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Abstract. The problem of truth discovery arises in many areas such
as database, data mining, data crowdsourcing and machine learning. It
seeks trustworthy information from possibly conflicting data provided by
multiple sources. Due to its practical importance, the problem has been
studied extensively in recent years. Two competing models were pro-
posed for truth discovery, weight-based model and probabilistic model.
While (1+ ε)-approximations have already been obtained for the weight-
based model, no quality guaranteed solution has been discovered yet
for the probabilistic model. In this paper, we focus on the probabilistic
model and formulate it as a geometric optimization problem. Based on
a sampling technique and a few other ideas, we achieve the first (1 + ε)-
approximation solution. The general technique we developed has the po-
tential to be used to solve other geometric optimization problems.

Keywords: geometric optimization, truth discovery, high-dimension,
data mining

1 Introduction

Truth discovery has received a great deal of attention in recent years in databases,
data crowdsourcing, machine learning and data mining [16, 13, 9, 10, 14]. It emerges
from various practical scenarios such as copying detection [5], data fusion [3]
and conflicting information resolving on the web [16]. In a typical scenario, the
unknown truth for one or multiple objects can be viewed as a vector in a high-
dimension space. The information about the truth vector may come from mul-
tiple sources. Those sources may be inaccurate, conflicting or even biased from
the beginning if they come from subjective evaluation. Our goal is to infer the
truth vector from these noisy information.

A naive method for this problem is to take the average of all the vectors from
sources as the the ground truth (for coordinates correspondent to categorical
data, take the majority vote). However, this approach, which inherently treats all
sources as equally important, is vulnerable to unreliable and malicious sources.
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Such sources can provide information that pulls the average away from the truth.
A more robust type of approaches is to give weights to sources to indicate their
reliability and use the weighted average or weighted majority as the ground truth.
However, since the weights are often unknown, the goal of finding the ground
truth is coupled with the task of reliability estimation. This type of approaches
is referred as a truth discovery approach. Among all, there are two competing
and sometimes complementary frameworks that are widely accepted and used
for different data types.

Weight-based Truth Discovery In this framework, both the truth and
the weights are treated as variables. An objective function is defined on these
variables [10]. Then an alternating minimization algorithm can be used to solve
the problem. In each iteration, the algorithm fixes one set of variables (either
the truth variables, or the weight variables) and optimizes the other. This proce-
dure continues until a stable solution is reached. Many existing methods [16, 4,
7, 11] follow this framework and justify themselves by experimenting with differ-
ent types of real-world datasets. However, none of these methods provides any
theoretical guarantee regarding the quality of solution. Recently, Ding et al. [2]
gave the first algorithm that achieves a theoretical guarantee (i.e., a (1 + ε)-
approximation) for a well-known weight-based model of truth discovery intro-
duced in [10]. Later, Huang et al. [19] further improved the running time to near
quadratic.

Probabilistic Truth Discovery Probabilistic models lie in a different
category of models for truth discovery. They were also studied extensively in the
literature [17, 15, 12, 18]. Instead of giving weights to indicate the reliability of
all sources, these models assume that the information for each source is gener-
ated independently from some distribution that depends on the truth and the
reliability of the source. Then the goal under these models is to find the truth
that maximizes the likelihood of the generated information from all sources. The
probabilistic models have been shown to outperform the weight-based methods
on numerical data [17]. They also prevail other models in the case where sources
come from subjective evaluation [13]. For the qualify of the optimization, [15]
gave an iterative algorithm with guaranteed fast convergence to a local optimum.

1.1 Our Results

We propose a probabilistic truth discovery model, reformulate it as an optimiza-
tion problem and give a PTAS (Polynomial-Time Approximation Scheme) to
solve it. We assume that each observation of a source is generated around the
truth vector with variance corresponding to the reliability of the source. Then,
the goal of finding the truth vector with the maximum likelihood can be formu-
lated as an optimization problem. Instead of directly solving the optimization
problem, we convert it to the following more general geometric optimization
problem:

Given {p1, p2, · · · , pn} ⊂ Rd, find x ∈ Rd to minimize

n∑
i=1

f(‖x− pi‖),
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where f is a function satisfying some reasonable properties.

