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Traditional Clustering Problems

• Input: a set C of clients
• a set F of potential centers
• a metric d over F ∪ C

Remark: F and d may be implicitly given. In the k-means problem, F

is the set of all points in the Euclidean space, and d is the `2 distance.

• Output: a subset S ⊆ F of k centers so as to
minimize some aggregating function of the vector(
d(j, S)

)
j∈C, where d(j, S) , mini∈S d(j, i).

• k-supplier-center: minimize max j∈Cd(j, S)
• k-median: minimize ∑ j∈Cd(j, S)
• k-means: minimize ∑ j∈Cd

2(j, S)

The Motivational Question

Can we achieve better per-client guarantees by
outputting a distribution over

(
F
k

)
, {S ⊆ F :

|S| = k}?

A Motivational Example

•k + 1 separated clusters with inter-cluster
distances ≈ 1.

• a single set S ∈
(
F
k

)
: maxj∈C d(j, S) ≈ 1

• a dist. π over
(
F
k

)
: maxj∈C ES∼π d(j, S) ≈ 1

k+1

Stochastic Clustering

• Input: C,F, d as before
• Output: A random S ∈

(
F
k

)
so that each

client j has a good guarantee stochastically.
Measurements of QoS include:
• Covering Probability: PrS

[
d(j, S) ≤ rj

]
, where rj is

pre-specified.
• Expected Service Cost: ES[d(j, S)].

Applications

•Provider can periodically change service centers.
spring summer fall winter spring summer · · ·
S1 S2 S3 S4 S1 S2 · · ·

•Algorithmic Fairness: An e-commerce aggregator
gives a sample of products to a randomly chosen
set of k influencers, and each user hopes it will be
similar to an influencer with high probability.

Problem 1: Chance k-Coverage

• Input: C,F, d as before
rj ≥ 0, pj ∈ [0, 1] for every j ∈ C

• Instance is feasible: ∃ dist. π∗ over
(
F
k

)
s.t.

Pr
S∼π∗

[
d(j, S) ≤ rj

]
≥ pj,∀j ∈ C.

• Output: A random S, following some dist. π.

• Def.: Algorithm is an (α, β)-approximation if
Pr
S∼π

[
d(j, S) ≤ αrj

]
≥ βpj,∀j ∈ C.

Our Results for CkC

Cases general general pj ≡ p rj ≡ r

(α, β) (1, 1− 1/e) (9, 1) (3, 1) (3, 1)

Tool 1: Greedy Clustering

Algorithm 1 GreedyCluster(r ∈ RC
≥0, w ∈ RC)

1: C∗← ∅, C ′← C
2: while C ′ 6= ∅ do
3: j ← client in C ′ with the smallest wj
4: C∗← C∗ ∪ {j}
5: C ′← C ′ \ {j′ : B(j, rj) ∩B(j′, rj′) 6= ∅}
6: return C∗

• rj defines the radius of the ball around j
•w defines the order in which we consider C

• Lemma 1. (1A) For every two distinct clients
j, j′ ∈ C∗, we have B(j, rj) ∩B(j′, rj′) = ∅.
(1B) For every j′ ∈ C, ∃j ∈ C∗ with wj ≤ wj′

and B(j, rj) ∩B(j′, rj′) 6= ∅.

Tool 2: Dependent Rounding

Lemma 2. There exists a poly-time algorithm
DepRound(y) which takes as input y ∈ [0, 1]n
and outputs a random set Y ⊆ [n] such that
(2A) Pr[i ∈ Y ] = yi, ∀i ∈ [n],
(2B) by([n])c ≤ |Y | ≤ dy([n])e,
(2C) Pr[Y ∩ S = ∅] ≤ ∏

i∈S(1− yi), ∀S ⊆ [n].

LP Relaxation for CkC

•We can find a feasible solution y to LP:

y
(
B(j, rj)

)
≥ pj ∀j ∈ C (1)

y(F ) ≤ k (2)
yi ∈ [0, 1] ∀i ∈ F (3)

•B(j, r) , {i ∈ F : d(i, j) ≤ r},∀j ∈ C, r ≥ 0.
• y(S) , ∑

i∈S yi,∀S ⊆ F .

(1, 1− 1/e)-Approx. for CkC

1: solve LP (1)-(3) to obtain y
2: return S ← DepRound(y)

• (2B) and (2) ⇒ |S| ≤ dy(F )e ≤ k.
(2C)⇒ Pr [d(j, S) ≤ rj] = Pr [S ∩B(j, rj) 6= ∅]

≥ 1−
∏

i∈B(j,rj)
(1− yj)

≥ 1− ey(B(j,rj)) ≥ 1− 1/e.

(3, 1)-Approx. When rj ≡ r / pj ≡ p

1: solve LP (1)-(3) to obtain y
2: C∗← GreedyCluster(r,−p / r)
3: V ∗← DepRound(p|C∗) . p|C∗: p restricted to C∗
4: return {nearest i ∈ F to j : j ∈ V ∗}

•By (2B), (1), (1A) and (2), we have
|V ∗| ≤ d

∑
j∈C∗

pje ≤ d
∑
j∈C∗

y(B(j, rj))e ≤ dy(F )e ≤ k.

j∗ j

rj∗ = r

rj = r

v
i

Figure 1: Analysis for covering probability of j∗.

•Case rj ≡ r: Fix j∗ ∈ C and we analyze its
covering probability. See Figure 1.
• (1B) ⇒ ∃j ∈ C∗ : B(j, rj) ∩B(j∗, rj∗) 6= ∅ & pj ≥ pj∗.
• Let i be nearest center to j, v ∈ B(j, rj) ∩B(j∗, rj∗).
• d(i, j∗) ≤ 3rj∗, via 3 hops j∗−v−j−i of length ≤ rj∗.
• Pr[d(j, S) ≤ 3rj∗] ≥ Pr[i ∈ S] ≥ Pr[j ∈ V ∗](1A)= pj ≥ pj∗.

•Case pj ≡ p: we have pj = pj∗ and rj ≤ rj∗; other
parts of analysis are the same.

(9, 1)-Approx. for CkC

•Use the iterative rounding framework of [1].

Problem 2: Approximate E[d(j, S)]

• Input: C,F, d as before, tj for every j ∈ C
• Instance is feasible: ∃ dist. π∗ over

(
F
k

)
s.t.

E
S∼π∗

d(j, S) ≤ tj,∀j ∈ C.
• Output: A random S, following some dist. π

s.t. E
S∼π

d(j, S) ≤ βtj,∀j ∈ C.

Our Result for Problem 2
•Using 0-sum-game and Multiplicative Weight
Update: α-approx. for k-median implies (α+ε)-
approx. for Problem 2.
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