Approximation Algorithms for Stochastic Clustering (NeurIPS 2018 Poster)

David G. Harris ${ }^{1}$, Shi Li ${ }^{2}$, Thomas Pensyl ${ }^{1}$, Aravind Srinivasan ${ }^{3}$ and Khoa Trinh ${ }^{1}$

${ }^{1}$ Department of Computer Science, University of Maryland $\quad{ }^{2}$ Department of Computer Science \& Engineering, University at Buffalo

${ }^{3}$ Department of Computer Science \& Institute for Advanced Computer Studies, University of Maryland

Traditional Clustering Problems

Input: a set C of clients

a set F of potential centers
a metric d over $F \cup C$
Remark: F and d may be implicitly given. In the k-means problem, F is the set of all points in the Euclidean space, and d is the ℓ_{2} distance.
Output: a subset $S \subseteq F$ of k centers so as to minimize some aggregating function of the vector $(d(j, S))_{j \in C}$, where $d(j, S) \triangleq \min _{i \in S} d(j, i)$.

- k-supplier-center: minimize $\max _{j \in C} d(j, S)$
- k-median: minimize $\sum_{j \in C} d(j, S)$
k-means: minimize $\sum_{j \in C} d^{2}(j, S)$

The Motivational Question

Can we achieve better per-client guarantees by outputting a distribution over $\binom{F}{k} \triangleq\{S \subseteq F$ $|S|=k\} ?$

A Motivational Example

- $k+1$ separated clusters with inter-cluster distances ≈ 1.
- a single set $S \in\binom{F}{k}: \max _{j \in C} d(j, S) \approx 1$
- a dist. π over $\binom{F}{k}: \max _{j \in C} \mathbb{E}_{S \sim \pi} d(j, S) \approx \frac{1}{k+1}$

Stochastic Clustering

Input: C, F, d as before

Output: A random $S \in\binom{F}{k}$ so that each client j has a good guarantee stochastically Measurements of QoS include:

- Covering Probability: $\operatorname{Pr}{ }_{S}\left[d(j, S) \leq r_{j}\right]$, where r_{j} is pre-specified.
- Expected Service Cost: $\mathbb{E}_{S}[d(j, S)]$.

Applications

- Provider can periodically change service centers. spring summer fall winter spring summer • $\begin{array}{lllllll}S_{1} & S_{2} & S_{3} & S_{4} & S_{1} & S_{2}\end{array}$
- Algorithmic Fairness: An e-commerce aggregator gives a sample of products to a randomly chosen set of k influencers, and each user hopes it will be similar to an influencer with high probability.

Problem 1: Chance k-Coverage

- Input: C, F, d as before

$$
r_{j} \geq 0, p_{j} \in[0,1] \text { for every } j \in C
$$

Instance is feasible: \exists dist. π^{*} over $\binom{F}{k}$ s.t.

$$
\operatorname{Pr}_{S \sim \pi^{*}}\left[d(j, S) \leq r_{j}\right] \geq p_{j}, \forall j \in C .
$$

Output: A random S, following some dist. π.
Def.: Algorithm is an (α, β)-approximation if

$$
\operatorname{Pr}_{S \sim \pi}\left[d(j, S) \leq \alpha r_{j}\right] \geq \beta p_{j}, \forall j \in C .
$$

Our Results for $\mathbf{C} k \mathbf{C}$

Cases general general $p_{j} \equiv p r_{j} \equiv r$ | (α, β) | $(1,1-1 / e)$ | $(9,1)$ | $(3,1)$ |
| :--- | :--- | :--- | :--- |$(3,1)$

Tool 1: Greedy Clustering

$$
\begin{aligned}
& \text { Algorithm } 1 \text { GreedyCluster }\left(r \in \mathbb{R}_{\geq 0}^{C}, w \in \mathbb{R}^{C}\right) \\
& \text { 1: } C^{*} \leftarrow \emptyset, C^{\prime} \leftarrow C \\
& \text { 2: while } C^{\prime} \neq \emptyset \text { do } \\
& \text { 3: } \quad j \leftarrow \text { client in } C^{\prime} \text { with the smallest } w_{j} \\
& \text { 4: } \quad C^{*} \leftarrow C^{*} \cup\{j\} \\
& \text { 5: } \\
& C^{\prime} \leftarrow C^{\prime} \backslash\left\{j^{\prime}: B\left(j, r_{j}\right) \cap B\left(j^{\prime}, r_{j^{\prime}}\right) \neq \emptyset\right\}
\end{aligned}
$$ 6: return C^{*}

- r_{j} defines the radius of the ball around j - w defines the order in which we consider C

Lemma 1. (1A) For every two distinct clients $j, j^{\prime} \in C^{*}$, we have $B\left(j, r_{j}\right) \cap B\left(j^{\prime}, r_{j^{\prime}}\right)=\emptyset$ (1B) For every $j^{\prime} \in C, \exists j \in C^{*}$ with $w_{j} \leq w_{j^{\prime}}$ and $B\left(j, r_{j}\right) \cap B\left(j^{\prime}, r_{j^{\prime}}\right) \neq \emptyset$.

