0;

(A3) z: M+ [0,0.4] is a function on M where z; =0

if and only if i & U, ¢, M-

There is an intrinsic fractional solution defined by the
function z. If ¢ € M; for some j € Ju, then z; is the
fraction of the heavy job j assigned to machine 7. A
heavy job may not be fully assigned, but we will ensure
that a decent portion of it is. If h#k, (1—zy) fraction
the wy, j light load of type-(h, k) is assigned to k, and
the remaining z; fraction is assigned to h. The w;;
light load of type-(i,7) is fully assigned to i. Given
a matrix w € RM*M  we use the notation wy,p for
subsets A, B C M to denote the sum ZheA’keB Wh, k-

DEFINITION 3.2. The directed graph G, = (M, {(h, k) :
h # k,wp > 0}) formed by the support of w, with self-
loops removed, is called the light load graph.

DEFINITION 3.3. Given a canonical instance | =
({M;:j € du},w,z2), we say that | is a (p,q,0)-
canonical instance for some p > 1,q > 1 and 6 €
[0,0.2), if it satisfies the following properties (in addi-
tion to Properties (A1) to (A3)):

(B1) for each i € M, either z; =0, or z; > 1/p;

(B2) for every h,k € M, either wp, = 0 or wpp >
1/q;
(B3) ZieMj z; > 0.2 =0, for every j € Ju;

(B4) zn+2pens Weh(1=20) + 3 pens Whnze < 146,
for every machine h € M.

Property (B1l) says that none of the heavy job
assignments is too small. Property (B2) says that any
positive load of some type is large. Property (B3) says
that a ‘decent’ fraction of each heavy job j is assigned.
Property (B4) says that the total load assigned to a
machine h € M in the intrinsic fractional solution
is bounded. Our goal is to find a valid assignment
f +Ju — M of heavy jobs to machines which leaves
“enough room” for the light loads. We say f is wvalid
if f(j) € M, for every j € Juy. This motivates the
following definition.

DEFINITION 3.4. (§-GOOD ASSIGNMENT) Given a
(p, q, 0)-canonical instance and a number § € (0,1), a
valid assignment f : Jy — M for a canonical instance
18 0-good if all the light loads can be fractionally
assigned so that each machine has total load at most
2—96.

Define f(Ju) ={f(j) : j € Ju}. The following theorem
(basically Hall’s condition) is a characterization of good
assignments.

THEOREM 3.1. For a canonical instance, an assign-
ment f of heavy jobs is a §-good assignment if and only
if for every subset S C M,

(3.6) SN f(JIn)| +ws,s < (2—0)|S]

Proof. We define an instance of the single-source single-
sink network flow problem as follows. Construct a
directed bipartite graph H = (A4, M, Fy), where edges
are directed from A to M. For every h, k € M such that
wp, > 0, we have a vertex ap ;, € A that is connected
to h and k. All edges in Ey have infinite capacity. Now
an assignment f is §-good if and only if we can send flow
from A to M in H such that: (1) Each vertex ap € A
sends exactly wy, ; flow, and (2) Each machine ¢ € M
receives at most ligfy,) + 1 — 0 flow, where 1igy(s,)
is 1if i ¢ f(Jy) and 0 otherwise. By Hall’s theorem,
there is a feasible flow if and only if the following holds:
Danped Whik S Dpen(ar) [Ingream +1 0] VA" C
A, where M(A’) is the set of vertices in M adjacent to
A’. Tt is easy to see that for every S C M, it suffices to
consider the maximal A" with M(A’) = S. For this A’
we have Zah,kGA’ wp i = wg,s. Thus, the condition can
be rewritten as wg g < (2—0)|S|—[S N f(Ju)|,VS C M.
This finishes the proof.



3.1 Roadmap of the Proof We are now armed to
precisely state the ingredients which make up the proof
of Theorem 2.1. In §4, we show how to reduce any
instance to a canonical instance. The precise theorem
that we will prove is the following, where m = |M] is
the number of machines.

THEOREM 3.2. Let § > 0,0 € (0,1) and p = 0.6.
Given an instance | of the (1,¢)-restricted assignment
problem with a feasible solution to LP(p,d), there is
a polynomial time procedure to obtain an (%, 1/e, pd)-
canonical instance ' such that any §'-good assignment
forl" implies a schedule of makespan at most (2—§"+2¢)

for 1.

In §5, we reduce a canonical instance to one with “small”
p and q. More precisely, we prove the following.

THEOREM 3.3. For some large enough constant qo the
following is true. Given a (p,q,0)-canonical instance
I, in polynomial time we can obtain a (qo,qo,0 +

16+/log qo/qo)-canonical instance I’ such that any §-good
assignment for I is a (6 — 164/log qo/qo)-good assign-
ment for |, for every ¢ € (16+/logqo/qo,1).

Finally, in §6, we show how given a (qo, go, #)-canonical
instance we can ‘round’ it to a §-good instance where §
is inverse polylogarithmic in the ¢ parameter. Observe,
from definition of canonical instances, (1/q — 0)-good
assignments are trivial.

THEOREM 3.4. For some large enough constant C, ev-
ery qo > 100 and every 6 € [0,log™° qo/4C), the fol-
lowing is true. Given a (qo,qo,0)-canonical instance
|, there is a polynomial time procedure to obtain a
(log™® qo/C — 46)-good assignment for |.

Assuming the above theorems, the proof of Theorem 2.1
follows easily.

Proof of Theorem 2.1. Let C be as in Theorem 3.4,
and choose gy such that 400+/log go/q0 < log™®qo/C.
Let §p := log_5 qo/6C. Given a feasible solution to
LP(p,do), we convert it to a (-5-,1/e, pdg)-canonical in-
stance | using Theorem 3.2. Then using Theorem 3.3, we

obtain a (qo, 9o, pdo + 16+/log qo/qo)-canonical instance
I’. Given I, via Theorem 3.4, we obtain a d-good assign-

ment with § = 669 — 4pdy — 64+/log go/qo. This in turn
implies a (6 — 164/logqo/q0 = 3.600 — 80+/10g qo/q0)-
good assignment for |. By choice of parameters, this is
a (209 + 2¢)-good assignment when £ < 0.25;. By The-
orem 3.2, this implies a schedule of makespan (2 — 2d)
which proves Theorem 2.1.

The rest of the paper proves the above theorems in §4,
85, and §6 respectively which can be read in any order.

4 Reduction to Canonical Instances

This section is devoted to proving Theorem 3.2.

THEOREM 4.1. Let § > 0,0’ € (0,1) and p = 0.6.
Given an instance | of the (1,¢)-restricted assignment
problem with a feasible solution to LP(p,d), there is
a polynomial time procedure to obtain an (%, 1/e, pd)-
canonical instance ' such that any §'-good assignment

forV implies a schedule of makespan at most (2—§'+2¢)
for 1.