This general problem encloses as special cases the classic 1-median and 1-
mean problems, and the more general problem of minimizing p-th power of
distances. Moreover, by considering the corresponding functions with an upper-
threshold, i.e, f(`) = min{`, B}, f(`) = min{`2, B} and f(`) = min{`p, B}, one
can capture the outlier versions of all these problems.

We give a sampling-based method that solves the above optimization problem
up to a factor of 1 + ε for any ε > 0 in quadratic running time. Thus, it not only
solves our truth discovery problem but also gives a unified approach to solve all
the above problems under this framework.

1.2 Our Techniques

One property that we do not impose on the function f is convexity. Requiring f
to be convex will make our problem too restrictive. For example, the cost function
ftruth(defined later) is non-convex in our truth discovery problem. The threshold
functions that are used to model the outlier versions of the 1-center problems
are also non-convex. Without the convexity property, iterative approaches such
as gradient descent and EM do not guarantee the global optimality. General
coreset technique (such as the one in [6]) which reduces the size of the problem
will not work, either. The dimensionality is not reduced by those techniques so
that the problem is still hard even for the coreset.

Instead of using methods in continuous optimization or general sampling
technique, our algorithm is based on the elegant method Badoiu, Har-Peled
and Indyk developed to give fast algorithms for many clustering problems [1, 8].
Roughly speaking, [1] showed that a small set of sample points X can guarantee
that the affine subspace span(X) contains a (1 + ε) approximate solution for
these clustering problems. Therefore both the size and the dimensionality can
be reduced.

Directly applying [1] does not work for non-convex cost function. In this
paper, we extend [1] to a more general family of cost functions, including the
non-convex cost function for our truth discovery problem. We will elaborate the
challenges in Section 3.2.

2 Problem formulation and Main Results

2.1 Probabilistic Truth Discovery

We first set the stage for the problem. The unknown truth can be represented as
a d dimensional vector p∗, as justified in [10]. There are n sources, and the obser-
vation/evaluation made by the i-th source is denoted as pi which also lies in the d
dimensional space Rd. In our model, we assume that each observation/evaluation
is a random variable following a multi-variate Gaussian distribution centered at
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the truth p∗ with covariance σ2
i Id.

1 Each unknown parameter σi ≥ 0 represents
the reliability of the source; the smaller the variance, the more reliable the source
is.

We formulate the problem as finding the (p∗, σ = (σi)i∈[n]) that maxi-
mizes the likelihood of the random procedure generating p∗.We impose a hyper-
parameter σ0 > 0 and require σi ≥ σ0 for every i ∈ [n]. It is naturally interpreted
as an upper bound of the reliability of all sources, but there is another interpre-
tation that we will discuss later.

Given the set of observation P = {pi}ni=1 ⊂ Rd under this probabilistic model
and a hyper-parameter σ0, we need to find a point x that maximizes the following
likelihood function:

n∏
i=1

N (pi | x, σ2
i Id) =

n∏
i=1

(
1√

2πσi

)d
exp

[
−‖pi − x‖

2

2σ2
i

]
.

Taking negative logarithm and optimizing the quantity over all valid vectors
σ = (σi)i∈[n], we obtain the following optimization problem:

min
x∈Rd,σ

{
nd

2
ln (2π) +

n∑
i=1

(
d lnσi +

‖pi − x‖2

2σ2
i

)}
, s.t. σi ≥ σ0,∀i ∈ [n].

(1)

Lemma 1. For a fixed x ∈ Rd, the following vector σ minimizes the objective
function in (1):

σi = max
{
σ0, ‖pi − x‖/

√
d
}
, ∀i ∈ [n].

Applying Lemma 1, the optimization problem now only depends on the point
x ∈ Rd:

min
x∈Rd

{
nd

2
ln (2π) +

∑
‖pi−x‖<σ0

√
d

(‖pi − x‖2
2σ2

0

+ d lnσ0

)

+
∑

‖pi−x‖≥σ0

√
d

(d
2

+ d ln
‖pi − x‖√

d

)}
.