Tool 2: Dependent Rounding

Lemma 2. There exists a poly-time algorithm DepRound (y) which takes as input $y \in[0,1]^{n}$ and outputs a random set $Y \subseteq[n]$ such that
(2A) $\operatorname{Pr}[i \in Y]=y_{i}, \forall i \in[n]$,
(2B) $\lfloor y([n])\rfloor \leq|Y| \leq\lceil y([n])\rceil$,
(2C) $\operatorname{Pr}[Y \cap S=\emptyset] \leq \Pi_{i \in S}\left(1-y_{i}\right), \forall S \subseteq[n]$.

LP Relaxation for $\mathbf{C} k \mathbf{C}$

- We can find a feasible solution y to LP

$$
\begin{array}{rlrl}
y\left(B\left(j, r_{j}\right)\right) \geq p_{j} & & \forall j \in C & (1) \\
y(F) \leq k & & (2) \\
y_{i} \in[0,1] & \forall i \in F & & \text { (3) }
\end{array}
$$

- $B(j, r) \triangleq\{i \in F: d(i, j) \leq r\}, \forall j \in C, r \geq 0$. $-y(S) \triangleq \sum_{i \in S} y_{i}, \forall S \subseteq F$.
(1,1-1/e)-Approx. for $\mathbf{C} k \mathbf{C}$

1: solve LP (1)-(3) to obtain y
2: return $S \leftarrow \operatorname{DepRound}(y)$

- (2B) and (2) $\Rightarrow|S| \leq\lceil y(F)\rceil \leq k$.
$(2 \mathrm{C}) \Rightarrow \operatorname{Pr}\left[d(j, S) \leq r_{j}\right]=\operatorname{Pr}\left[S \cap B\left(j, r_{j}\right) \neq \emptyset\right]$

$$
\begin{aligned}
& \geq 1-\prod_{i \in B\left(j, r_{j}\right)}\left(1-y_{j}\right) \\
& \geq 1-e^{y\left(B\left(j, r_{j}\right)\right)} \geq 1-1 / e
\end{aligned}
$$

$(3,1)$-Approx. When $r_{j} \equiv r / p_{j} \equiv p$

1: solve LP (1)-(3) to obtain y

2: $C^{*} \leftarrow \operatorname{GreedyCluster}(r,-p / r)$
3: $V^{*} \leftarrow \operatorname{DepRound}\left(p_{\mid C^{*}}\right) \quad \triangleright p_{C^{*}}: p$ restricted to C^{*}
4: return $\left\{\right.$ nearest $i \in F$ to $\left.j: j \in V^{*}\right\}$

- By (2B), (1), (1A) and (2), we have
$\left|V^{*}\right| \leq\left\lceil\sum_{j \in C^{*}} p_{j}\right\rceil \leq\left\lceil\sum_{j \in C^{*}} y\left(B\left(j, r_{j}\right)\right)\right\rceil \leq\lceil y(F)\rceil \leq k$

Figure 1: Analysis for covering probability of j^{*} - Case $r_{j} \equiv r$: Fix $j^{*} \in C$ and we analyze its covering probability. See Figure 1

- (1B) $\Rightarrow \exists j \in C^{*}: B\left(j, r_{j}\right) \cap B\left(j^{*}, r_{j^{*}}\right) \neq \emptyset \& p_{j} \geq p_{j^{*}}$ - Let i be nearest center to $j, v \in B\left(j, r_{j}\right) \cap B\left(j^{*}, r_{j^{*}}\right)$. - $d\left(i, j^{*}\right) \leq 3 r_{j^{*}}$, via 3 hops $j^{*}-v-j-i$ of length $\leq r_{j^{*}}$.
- $\operatorname{Pr}\left[d(j, S) \leq 3 r_{j^{*}}\right] \geq \operatorname{Pr}[i \in S] \geq \operatorname{Pr}\left[j \in V^{*}\right]^{(1 \mathrm{~A})} p_{j} \geq p_{j^{*}}$

Case $p_{j} \equiv p$: we have $p_{j}=p_{j^{*}}$ and $r_{j} \leq r_{j^{*}}$; other parts of analysis are the same.

$$
(9,1) \text {-Approx. for } \mathbf{C} k \mathbf{C}
$$

- Use the iterative rounding framework of [1].

Problem 2: Approximate $\mathbb{E}[d(j, S)]$
Input: C, F, d as before, t_{j} for every $j \in C$ - Instance is feasible: \exists dist. π^{*} over $\binom{F}{k}$ s.t.

$$
\underset{S \sim \pi^{*}}{\mathbb{E}} d(j, S) \leq t_{j}, \forall j \in C
$$

Output: A random S, following some dist. π

$$
\text { s.t. } \quad \underset{S \sim \pi}{\mathbb{E}} d(j, S) \leq \beta t_{j}, \forall j \in C
$$

Our Result for Problem 2

- Using 0-sum-game and Multiplicative Weight Update: α-approx. for k-median implies $(\alpha+\epsilon$ approx. for Problem 2

References

[1] R. Krishnaswamy, S. Li, and S. Sandeep.
Constant approximation for k-median and k-means with outliers via iterative rounding. In Proceedings of the 50th annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 646-659, 2018 .