Let x be any feasible solution for LP(p = 0.6, ).
The solution x defines the following weighted bipartite
graph H = (M, J, Ey,z): if z; ; > Oforsomei € M,j €
J, there is an edge (4,j) € Ey of weight z; ;. We will
create the desired canonical instance |’ by performing
the following sequence of transformation steps.

4.1 Processing Heavy Jobs Without loss of gener-
ality, we can assume H[M U Jy] is a forest. Indeed, if
there is an even cycle in the sub-graph, we can rotate the
cycle as follows. Color the edges of the cycle alternately
as red and black. Uniformly decrease the x values of red
edges and increase = values of the black edges. Observe
that Constraints (2.1) and (2.2) remain satisfied, and
Constraints (2.3), (2.4) and (2.5) are untouched since
z;’s and x; ;s for light jobs j did not change. Apply the
operation until the z-value of some edge in the cycle be-
comes 0. By applying this operation repeatedly, we can
guarantee that the graph H[M U Jy] is a forest. Some
heavy jobs j may be completely assigned to a machine i;
in this case, the edge (i, j) forms a two-node tree, since
z; < 1. We call such trees trivial.

We now further modify the instance so that each
connected component in H[MUJy] is a star, with center
being a heavy job, and leafs being machines. Consider
any nontrivial tree 7 in the forest H[M U Jy]. We root 7
at an arbitrary heavy job. If the weight x; ; between any
heavy job j in 7 and its parent machine ¢ is at most 1/2,
we remove the edge (i,j) from 7. After this operation,
T is possibly broken into many trees.

Now focus on one particular such tree 7/. Note the
following facts about 7/: (i) 7’ is rooted at a heavy job
j*; (ii) every machine 4 in 7/ has either 0 or 1 child since
x;; > 1/2 for any child j of ¢ in 7/ and (2.3) holds; (iii)
all leaves are machines since a heavy job can only be
partially assigned to its parent. Thus, in 7/, the number
of heavy jobs is exactly the number of non-leaf-machines
plus 1.

LEMMA 4.1. Let L be the set of leaf-machines in T'.
Then ) ;cp 2 > 1/2.

Proof. Suppose there are t heavy jobs in the tree 7'.
Since we may remove an edge of weight at most 1/2



connecting the root of 7/ to its parent in 7, we have
Yiem(y 2 = t —1/2, where M(7') is the set of
machines in 7. Since z; < 1 for each i € M(7') \ L and
|[M()\L|=t—1,wehave Y ., 2z >t—1/2—(t—1) =
1/2.

€L

We assign heavy jobs in 7’ to machines in 7’ as
follows. Each non-leaf machine of 7" is guaranteed to
be assigned a heavy job. There is one extra heavy job
left, and we assign it to a leaf machine. The following
lemma shows that any leaf-machine can yield to a valid
assignment for the heavy jobs.

LEMMA 4.2. Let i be any leaf-machine in 7'. There is
a valid assignment of heavy jobs in 7' to machines in 1’
such that

1. Any non-leaf-machine is assigned exactly one heavy
job;

2. 1 is assigned exactly one heavy job;

3. No heavy jobs are assigned to other leaf-machines.

Proof. Focus on the path from the root of 7/ to the leaf-
machine . We assign each heavy job in this path to its
child in the path. For all the other heavy jobs, we assign
them to their parents. It is easy to see this assignment
satisfies all the conditions.

We now create a new set of heavy jobs to replace the
heavy jobs in 7/. For each non-leaf machine i, we create
a new heavy job j with M; = {i}. We also create a new
heavy job j with M; being the set of leaf machines. By
Lemma 4.2, a valid assignment for the new machines
implies a valid assignment for the original machines.
Notice that new created heavy jobs j have disjoint M;.
This is true even if we consider the new jobs for all trees
7' as the machines in these trees are disjoint. For every
new created heavy job j, we have ZieMJ z; > 1/2: if
M; = {i} for a non-leaf machine 4, then 2z, > 1/2 as
the weight of edge from i to its child has weight at least
1/2; if M; is the set of all leaves, then by Lemma 4.1,
e, 2 2 1/2

We have created a new set J{, of heavy jobs for | and
the sets {M; : j € J};} are disjoint. An assignment of
these big jobs imply an assignment of Jy via Lemma 4.2.
From now on we let Jy = Jj, and only consider the set
of new heavy jobs. Thus, Property (A1) is satisfied.

Since we haven’t modified z; ; and z; for ¢ € M and
j € Ji, Constraint (2.3), (2.4) and (2.5) are satisfied.
Constraint (2.1) is satisfied for light jobs j € J.. We did
not define x; ;’s for the new created heavy jobs j € Jy
and thus Constraint (2.1) for heavy jobs j € Jy and
Constraint (2.2) are meaningless and henceforth will be
ignored.

We now scale down z; by a factor of 1 — p = 0.4
for all machines in i« € M, then Constraint (2.5) is
strengthened to

(4.7) zidwi; <1, YjeJ,ieM.

For every 7 € Jy, we have ZieMj z; > 0.5(1—p)=0.2.
Every z; is between 0 and 0.4. Moreover, if for some
Jj € Ju and some ¢ € M; we have z; = 0, we remove ¢
from M;. Then, Property (A3) holds and Property (B3)
holds with 8 = 0.

4.2 Processing Light Jobs Now let H be the
weighted bipartite graph between M and J.. In this
step, we make sure that each light job is fractionally
assigned to exactly 2 machines. To achieve this, per-
form the rotation operations to cycles in H, as we did
before for heavy jobs. Note that the rotation preserves
the sum EzjenJL:ieMj %; ;. In order to maintain Con-
dition (4.7), we may not be able to break all cycles in H.
We say an edge (4, j) in H is tight if z; j+2; = 1. We can
perform rotation operations so that the non-tight edges
form a forest. Also, since z; < 0.4 for all machines 1,
zi; > 1—0.4 = 0.6 for a tight edge (¢,7). Thus, each
light job j is incident to at most 1 tight edge.

For each non-singleton tree 7 in the forest formed
by the non-tight edges, we root 7 at an arbitrary light
job and permanently assign each non-leaf light job in 7
arbitrarily to one of its children. These light jobs are
then removed from J;. Notice that each machine can
get permanently assigned at most 1 light job during
this process. Each unassigned light job in the tree 7 is
incident to exactly one non-tight edge (since it was a
leaf).