Notice that scaling x, σ0 and all points pi by a fact of c only changes the value of
the function by a constant additive term (nd ln c). For simplicity, we will apply
a scaling to the triple (x, σ0, {pi}ni=1) 7→ (x′, σ′0.{p′i}ni=1) so that σ′0 = 1/

√
d and

1 For categorical data, the Gaussian distribution may cause fractional answers, which
can be viewed as a probability distribution over possible truths. In practice, variance
for different coordinates of the truth vector may be different and there might be
some non-zero covariance between different coordinates; however, up to a linear
transformation, we may assume the covariance matrix is σ2

i Id.
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drop the prime symbol if there is not ambiguity. The objective function becomes:

min
x∈Rd

{
nd

2
ln (2π) +

∑
‖pi−x‖<1

(d‖pi − x‖2
2

− d ln d

2

)

+
∑

‖pi−x‖≥1

(
d

(
1

2
+ ln ‖pi − x‖

)
− d ln d

2

)}
.

Moreover, we can drop the constant term nd
2 ln (2π) − nd

2 ln d, and then divide
the whole function by d/2, the final optimization problem becomes:

min
x∈Rd

n∑
i=1

ftruth(‖x− pi‖) where ftruth(`) =

{
`2 0 ≤ ` < 1

1 + ln `2 ` ≥ 1
. (2)

This objective function can be seen as the summation of costs from each indi-
vidual point. The cost function f for each pi is quadratic when its distance to
the variable p is close, and it grows logarithmically when pi is far away.

The function
∑n
i=1 ftruth(‖x− pi‖) can be served as an alternative way of

evaluating the solution’s quality other than the negative log-likelihood since:
(1) It has non-negative objective function value so that multiplicative approxi-
mation factor can be properly defined, which serves as a criterion of the solution’s
quality.
(2) The (1 + ε) approximation of

∑
ftruth gives the following guarantee. Let

Q0 =
(

1√
2πσ0

)d
be the maximum possible likelihood for the optimum solution

of any instance with n points and d dimensions. Let Q∗ be the likelihood for
the optimum solution to the given instance. If Q∗ = Q0e

−t, then we shall give a
solution with likelihood at least Q0e

−(1+ε)t.
Interpretation of the Parameter σ0 σ0 in our model is introduced to

reflect the overall reliability of the dataset. If each σi is unconstrained, or in
other words σ0 = 0, then quantity (1) can tend to −∞ by letting pi = x and
σi → 0 for some i ∈ [n]. At this point, it may seem that the introduction of the
parameter σ0 is a little bit unnatural. However, we argue that this issue caused
by the singular solutions does not only exist in our model; it comes with the
truth discovery problem itself. If one does not impose any assumption on the
reliability of the sources, then a solution (in any model) can be: one source is
100% reliable, all the other sources are not reliable at all and the truth is the
data given by the reliable source. Such a model will not be general enough. Any
meaningful model needs to be able to capture more than this type of solutions.

With the understanding that σ0 gives an upper bound on the reliability of
the sources, we can discuss how σ0 affects the optimum solution of our problem.
In one extreme, σ0 is very small, meaning that any source can be very reliable.
Then in our final optimization problem (2), the points pi’s are far away from
each other. (Recall that to obtain (2), we scaled the original pi 7→ p′i = pi√

dσ0
.)

Then for a typical center point x, most pi’s will have large ‖pi − x‖. For these
points, the f values are logarithmic in their distances to the center and thus are
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very insensitive to the location of the center. In this case, the optimum solution
x will be very close to some input point pi.

Consider the other extreme where σ0 is very large. Then, the points pi are
close to each other. In this case, the cost function will be distance square when
x is close to all points. The problem then becomes the classic 1-mean problem.
This coincides with our intention of setting the “overall confidence” σ0: σ0 being
very large indicates that all sources are unreliable when considered alone, and it
is wiser to take the average than to favor a particular source.

It might seem unreasonable to set a hyper parameter in “truth discovery”
problem because “truth” is usually assumed to be invariant to some hyper-
parameter we select in our model. Indeed, the truth should be invariant if it is
a numerical fact such as the height of a mountain or today’s weather forecast at
some location. But if we are talking about the rating of a movie or evaluation
of an instructor, it is presumptuous to suggest that there exists some “truth
discovery” model which can somehow “calculate” such truth exactly or approx-
imately. In such setting, the best we can guarantee is providing a model that
can rule out some outliers for the users. The hyper-parameter is provided for the
users to decide how much portion of the sources are outliers to him/her.

Here we present our main result for probabilistic truth-discovery problem. It
is directly implied by our main theorem, Theorem 3.

Theorem 1. Let 0 < ε ≤ 1. Let P be a set of n points in Rd and G(x) =∑
p∈P ftruth(‖x− p‖). A (1 + ε)-approximate solution can be obtained in time

O(2(1/ε)
O(1)

d+ n2d).

3 Solution for General 1-Center Optimization Problem

3.1 General description of the algorithm

The following notations are used throughout this section. Given the point set
P ⊂ Rd, a cost function f : R≥0 → R, let G(x) =

∑
p∈P f(‖x− p‖) denote the

objective function. We reuse the variable popt as the optimizer of G(x).
We show in advance the following three properties that a general cost function
f need to satisfy in order to apply our extended sampling method.

Property 1. (Regularity) f is a continuous, non-negative, monotonically in-
creasing function.

Property 2. (Sub-proportionality)2 ∃α ≥ 1 : f(kx) ≤ kαf(x) for any k ≥ 1,x ≥
0. We say α is the proportional degree of f if it is the smallest α satisfies such
property.

Property 3. The function f can be computed in polynomial time with respect to
the size of the input. The inverse of f , defined as f−1(y) = supx{x : f(x) = y},
should also be able to calculate in polynomial time w.r.t to the size of x when
y ≤ 2f(x).
2 Also referred as polynomial growing function or Log-Log Lipschitz function in liter-

ature.
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Remark 1. The only place property 3 is used is in Theorem 3. It is imposed to
ensure a polynomial running time in arithmetic calculation.

Remark 2. Continuity can be implied by property 2 by taking k → 1. Also, by
taking x = 0 in property 2, one can infer that f(0) ≥ 0. With the fact that f is
non-decreasing, one can also infer that f is non-negative.

Thus essentially the first two properties are (i) monotonically increasing, which
is a common assumption when a function is referred as a “cost” function; (ii)
sub-proportionality, which can be roughly thought of as requiring the function
not growing exponentially. Intuitively speaking, an equivalent statement is that
for every a > 0, the graph of the unique function g(x) = Cxα going through
(0, 0) and (a, f(a)) is completely above (can overlap) the graph of f(x) when
x ≥ a.

From now on, these three properties are always assumed for a cost function
f unless stated otherwise.

To approximate the optimizer popt of G(x), we generalize an existing result
from Badoiu, Har-Peled and Indyk [1] (for convex functions) to our problem
where the function can be non-convex. The key idea is to sample a core-set
X from the input points P such that the affine subspace span(X) contains a
(1 + ε)-approximate solution. We summarize the method in a general way in the
following procedures:

1. The value L is chosen so that the following two things can both happen:
(a) It’s possible to sample a few points and guarantee that with constant

probability, the Euclidean distance from one of the sample is close enough
to the optimizer popt, i.e. ‖si − popt‖ ≤ L for some sample si.

(b) If the distance from p′ to popt is O(εL) for sufficiently small constant in
this big O notation, p′ is guaranteed to be (1 + ε) approximate solution.

2. Continue the sampling in batches so that for each batch of samples, either
the (1 + ε)-approximate solution is already in the affine subspace spanned
by the sampled points, or the subspace becomes closer to popt by a factor
about 1 + ε. It is also required that the size of each batch is poly(1/ε).

3. Repeat step 2 until the distance from span(X) to popt is smaller than O(εL),
where X is the set of sampled points.

4. Inside span(X), draw a grid around each point in X. The radius of the grid
is 2L and the side length is εL. Then there is an (1+ε) approximate solution
in these grid points.

Remark 3. To be able to shorten from the initial gap L to the desired gap O(εL),
the number of batches required on average is bounded by poly(1/ε), which means
it only depends on the approximation factor. Since each batch contains poly(1/ε)
many samples, in total the sample set X is of size poly(1/ε).

Remark 4. Notice that in Step 4 we need to approximately know the value L to
perform the actual algorithm. This is guaranteed in our algorithm for general
cost function f , as we showed in the next section.
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3.2 The choice of L

Let us first focus on the choice of L for a general cost function f . Denote AVG =
G(popt)/n. If f(x) = x, L can be chosen to be 2G(popt)/n in Step 1, as shown in
[1]. We can think of this L as the average cost contributed from points in P . So
for condition (b), it is trivial that εL/2 is the necessary distance from p′ to popt
to make p′ a (1 + ε)-approximated solution. At the same time, L is also roughly
the “average” of Euclidean distance from each point in P to popt since the cost
function f is an identity function. So for condition (a), a point s ∈ P such that
‖s− popt‖ ≤ L can be regarded as an “average” case. An average case is easy to
approximate using sampling.