Therefore, each remaining light job j must be one
of the following. First, j can be completely assigned to
some machine ¢ (thus z; ; =1 and z; = 0), then, we say
j is of type-(i, ). Second, j maybe incident to two edges,
one tight, the other non-tight. Let (k, j) be a tight edge
and (h,j) be the other edge; then we say j is of type-
(h, k). This lets us define the matrix w: we let wy x be
the total load of light jobs of type-(h, k), or equivalently,
¢ times the number of light jobs of type-(h, k). For every
light job j of type-(h,k), h # k, we have xp,; = z
and xy ; = 1 — z;. Thus w satisfies Property (A2) and
Property (B2) with ¢ = 1/e. Property (B4) holds with
0 = pd as the 2, + > 3 cps Wen(1 — 20) + D ke WhikZk
is exactly the total fractional load assigned to A which
is at most 1+ pd by (2.4)

Property (B1) holds for a sufficiently large number
p = exp(poly(n)) as each z; can be represented using
polynomial number of bits. However, we would like
to start with p = m/(dp), where m is the number
of machines. If 0 < z; < pd/m for some i € Mj,



we change z; to 0 and remove ¢ from M;. Then,
Property (B3) still holds for 8 = pd/mxm = pd as there
are at most m machines. Thus, our canonical instance
is (m/pd,1/e, pd)-canonical. This ends the proof of
Theorem 3.2.

5 Reducing Parameters p and ¢ in Canonical
Instances

This section is devoted to proving Theorem 3.3. The
proof is analogous to a similar theorem proved by
Feige [8] for max-min allocations, and therefore we only
provide a sketch in the main body. All omitted proofs
from this section can be found in Appendix D.

THEOREM 5.1. For some large enough constant qo the
following is true. Given a (p,q,0)-canonical instance
I, in polynomial time we can obtain a (qo,qo,0 +

16+/10og qo/q0)-canonical instance " such that any §-good
assignment for I is a (6 — 164/log qo/qo)-good assign-
ment for |, for every ¢ € (16+/logqo/qo,1).

Using the characterization of §-good assignment
given in Theorem 3.1, we define a J-witness as a pair
of sets which rules out any d-good assignment.

DEFINITION 5.1. (6-WITNESS) A pair (S,T) of subsets
of machines is called a o-witness if T'C S and

(5.8) |T| + wg,5 > (2 —9)|9].

Moreover, we call a §-witness (S,T) connected if S is
(weakly) connected in the light load graph G.,,.

Cram 5.1. If (S,T) is a d-witness, then there is a
connected -witness (S,T), with S CS and T CT.

CLAIM 5.2. f is a §-good assignment iff for every con-
nected d-witness (S, T) of w, T ¢ f(Jn).

Now, we prove two main lemmas for our algorithm
that alternatively reduce ¢ and p. Let | be a (p,q,0)-
canonical instance. If ¢ > max{p,qo}, Lemma 5.1
reduces it to a (p,q/2,0)-canonical instance; if p >
max {q,qo}, Lemma 5.2 reduces it to a (p/2,q,0')-
canonical instance.

LEMMA 5.1. Letl = ({M; :j € Ju},w,z) be a (p,q,0)-
canonical instance. Assume q > max{p,qo}. Then,
we can find in polynomial time a (p,q’,0")-canonical
instance ' = ({M; : j € Ju},w',2), such that any ¢'-
good assignment [ for I' is d-good for |, where ¢ =

q/2,0" =0+ 8+/logq/q,0' = + 8+/logq/q.

The proof follows from an application of asymmetric
LLL. We want that Property (B2) holds for ¢/. We

apply the following natural procedure. For each (h, k)
such that 0 < wp < 1/¢" = 2/q, we change wp  to
1/¢" with probability ¢'wy, , and to 0 with probability
1 — q'wy, k. We need to show that Property (B4) holds.
Also, we need to show that any d-witness in the original
instance is also a §’-witness in the new instance. We
apply the asymmetric LLL (Theorem C.2) to show
that all these properties can hold. The idea is that a
bad event depending on many other bad events must
have a smaller probability. The detailed proof is in
Appendix D.1.

LEMMA 5.2. Letl = ({M; :j € Ju},w,z) be a(p,q,0)-
canonical instance, where p > max{q,qo}. We can
find in polynomial time a (p’,q,0")-canonical instance
"= ({M; :j € Ju},w,2") such that any 6-good solution
f for I is also 6-good for |, where p' = p/2,6' =

6 + 8/logp/p.

This lemma is by symmetric LLL. To guarantee
that each positive z; has z; > 1/p’ = 2/p, we apply
the following natural process: if 1/p < z; < 1/p’, we
change z; to 1/p’ with probability p’z;, and to 0 with the
probability 1—p’z;. All bad events in the proof are local;
they only depend on a few variables. Thus, a symmetric
LLL suffices to prove the lemma. The detailed proof is
in Appendix D.2.

To complete the proof of Theorem 3.3, we apply
Lemma 5.1 and Lemma 5.2 repeatedly till we obtain a
(g0, 90, 8)-canonical instance | = ({M; : j € Ju},w,2),

where 0 < pdy + 16+/log qo/qo with the guarantee that

a d-good solution to | implies a (6 — 16+/log qo/q0)-good
solution to the original instance.

6 Solving Canonical Instances with Small

Values of p and ¢

This section is devoted to proving Theorem 3.4.

THEOREM 6.1. For some large enough constant C, ev-
ery qo > 100 and every 6 € [0,log™° qo/4C), the fol-
lowing 1is true. Given a (qo,qo,0)-canonical instance
|, there is a polynomial time procedure to obtain a
(log™® qo/C — 46)-good assignment for |.

For convenience, we will make § = 0 by scaling down
the light load matrix w by a factor of %&0' After this
operation, Property (B4) will hold with § = 0 as we
have z, < 0.4. Let ¢ = (0.6 + 0)qo/0.6; then the new
instance is (g, g,0)-canonical except that Property (B3)
only holds with right side being 0.19 instead of 0.2 (as
6 < .01 for large enough C). At the end, we can scale
up light loads by (0.6 + 0)/0.6. As each machine is
assigned strictly less than 2 units of total load, the
scaling will increase the light load on each machine by
at most /0.6 x 2 < 46.



Thus, we can assume 6 = 0 and focus on a (g, ¢,0)-
canonical instance | = ({M; : j € Ju},w, z) from now
on. With 6 = 0, Property (B4) implies that wyr, < 1
for every h € M.

Given an assignment f : Jy — M, for convenience
we use X = f(Jn) to denote the set of machines that
are assigned heavy jobs. We define the concept of a
‘boundary’ of a set which will be crucial in what follows.

DEFINITION 6.1. (BOUNDARY OF A SET) Given a sub-
set S of machines, we define its boundary as

bnd(S) = > Y (wn(l = 2n) + whkzk) -

heS k¢S

DEFINITION 6.2. Let the deficiency of a machine h €

M be ¢pp, =1—2n—> jenr (Wen(1 — 210) + whzk). The
deficiency of a subset S C M is ¢(S) =} g bn-

Thus, ¢;, > 0 measures how far away Property (B4)
is from being tight. With the definition, we can
rewrite the condition for d-good assignments. From
Theorem 3.1, f is §-good iff for every S C M, we have
(6.9) wg,g + S NX| < (2-10)|S].

Adding the definition of ¢y, for every h € S, we get
that ¢(S) + 2(S) + wg,s +bnd(S) = |S|.

The left hand side of (6.9) is

[S]+ 1SN X|—¢(S) — 2(5) — bnd(S)
=2|S| =[S\ X| — (¢(S) + 2(S) + bnd(S5)).

Thus, f is 6-good iff for every S C M we have

(6.10) S\ X|+ o(S) + 2(S) + bnd(S) > 4|S|.

We fix 9 € (0,0.001) whose value will be decided
later. We say a machine h € M is green if ¢p + 2, > dg
and red otherwise. Let R be the set of red machines.

To check if f is d-good, we can check the Inequal-
ity (6.10) for every S C M. With some condition on X
and some loss on the goodness, we only need to check
the above condition for S C X N R. To be more specific,

LEMMA 6.1. Let ¢ > 1,6 € (0,1). Suppose f : Jqy —
M is a valid assignment with X = f(Jy) satisfying

(C1) for every h € M, we have Y, xngrWhk
c1logg;

(C2) for every subset T C X N R, ¢(T) + 2(T) +
bnd(T") > 4|T).
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Then f is a -good assignment.

Proof. Decompose S = PUQ where P = SN XN
R,Q = S\ (X NR). Each machine in @ contributes
at least dg to the left-side of Inequality (6.10). If |Q| >
0]S|/(2¢1 log q), then the inequality with 0 replaced with
soote holds trivially.

So, assume |@Q| < §|S|/(2¢11log q). For large enough
q, we get |P| > 0.99|S]|. By Condition (C2) for T' being
P, we have ¢(P) + z(P) + bnd(P) > §|P|. Notice that
bnd(S) > bnd(P) — ZheP,keQ (wk,h(l —zp) + ’LUthZk).
Notice that for any machine k € @, w(k, P) < ¢ logq
by Condition (C1) and w(P, k) < w(M, k) < 1. We have
bnd(S) > bnd(P)—|Q|(c1 log g+1) > bnd(P)—0.516]5].
Thus, ¢(S) + 2(S) +bnd(S) > ¢(P) + 2(P) + bnd(P) —
0.518]S| > 6| P| — 0.516|S| > 0.484]S|.

To prove Theorem 3.4, it suffices to find an assign-
ment which satisfies Properties (C1) and (C2) for suit-
able § and c¢;. In the remainder of this section, we will
focus on finding such an assignment.

Sketch of the Proof. Suppose for the time being
all the positive wy, ;,’s are very close to 1. warp <1
implies that in the light load graph G,, any machine h
can have in-degree at most 1. In other words, G,, is a
collection of disjoint cycle-rooted trees. Suppose again
there are no cycles, and so G, is a collection of trees.

Now consider the random process which allocates
job j € Jy to machine ¢ with probability proportional to
z;. We now describe some bad events such that if none
of them occur we satisfy (C1) and (C2). The first bad
event is of course the negation of (C1) (corresponding to
&/ in what follows). The second bad event (correspond-
ing to # in what follows) occurs if the forest induced
by X N R contains a connected component larger than
©(logq).

Note that if these bad events don’t occur then any
subset S C X N R which does not contain roots of trees
in the forest satisfy (C2) (for § = O(log™"¢)). This is
because every connected component contributes 1 in-
degree to bnd(5).

Now suppose S contains the root r as well. Since
r has no incoming edges and is red, by (B4), it has
many out-edges. The third bad event (corresponding
to € in what follows) occurs if lots of out-neighbors of
a machine have been picked in X N R. If ¥’s doesn’t
occur in addition to the #’s, then the out-edges of r
which exit S contributes the boundary term in (C2). In
summary, if no bad event of type &, %, % occur, then
(C1) and (C2) are satisfied. The formal statement of
this is Lemma 6.3.

To show that with positive probability none of the
bad events occur, we invoke the asymmetric Lovasz Lo-
cal Lemma. To do so, we need to argue about the de-
pendency structure of the various events. We use a



connection to Galton-Watson branching processes de-
scribed by Moser and Tardos to prove that Z has
‘good’ dependency properties (the concrete statement
is Lemma 6.4.). The algorithm follows from the con-
structive versions of LLL due to [14, 11].

Till now we have been assuming positive wp, ’s
are close to 1. In reality, we divide the edges into
two classes: dense, if wy > (calogqg)™t and sparse
otherwise. Note that dense edges no longer form trees.
However, for each machine which has at least one dense
edge coming into it (which are called in-dense later); we
arbitrarily pick one of them and color it red and only
count the red edges towards the boundary.

The reason such a ‘sparsification’ helps is that it
decreases the dependence among events leading to the
application of LLL. To take care of machines with only
sparse in-coming edges, we need another type of bad
events (corresponding to 2 in what follows) whose non-
existence implies a large contribution to the boundary
for such machines. This ends the sketch of the proof.
We begin the details with some definitions.

DEFINITION 6.3. An edge (h,k) € G, is dense if
wp x> (c2logq)™!, and sparse otherwise, where cy is
large enough constant (ca = 300 suffices).

DEFINITION 6.4. A machine h is in-sparse if all in-
coming edges (k,h) € Gy, are sparse. Otherwise, h is
in-dense.

DEFINITION 6.5. A machine h is called out-dense if
Zk:(,hk) is dense 2k 2 é where c3 is a large enough
constant (cs = 200 suffices). Otherwise, the machine

is called out-sparse.

We are now ready to describe our algorithm for
assigning heavy jobs to machines satisfying (C1) and
(C2). Our algorithm starts with a pre-processing
of the fractional solution, and then recovers a good
integral assignment of heavy jobs from the pre-processed
solution using randomized rounding. mnote by X =
f(Ju) is the set of machines getting heavy jobs.

6.1 Pre-processing of the Instance For every in-
dense, red machine h € M, we arbitrarily select an
incoming dense edge (k,h) of h. If k is red and out-
sparse, we color the edge (k,h) in red. Every machine
has at most one incoming red edge. Moreover, the
two end points of a red edge are also red. Then each
connected component formed by red edges is either a
tree, or a tree plus an edge. Recall X is the set of
machines which we will assign heavy jobs and R is the
set of red machines.

We want to ensure that G,,[X N R] does not contain
any red cycles. That is, for any cycle of red edges

in G, we wish to ensure that at least one of these
machines is not assigned a heavy job. For each heavy
job j, we now identify a subset M; C M; such that
(i) 2(Mj) > 0.49z(M;), and (ii) the subgraph of G,
induced by Uje z, M]’ does not contain a red cycle.

We reduce the task of identifying M ]’ to an instance
of the generalized assignment problem where red cycles
correspond to jobs and groups correspond to machines.
If a red cycle C contains two machines from a group Mj,
we can ignore it since one machine in the cycle will not
get a heavy job. So assume C contains at most one job
from each group M. The cost of assigning a red cycle C'
to a group M; is zp, if some machine h € M; participates
in the cycle C' and oo otherwise. Since each red cycle
C' contains at least two machines(if a red cycle contains
one machine h, then wy,;, > 0, implying 2, = 0 by
Property (A2) and thus h is not in any M;), a solution
that assigns each C' uniformly to groups of all machines
contained in C, is a feasible fractional solution where
the load assigned to M; is at most z(M;)/2. We can
now use the Lenstra-Shmyos-Tardos [13] algorithm to
recover an integral assignment of red cycles to groups
such that maximum load on any machine is at most the
fractional load z(M;)/2 plus the largest job size, which
is at most maxy, req 2n < d9. Thus for any group Mj,
the total z-value of machines chosen in the red cycle
elimination step is at most z(M;)/2 + 69 < 0.512(M;)/
since §p < 0.001 < 0.01z(D;).