However, such coincidence will not happen for general f . If f is a slowly
growing function (e.g. log(x), 1− 1/x) and L is chosen like above, condition (b)
still holds but L is far from the “average” of Euclidean distances to popt in some
of worse cases. To compromise, we do not require L to be “average”. We only
require roughly εn points in P satisfying that the distance from them to popt is
less than L. Then on average, we can obtain such point after O(1/ε) samples.
Consequently, condition (a) and (b) can both be satisfied again. The following
lemma shows the exact choice of the value L, the unknown variables A and B
will be removed later:

Lemma 2. Let 0 < ε ≤ 1. Let P ⊂ Rd and |P | = n, G(x) =
∑
p∈P f(‖x− p‖)

with α as the proportion degree of f . Suppose p̃ is the dεne-th closest point to the
optimal solution popt among the points in P .Choose L accordingly if the following
two cases apply:
(i) If we know a value A such that f(‖p̃ − popt‖) ∈ [A, (1 + ε/3)A), choose
L = f−1((1 + ε)A).
(ii) If f(‖p̃ − popt‖) ≤ εAVG/B for some constant B ≥ 3, choose a value L ∈
[f−1(εAVG/B), f−1(εAVG/3)].
Then p′ is a (1 + ε)−approximate solution of G if ‖p′ − popt‖ ≤ εL/(4α).

Proof. We prove case (i) first. Let P = {p1, p2, · · · , pn} so that ‖p1 − popt‖ ≤
‖p2 − popt‖ ≤ · · · ≤ ‖pn − popt‖. Then i ≥ dεn/4e implies f(‖pi − popt‖) ≥ A
since f is non-decreasing. By Markov’s inequality the value A can not be greater
than AVG/(1− ε/4). This is a fact we are going to use in the following argument
and later in Lemma 5. Now assume p′ is a point satisfies ‖p′ − popt‖ ≤ εL/(4α).
For pi with i < dεn/4e, the total increase of cost by moving popt to p′ is at most∑

i<dεn/4e

f(‖pi − p′‖) ≤ ε
n

4
f(L+

Lε

4α
)

≤ εn
4

(1 +
ε

4α
)αf(L) ≤ εn

4
(1 +

ε

3
)(1 + ε/3)A

≤ εn
4

(1 +
ε

3
)(1 + ε/3)

AVG

(1− ε/4)
<

16

27
εG(popt)

The second inequality comes from the sub-proportionality of f . For the remaining
points, If ‖pi − popt‖ < L− εL/(4α) but ‖pi − popt‖ ≥ ‖p̃− popt‖, then

f(‖pi − p′‖) ≤ f(‖pi − popt‖+ ‖popt − p′‖) ≤ f(L) = (1 + ε/3)A
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With the fact that f(‖pi − popt‖) ≥ A, we have

f(‖pi − p′‖)− f(‖pi − popt‖) ≤
ε

3
A ≤ ε

3
f(‖pi − popt‖)

If ‖pi − popt‖ ≥ L − εL/(4α), the cost from moving popt to p′ is increased by a
factor of at most (1 + 11ε/27):

f(‖pi − p′‖) ≤ f(‖pi − popt‖+ ‖popt − p′‖) ≤ f(‖pi − popt‖+
εL

4α
)

≤ (1 +
ε

4α− ε
)αf(‖pi − popt‖) ≤ eε/3f(‖pi − popt‖)

≤ (1 +
11

27
ε)f(‖pi − popt‖)

In sum, the total difference between G(p′) =
∑
i f(‖pi − p′‖) and G(popt) is at

most εG(popt), therefore p′ is a (1 + ε)-approximate solution of G.

For case (ii), for i < bεn/4c, in other words, ‖pi − p′‖ ≤ ‖p̃ − p′‖, the total
increase of cost by moving popt to p′ is at most:

∑
i<dεn/4e

f(‖pi − p′‖) ≤ε
n

4
(1 +

ε

4α
)αf(L) ≤ εn

4
(1 +

ε

3
)
εAVG

3
<

1

9
εG(popt)

When ‖p̃− popt‖ ≤ ‖pi − popt‖ < L− εL/(4α) we have:

f(‖pi − p′‖) ≤ f(‖pi − popt‖+ ‖popt − p′‖) ≤ f(L) = εAVG/3

Lastly, if ‖pi = popt‖ ≥ L− εL/(4α), the argument is the same as in case(i):

f(‖pi − p′‖) ≤ (1 +
11

27
ε)f(‖pi − popt‖)

In sum, the total difference between G(p′) and G(popt) is < εG(popt). So p′ is a
(1 + ε)-approximate solution of G. ut

The above lemma shows that if we choose L in this way, condition (b) of Step
1 is satisfied. Furthermore, the following lemma indicates that condition (a) can
also be achieved.

Lemma 3. Let ε,P ,G,f , p̃, L be defined as in Lemma 2. By uniformly sampling
|X| = O(1/ε) points in P , there will be a point s ∈ X satisfying inequality
‖s− popt‖ ≤ L with constant probability.

Proof. Since for both case(i) and case(ii) there are at least bεnc points in P
having ‖pi − popt‖ ≤ ‖p̃− popt‖ ≤ L, after 2/ε samples there will be at least one
point falling in this set of points with probability ≥ 1/2 by Markov’s inequality.

ut
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3.3 Main result

In this subsection, we omit the details of most of the proofs due to the space
limit. First we present the theorem which guarantees the correctness of Step 2.
For a set of points X ⊂ Rd, we denote by span(X) the affine subspace spanned
by the set of points in X.

Theorem 2 (Core-set). Let 0 < ε < 1. Let P be a point set in Rd. G(x) =∑
p∈P f(‖x− p‖) with α as the proportion degree of f . L is chosen as in Lemma

2. If X is a set of points obtained from sampling O(log (1/ε)
/
ε3+α) points in P ,

then with constant probability, the following two events happen: (i) The distance
from the affine subspace span(X) to the optimizer popt is at most εL/(8α), and
(ii) X contains a point in distance ≤ L from popt.

The above theorem gives the existence of a (1 + ε)-approximate solution in
the affine subspace of a small sample. To actually find the solution is the final
issue. We provide one of the possible approaches in the following.

The lemma below shows that we know a value t = Θ(AVG). It also shows that
trust the best source alone gives a constant approximate factor solution.

Lemma 4 (a 2α−approximated solution). Let P be a set of n points in Rd
and G(x) =

∑
p∈P f‖x− p‖ with α as the proportion degree of f . We can try

every point in P to achieve a 2α-approximate solution for the function G, and
the total running time is O(n2d).

Proof. Let p′ ∈ P be the one closest to the optimal point popt. Then

G(p′) =
∑
p∈P

f(‖p− p′‖) ≤
∑
p∈P

f(‖p− popt‖+ ‖p′ − popt‖)

≤
∑
p∈P

f(2‖p− popt‖) ≤ 2α ·G(popt).

The last inequality comes from the sub-proportionality of f . The minimum
among G(p1), G(p2), · · · , G(pn) must be less than G(p′). The function G can
be evaluated in O(nd) time. Therefore, the 2α−approximate solution can be
found in O(n2d) time. ut

There are more efficient ways to bound the value of AVG for special f . For
example, when f(x) = x, it is shown [8] that AVG can be approximated in linear
time.

Now we settle the unknown variables A and B in Lemma 2. We will show that
if choosingB properly,A is approximately bounded in the way thatA = Θε(AVG).
Thus the search of the value A takes at most poly(1/ε) time. The effect on the
whole algorithm is a multiplicative factor of poly(1/ε), which is small comparing
to the time for drawing grid points.

Lemma 5. Let ε,P ,G,f be defined as in Lemma 2. Let p̃ be the dεne-th closest
point to the optimal solution popt among the points in P . There exists a set L of
size O(log(1/ε)/ε) such that for every possible values of f(‖p̃− popt‖), there is a
member L ∈ L such that it satisfies condition (a) and (b) in Step 1.
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The next theorem summarizes the complete algorithm.