6.2 Randomized Assignment of Heavy Jobs
and Bad Events Now we are ready to describe the
randomized algorithm to get the heavy job assignment.
For every heavy job j, assign it to a machine f(j) :=1i €
M with probability proportional to z;. Note that the
probability p; a machine i gets a heavy job is at most
pi < 2;/(0.49-0.19) < 11%z;. We describe the bad events.

e Bad events @, h € M. o, occurs if
Y okexnrWhk > cilogq. Setting c¢; = 12 is suf-
ficient.

e Bad events %y, for aset T of L = 10log ¢ machines
connected by red edges. B occurs if T C X N R.

e Bad events %,, h € M. %) occurs if
{k € XN R: (h,k) is dense}| > 17czlogq.

e Bad events %, h is in-sparse. % occurs if
> kexnrlWrn (1 — 2n) +wp 2] > 0.1,

LEMMA 6.2. The bad events described above have prob-
abilities bounded as follows:

Pr[a] < q~%, Pr[Br] < sz',
€T
Pr[6n) < q ¢, Pr[%y) <q .



Proof. The second inequality is trivial. The remaining
follow as easy consequences of Theorem C.1. For any
machine h, E[ZkeX wh,k] S 11 ZkEM Wh, L2k S 11
since p; < 1lz; and by Property (B4) with § = 0.
Since wp,; < 1, and ¢y, g are large enough, Theorem C.1
implies Pr[} 0, - v Wh i > c1logq] < exp(—cilogq).

E[} icxnr Whi) < 11 implies for any machine A,
the expected number of out-neighbors k£ € X N R such
that (h, k) is dense is at most 11cy logg. Therefore, the
probability that %}, occurs, by the second inequality of
Theorem C.1, is at most exp(—(6/11)? - 11calogq/3) <
q .

For any machine h, the expected value of
Y okexnr Wen(1l — zn) + wp 2k is at most 115y since
red machines are sampled with probability at most
11z, < 116p. If ¢ is large enough, 11§, < 0.005.
Since h is in-sparse, each wy, ;, < (c2logg)™!, and since
k is red, wp 2 < (Cologgq)™'. Therefore wy (1 —
zn) + whpze < 2/(c2loggq). By the first inequality
of Theorem C.1, the probability 2, occurs is at most
exp(—20-0.1-cylogq/2) = g~ .

LEMMA 6.3. If none of the bad events occur, then f
18 ﬁsggq-good for 6 = (340c3c3 log® q)~t and & =
(34caczlogq)~t.

Proof. We show that if no bad events occur then both
conditions of Lemma 6.1 hold. In fact, since 2, doesn’t
occur for any h, we get (C1l) holds. Fix a subset
T C XNR. We now prove ¢(T)+z(T)+bnd(T) > 0|T).
This is done by careful accounting.

Focus on an in-sparse machine h € T. Since Z
doesn’t occur, we have Y, . [wyn(1 — 21n) + whp2r] <
0.1. By the definition of ¢, we have ¢, + 2z, +
Zk&T (wkﬁ(l — zp) + w;hkzk) > 0.9. Thus, the
contribution of h to ¢(T') + z(T') + bnd(T) is at least
0.9.

The red edges induced by ST C X NR form a forest
of rooted trees, by the preprocessing step. For each
machine in the forest, we ask the root of the tree to
contribute to ¢(T) + z(T) + bnd(T). Let h be such a
root.

If h is in-sparse, then its contribution is at least 0.9.
Otherwise, h is in-dense and we have selected an dense
incoming edge (k,h) in the pre-processing step. If k
is green, then k ¢ T. If k is red and out-sparse, then
the edge (k,h) is red and thus k ¢ T. In either case,
the contribution of h is at least (1 — z,)/(celogq) >
(1—=250)/(calogq) > 0.99/(c2logq).

It remains to consider the case k is red and out-
dense, and k£ € T. In this case, we ask k to contribute
to ¢(T) + 2(T) + bnd(T). Let T/ = {k € T
(k,k') is dense}. Since T C X N R and %) does not
happen, we have |T| < 17czlogq. z(T") < 17ca2é0logq

as all machines in 7" are red.

Y

IR

k'¢T:(k,k’) dense

1 1
= ( - 176250 10g q) .
calogqg \ c3

, 1
Z Whok' 2 co lo
T 210g q

The quantity is at least 1/(2caczloggq) since dp =
(34caczlogq)™t.

We count the number of times each machine is
asked to contribute. Since 2 events do not happen,
every root h is asked at most L times. Since %} does
not happen, every k is asked by at most 17csloggq
roots h. Overall, we have proved the lemma for § =

(2c2¢3logq - L - 17¢ologq) o (340c3cs log® q)fl.

6.3 Applying the Asymmetric LLL In this sec-
tion, we show via LLL that no bad event occurs with
positive probability. Using the results in [14, 11], we
get a polynomial time procedure to obtain an assign-
ment such that no bad events occur. Lemma 6.3 proves
Theorem 3.4 for C' = 2'5¢; ¢3¢ log® g.

We assign each bad event the following x values:
x(&) = 2Pr[&] for any bad event. The key is arguing
about the dependence structure of these events which
we undertake next by defining the notion of relevant
machines for each event. For any event «7,, the relevant
subset of machines is the set I'(e%,) = {k : (h, k) € Gy}
of out-neighbors of h. For any event %Br, the relevant
subset of machines is the set I'(%r) = {k : k € T}.
For any event %}, the relevant subset of machines is
the set I'(%3,) = {k : (h,k) € Gy and (h, k) is heavy}
of heavy out-neighbors of h. For any event &, the
relevant subset of machines is the set I'(Z;,) = {k :
(h,k) € Gy or (k,h) € Gy} of in-neighbors and out-
neighbors of h. By the facts that wyr, < 1, and
that all positive z, and wy , are at least %, we get that
maxy {|T(,)|, |T(6h)|, IT(Zh)|} < 2¢*. For a machine
h € M, we let group(h) denote the set M; where h € M;
if it exists; otherwise group(h) = {h}.

DEFINITION 6.6. Two sets S, T of machines are
group-disjoint if no machine in S is in the same group
with a machine in T. That is, for any uw € S,v € T,

group(u)  group(v).
CLAM 6.1. An event o,/ PBr[Ch/ Dy is independent of

G | Br €] Dy if the relevant subset of machines for
these events are group-disjoint.

The main non-trivial lemma is the following.