Theorem 3. Let 0 < ε ≤ 1. Let P be a set of n points in Rd and G(x) =∑
p∈P f(‖x− p‖) with α as the proportion degree of f . Let X be a set of random

samples from P of size O(log(1/ε)/ε3+α). We can construct a set of grid points

Y of size O(2(1/ε)
O(1)

) such that with constant probability there is at least one
point p′ in Y being a (1 + ε)-approximate solution of G. The time complexity is

O(2(1/ε)
O(1)

d+ n2d) for the construction of Y .

Synopsis of the proof: For each L ∈ L, denote YL as the union of the grid
points around each x ∈ X, where the diameter of the grid is 4L and the side
length is roughly O(εL). Let Y = ∪L∈LYL. Then Theorem 2 guarantees the
desired result.
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1. M. Bādoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 250–257. ACM, 2002.

2. H. Ding, J. Gao, and J. Xu. Finding global optimum for truth discovery: En-
tropy based geometric variance. In LIPIcs-Leibniz International Proceedings in
Informatics, volume 51. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

3. X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun, and W. Zhang. Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In Proceedings of the 20th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 601–610. ACM, 2014.

4. X. L. Dong, L. Berti-Equille, and D. Srivastava. Integrating conflicting data: the
role of source dependence. Proceedings of the VLDB Endowment, 2(1):550–561,
2009.

5. X. L. Dong, L. Berti-Equille, and D. Srivastava. Truth discovery and copying
detection in a dynamic world. Proceedings of the VLDB Endowment, 2(1):562–
573, 2009.

6. D. Feldman and M. Langberg. A unified framework for approximating and clus-
tering data. In Proceedings of the forty-third annual ACM symposium on Theory
of computing, pages 569–578. ACM, 2011.

7. A. Galland, S. Abiteboul, A. Marian, and P. Senellart. Corroborating information
from disagreeing views. In Proceedings of the third ACM international conference
on Web search and data mining, pages 131–140. ACM, 2010.

8. A. Kumar, Y. Sabharwal, and S. Sen. Linear time algorithms for clustering prob-
lems in any dimensions. In International Colloquium on Automata, Languages,
and Programming, pages 1374–1385. Springer, 2005.

9. F. Li, M. L. Lee, and W. Hsu. Entity profiling with varying source reliabilities.
In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1146–1155. ACM, 2014.

10. Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han. Resolving conflicts in heteroge-
neous data by truth discovery and source reliability estimation. In Proceedings of
the 2014 ACM SIGMOD international conference on Management of data, pages
1187–1198. ACM, 2014.



12 S. Li, J. Xu and M. Ye

11. J. Pasternack and D. Roth. Knowing what to believe (when you already know
something). In Proceedings of the 23rd International Conference on Computational
Linguistics, pages 877–885. Association for Computational Linguistics, 2010.

12. P. Welinder, S. Branson, S. J. Belongie, and P. Perona. The multidimensional
wisdom of crowds. In NIPS, volume 23, pages 2424–2432, 2010.

13. J. Whitehill, T.-f. Wu, J. Bergsma, J. R. Movellan, and P. L. Ruvolo. Whose
vote should count more: Optimal integration of labels from labelers of unknown
expertise. In Advances in neural information processing systems, pages 2035–2043,
2009.

14. H. Xiao, J. Gao, Q. Li, F. Ma, L. Su, Y. Feng, and A. Zhang. Towards confidence
in the truth: A bootstrapping based truth discovery approach. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1935–1944. ACM, 2016.

15. H. Xiao, J. Gao, Z. Wang, S. Wang, L. Su, and H. Liu. A truth discovery approach
with theoretical guarantee. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1925–1934. ACM,
2016.

16. X. Yin, J. Han, and S. Y. Philip. Truth discovery with multiple conflicting informa-
tion providers on the web. IEEE Transactions on Knowledge and Data Engineering,
20(6):796–808, 2008.

17. B. Zhao and J. Han. A probabilistic model for estimating real-valued truth from
conflicting sources. Proc. of QDB, 2012.

18. B. Zhao, B. I. Rubinstein, J. Gemmell, and J. Han. A bayesian approach to
discovering truth from conflicting sources for data integration. Proceedings of the
VLDB Endowment, 5(6):550–561, 2012.

19. H. D. Ziyun Huang and J. Xu. Faster algorithm for truth discovery via range cover.
In Proceedings of Algorithms and Data Structures Symposium (WADS 2017), pages
461– 472, 2017.