LEMMA 6.4. For every red machine h € R, we have
[Tgnes (1 —x(ABs)) > exp(—4/3%) where S is over all
sets of size L containing h and connected by red edges.



Proof. To argue about the probability of a connected
set S being chosen so that h € S, focus on the red
machines (J;. 5, M and the red edges induced on these
machines. The graph is a directed forest. We remove
the directions, and focus on the connected component
containing h. Root this tree at h and let A(v) be the set
of children of v for any v in this rooted tree. Consider a
branching process which selects h with probability 4py,
(recall py, is the probability a machine h gets a heavy
job), and if h is chosen, pick each child k € A(v) with
probability 4py, and continue thus. When this process
terminates, we end up with some connected set S. The
probability that we get a specific set S is precisely

= P
s branchingrprocess[s]
= (1 —4pn) [ ] e IT (0 —4p.)
1 —4py
kes u€A (k)
Since p, < 11§y as u is red, we have 1 —

4p, > exp(—5py). Therefore, HuEA(k) (1—4p,) >
exp (75 ZueA(k) pu). If k£ is out-dense, then k has de-
gree 1 thus has no children; the quantity is 1. If k is
out-sparse, then »°, cxgyPu < 1135 cpqy 2u < 11/c3.
As c3 > 200, we get that exp (—5ZueA(k)pu) >
3/4. This implies 75 > [[,cs(3px) > 3L Pr[Bg).
Since } g g s < 1 (the branching process
leads to ome set S), we get Yo ,Pr[Bs] < 3.

Now, Hs;hes (1 -x(Bs)) > exp(—2 Zs;hes x(Bs))
exp(—4 > g.pes Pr[Bs]) > exp(—4/3").

To check the conditions of the asymmetric LLL is now
just book keeping. For any bad event %g we have

I[I a-x@)=]] I TI0-x20)

T:Br~RBs heS kegroup(h) Tk

4 4qL
> exp(— 57 |SIIM; ) = exp(-57)
where j is the heavy job which can go to h, and since
zp > 1/q, we have |[M;| < ¢. Since L = 10loggq, the
RHS is at least 0.9 whenever ¢ > 10.

Fix an event &, where & € {&,%¢,2}. Let us
calculate upperbound the product

[1

S:PBs~Eh

II I II a-x(=s)

kel (&) k' egroup(k) S:k'€S

(1 —x(%s))

ﬂ)

> exp(— o= [T(&)llgroup(k)]) > exp(—

where j is the heavy job which contains £’ in its M;.
Since L > 101n¢q, the RHS is at least 0.9 since ¢ > 10.
Similarly,

I

h'(@h’\/:@s

=11 1T 11

k€S k' cgroup(k) h:k'€l’ (&)

S E) D VDS

k€S k'egroup(k) h:k'€l’(&p)

(1 —x(é))

(1 —x(¢h))

x(6h)

The number of terms in the RHS is at most |S|g5 < qf.
Since x(&,) = 2Pr[&,]) < ¢ 6 (if ca > 25 and ¢; > 6),
the RHS is atleast 0.9 for large enough gq.

Finally, we have

I o-xan=1 T I

k:&p~En h'€Sy h'' €group(h’) k:h'' €Sy

>exp | —2 Z Z Z x(%%) | -

h'€Sh h' €group(h’) k:h'' €S},

17X%k

For any machine h”, the set {k : v € S} is precisely the
neighbors of " (the machines of which h” is a neighbor
of are precisely the neighbors of h'). Therefore, the
number of terms in the summation is at most ¢2-q-¢* <
q°. Since x(%%) < ¢ %, we get that the RHS is at least
0.9 for large enough ¢. In sum, we get that for any event
& e {Mh, %s,%}“ _@h}7 we have

x@) I a-x#r) [[ 0-x(%)

T:-Br~E& k:Cp~8&
< [ G=x(@) > 05x(&) = Prfé],
k:Dp~E

implying that z satisfies the LLL condition.

Finally note that the number of events of type
o, €,9 are polynomially many, and given an assign-
ment of heavy jobs, one can easily check if one of the
PBr occurs or not. Therefore, Theorem C.3 applies and
this completes the proof of Theorem 3.4.
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A A (2 —¢) algorithm for the (1,¢)-restricted
assignment problem.

THEOREM A.l. There exists a polynomial time algo-
rithm which returns a (2 — €)-approximation to the
makespan minimization problem in (1,¢)-restricted as-
signment instances. There exists a polynomial time
11/6 = 1.833-factor algorithm to estimate the optimal
makespan in (1,€)-restricted assignment instances.

Proof. We construct a bipartite matching problem. Ver-
tices on the right side correspond to jobs. Suppose
OPT is the optimum makespan. For each machine i, we
create |OPT| heavy slots and |OPT/e| - [OPT]| light
slots. There is an edge between a heavy slot and all
jobs that can be assigned to the machine; there is an
edge between a light slot and all light jobs that can
be assigned to the machine. It is easy that there is
a matching that covers all jobs. Each machine gets a
total load at most |[OPT| + e(|OPT/e] — |OPT]) =
(1—-¢)|OPT] 4+¢|OPT/e| < (2—¢)OPT.

This gives a 2—e approximation for the problem. By
combining this with the (5/3 + ¢)-estimation algorithm
of Svensson [16], we obtain an algorithm that estimates
the make span up to a factor of min{2 —¢,5/3 + ¢} <
11/6.

B Hardness
problem

of (1,e)-restricted assignment

We complement our algorithmic result with the follow-
ing hardness of approximation result.

THEOREM B.1. For anye > 0, it is NP-hard to approz-
imate the makespan of the (1,¢)-restricted assignment
problem to a factor better than 7/6.

Proof. We reduce from the problem of finding a vertex
cover in cubic graphs: there exists parameter K(n) so
that it is NP hard to decide whether an n-vertex cubic
graph has a vertex cover of size < K(n) or not. Given
a vertex cover instance G = (V, E) on n vertices, we
construct an instance of (P|y|Cinqz) as follows: we have
a machine for every vertex v € V(G), a set of n — K(n)
heavy jobs that can be assigned to any machine, a set
of 3 light jobs S, for every edge e = (u,v) € E(G)
with job j € S, having p; = € and can be scheduled on
machine u or machine v.

If G has a vertex cover of size < K (n), then we can
find a schedule of makespan 1. Let U C V be the vertex
cover; allocate all heavy jobs to machines corresponding
to V\ U. For every edge e = (u,v), we are guaranteed
one of the end points lies in U and thus doesn’t have a
heavy job. Allocate all jobs of S, to that machine. Any
machine gets a total small load of at most 1, and any
machine getting a heavy job doesn’t get a light job.



If G doesn’t have a vertex cover of size < K(n),
then no matter how the heavy jobs are allocated, there
must be an edge e = (u,v) such that both v and v are
allocated heavy jobs. The total load on one of these two
machines is at least 1+ 1/6 = 7/6.

C Some Useful Tools

We state below two results that we will frequently utilize
in our analysis.

THEOREM C.1. Let Z be the sum of independent scalar

random variables each individually in range [0, K| and
w=E[Z]. Then for any X > 7, we have

Pr[Z > My < e MK,
For any A € (0,1), we have

Pr[Z > (14 A\p] < e N 1/3K
Pr[Z < (1 - A\)p] < e M#/2K,

Proof. All those bounds are simple application of stan-
dard Chernoff bounds. Let X be the sum of n inde-
pendent random variables, each take value in [0, 1]. Let
@ = E[X]. Then for every § > 0, we have

66 "
Pr[X > (1+6)u] < ((1+5)”5) .

For every ¢ € (0, 1), we have

e 9 a
PriX <(1-9d)ul < ((1—5)15> .

To prove the theorem, we can scale the random
variables by a factor of 1/K and then mean of Z is
changed to pu/K. Thus, we can assume K = 1.

The first inequality is obtained by setting § = A —1
and observing that e’\_l/)\A < e > for A\ > 7. For
the second inequality and third inequality, let § = A.
The second inequality holds since e®/(1 + §)'*° =
exp (6 — (14 0)In(1 +6)) < exp (6 — (1+0)25) =
exp <%) < exp(—62/3). The third inequality holds
since e70/(1 = 6)'° =exp(—0— (1 —6)In(1 —9)) <

exp (—0—(1-6)(—52)) = exp (—%) < exp(—62/2).

THEOREM C.2. (ASYMMETRIC LLL) Let & =
{E1,...,En} be a finite collection of (bad) events
in a probability space. For each E;, let T'(E;) denote
a subset of events such that E; is independent of
each event in €\ (E; UT(E;)). Then if there exists
an assignment x : € — (0,1) satisfying the property
Pr[E;] < x(E;) - HEjer(Ei)(lfx(Ej)), the proba-
bility that none of the events in € occurs is at least

[L; (1 = x(E3)).

While the version stated above is only an existence
statement, the recent work of Moser and Tardos [14],
and Haeupler et al. [11] has given polynomial-time
algorithms for finding a solution that avoids all bad
events. We use the notation E; ~ E; to indicate that
E; e T'(E;). Let V = {vy,v2,--- ,vn} be n independent
random variables. Let & = {E1,Es,---,E,} be a
finite collection of (bad) events where each FE; only
depends on a subset V; C V of variables. Let I'(E;) =
{Ei’ Ii/#i,‘/;ﬁ‘/;‘/ 75@}

The Moser-Tardos (MT, henceforth) algorithm does
the following: a) Initially sample v;’s independently,
and b) until all E;’s are dissatisfied, pick an arbi-
trary satisfied E; and resample the v;’s present in
Vi. Moser and Tardos [14] showed that if the LLL
condition held, the above algorithm terminated in
O (X" x(E;)(1 —x(E;))~!) iterations. This suffices
for many applications; however there are two issues —
a) m could be superpolynomial in n, and b) given a
setting of v;’s there may not be an efficient method to
detect if a satisfied E; exists or not. Haeupler et al. [11]
addressed these issues in the following ways.

THEOREM C.3. (Paraphrasing of Theorem 3.1 in [11])
Suppose the LLL condition holds, and let 6 :=
min; x(E;) [T;,(1 — x(Ej;)). Then the ezpected num-
ber of resamplings of the MT algorithm is at most
nlog(1/8) max;(1 — x(FE;))~L.

The above theorem takes care of situations where
the number of events may be superpolynomial; however,
‘efficient verifiability’ occurs, that is, given a setting
of v;’s one can detect a satisfied E; or assert none
hold. To take care of issue (b) above, Haeupler et
al. [11] modified the MT algorithm as follows. It
parametrizes the events with a set £ C & of core events.
Randomly and independently assign a value to each
random variable in V. In each iteration, we check if
any bad event F; € £ happens. If there is such a bad
event E; € £, we resample all variables in V; and start
a new iteration. Otherwise we terminate the algorithm
return the current assignment.

THEOREM C.4. (Paraphrasing of Theorem 3.4 in [11])
Suppose there exists an € € (0,1) and assignment x :
E — (0,1 — ) such that a slightly stronger-than-LLL
condition holds:

Prl B <x(E)- ][]
E;€T(E;)

(C.1) (1 —x(Ej))

Suppose further, that log(1/6) < poly(n). Then

1. For anyp > 1/poly(n), the set &' := {E; : Pr[E;] >
p} is of size at most poly(n).



2. With probability (1 — n™¢), the HSS algorithm
with core events &' terminates after O(nlogn)
resamplings and returns an assignment such that
no event in £ occurs.

D Omitted details from §5

CrLAamM 5.1. If (S,T) is a 0-witness, then there is a
connected §-witness (S,T), with S C S and T C T.

Proof. Consider all the (weakly) connected components
of G, [S](the sub-graph of G, induced by S). There
must be some connected component induced by S C S

such that ‘Tﬂg‘ +wgs>(2-90

, since summing

up the left side over all connected components S gives
|T|4+wg,s and summing up the right side gives (2—0) |S|.

Thus, (5’, T=Tn S) is a connected J-witness.

Claim 5.2 follows immediately from Theorem 3.1
and Claim 5.1.

D.1 Proof of Lemma 5.1 Before the proof of the
Lemma, we need one simple claim.

Cram D.1. For any (p,q,0)-canonical instance,
have warp < 1.1,wp p < 1.1p for every h € M.

we

Proof. Since zp, + waprp(l —2p) < 146 < 1.05 and
zn, < 1/2, we have wpy, < 105 Z” <1.1.

Consider any machine h "¢ M. Notice that
D okem WhikZe < 1+0 <11 and 2z > 1/p if wpp > 0.
We have wy, pr < (1/p) = 1.1p.

LEMMA 5.1. Letl = ({M; :j € Ju},w,z) be a(p,q,0)-
canonical instance. Assume q > max{p,qo}. Then,
we can find in polynomial time a (p,q’,0")-canonical
instance ' = ({M; : j € Ju},w',2), such that any ¢'-
good assignment [ for I' is d-good for |, where ¢ =

q/2,0" =0+ 8+/logq/q,0' = +84/logq/q.

Proof. For each pair (h,k) with 0 < wpp < 1/¢ =
2/q, we let w}zk = 1/¢' with probability q'wp i and
let whk = 0 with probablhty 1 — ¢'wp . For all
other pairs (h,k), we let wj , = wpi. Then I' =
({M; :j € Ju},w, z) is the new canonical instance.

1. o), for every machine h € M: ), occurs if
2p + wh)h(l — Zh) + ZkEM w;Lka >1+0;

2. Bgsr, for every connected d-witness (S,T) of I:
HBsr occurs if (S,T) is not a ¢’-witness of I'.

If none of the bad events occur, then I' is a
(p, q/2,0")-canonical instance; furthermore, any §’-good
assignment for I’ must be a d-good assignment for |

since otherwise %sr would occur for some connected
d-witness. In the rest of the proof, we use LLL to
show that none of the bad events occur with positive
probability. Using the techniques of [14, 11], there is
a polynomial time procedure which obtains I’ with the
desired property.

Focus on the quantity W on the left side of the in-
equality defining %,. All random variables (the wj, ;s)
in W take value in {0,1/¢'} and the coefficient be-
fore each random variable in Z is at most 1; more-
over, E(wj, ;) = wnyx. By Property (B4), we have
Zn + wM7h(1 —zp) + ZkeM whrzr <1460 < 1.1. The
Chernoff bound in Theorem C.1 gives that the probabil-

ity that <7, occurs is at most exp (—(0' — 0)?¢’/3.3) <
exp(—8logq) = ¢~ °.
Now consider the bad event ZBgr. Since (5,T)

is a d-witness of |, we have |T| + wg,s > (2 — ) |S].
HBsr occurs if [T + wg g < (2 —6')[S]. Again, by
Chernoff bound, the probability that Zg r occurs is at
most exp (—(8' — 8)%¢' |S| /4) < e=8UosDISI = 8IS,

Now we apply the (asymmetric) LLL. In order to
apply LLL, we need to define the x values for the bad
events. Define x(%,) = ¢~ 7 and x(%Bs1) = ¢~ 151

Focus on some bad event «7,. If <. is dependent of
&/, then either wy , > 0, or wy i > 0 and 2z, > 0. By
Claim D.1, the number of events <7 dependent of .,
is at most (1.1 + 1.1p)/(1/q) < ¢*/4 since each positive
wh, i has wp i > 1/q and p < ¢. We count the number of
events Bgr dependent on 7, satistying |S| =t. Bgr
is dependent on @, only if h € S. Since the degree of
vertices in G, is at most ¢3/4, and G,,[9] is connected,
the number of sets S is at most (¢®)!. 2 For a fixed S,
there are at most 2¢ different sets 7. Thus, the number
of such dependent events is at most (¢%)* x 2t < ¢*.
This gives,

x(ah) T (1-x(6))

En~ gy,

“T(1- q77)qS H (1- qfn)q“

t>1

> q % > Pr(a,),

where the product in the LHS is over all events &
dependent on «7,.

Now consider some bad event HBgrp with |S| =
s. Using a similar counting argument, the number of
events o7, that are dependent on %Bgsr is at most s¢°

ZWe can use the same argument as in [8]. Given a graph G
of degree d and a vertex v, we want to bound the number of
induced connected sub-graphs of s containing v. Fix an arbitrary
spanning tree for the sub-graph and root it at v. There are at
most 22% = 49 tree structures: visiting the tree in the DFS order
and we only need to specify which s — 1 edges are forward moves.
Given a tree structure, there at at most d® choices for the tree.

Thus the number is bounded by (4d)*.



and the number of events %z 7 dependent on Zsr
satisfying S = t is at most sg*. Thus,

x(@sr) [ (1-x(8))

E~Bs, T

> (- [[(-g)"

i1
> q % > Pr(%Bsr).

We have verified that the conditions for the asymmetric
LLL, and this completes the proof of the lemma.

To see how the theorems of [14, 11] can be applied,
note that that there are at most m events of the type
o7y,. The events %Bg r are exponentially many and do
not seem to be efficiently verifiable. This is where one
uses Theorem C.4 of [11]. Note in the above analysis,
(C.1) holds with e = 1/7. The theorem implies the ‘core
bad events’ which have Pr[%s r] > 1/poly(m), that is,
those with |S| = O(lﬁjggzl), are at most m@M). Since
these can be enumerated over using a BFS tree, we can
find a ‘good’ assignment in polynomial time.

D.2 Proof of Lemma 5.2

LEMMA 5.2. Letl = ({M; :j € Ju},w,z) bea(p,q,0)-
canonical instance, where p > max{q,qo}. We can
find in polynomial time a (p’,q,0")-canonical instance
"= ({M;:j € Ju},w,2) such that any §-good solution
f for I is also 6-good for |, where p' = p/2,6' =

0 + 8+/logp/p.

Proof. For every h € M with 0 < zp, < 1/p’ = 2/p, we
let z;, = 1/p" with probability p’z, and let 2z}, = 0 with
probability 1 — p’z,. For all other machines h, we let
zj, = zp,. Note that E[z}] = 2.

To make ({M;:J € Ju},w,2’) a canonical in-
stance, we need to apply more operations. If some
h € M; has z;, = 0, we need to remove h from M;.
If z;, = 0, for every h # k, we need to change the wy, j
light load of type-(h, k) to load of type-(k, k). However,
these operations do not affect our proof. Thus, we can
pretend our new instance is ' = ({M; : J € Ju},w, 2').

Since the definition of a §-good assignment is in-
dependent of z, a d-good assignment for I’ is a d-good
assignment for I. The non-trivial part is to show that
I" is (p', ¢q,0")-canonical. The non-trivial properties are
(B3) and (B4). Note that (B1) is satisfied by the con-
struction above and (B2) is untouched.

To this end, consider the following two types of bad
events. If none of the bad events occur we are done.
Once again, we use LLL to show that none of the bad
events occur with positive probability, and the lemma
is proven by the theorems of [14, 11].

1. @, h € M: o, occurs if z, + warn(l — 25) +
ZkeM w;hkz,g >1+6.

2. %;,j € Ju. $; occurs if EheMj 2 <020

Consider the quantity Z on the left side of the
inequality defining «%,. Notice that we have z; +
wirh(1=21) + D pen Whieze < 146 < 1.1, All random
variables z;, take value in {0,1/p'}; moreover, we have
E[z,] = zr. The coefficient before each z},k # h in
Z is at most wp < 1.1. The coefficient before zj, is
at most 1 but might as small as —0.1. If z; is not
fixed and the coefficient before it is negative, we define
y = 1/p’ — z;, and replace the random variable z; with
y. The Chernoff bound in Theorem C.1 gives that
), happens with probability exp (—(9' - 9)2p’/4) =
exp (—(9’ — 9)2p/8) = e 8logp — p=8,

Now focus on %; for some j € Jy. Since the unfixed
random variable z; takes value between 0 and 1/p’ =
2/p, the Chernoff bound gives that the probability that
PB; occurs is at most exp (—(¢' — 6)?p/8) = p~8. In
order to apply the uniform LLL, we need to upper-
bound the number of bad events that each %, (or
;) depends on. o, and o, are dependent only if
h and k are adjacent G; ), and %; are dependent
if there exists k € M; such that h and k are adjacent
in G. Since each |{k € M;: 2z, > 0}| < p and since
the degree of the graph G, is at most 2gp + 4q < 3p?
by Claim D.1, any bad event is dependent on at most
(3p?)p < p®/e other events. Thus the symmetric LLL
conditions hold, and thus with positive probability none
of the bad events occur. The polynomial time algorithm
follows directly from [14] since the number of bad events
is polynomially many.
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