Approximation Algorithms for Stochastic Clustering (NeurIPS 2018 Poster)

David G. Harris¹, Shi Li², Thomas Pensyl¹, Aravind Srinivasan³ and Khoa Trinh¹ ¹ Department of Computer Science, University of Maryland ³ Department of Computer Science & Institute for Advanced Computer Studies, University of Maryland

Traditional Clustering Problems

- Input: a set C of clients
- a set F of potential centers
- a metric d over $F \cup C$

Remark: F and d may be implicitly given. In the k-means problem, Fis the set of all points in the Euclidean space, and d is the ℓ_2 distance.

- **Output**: a subset $S \subseteq F$ of k centers so as to minimize some aggregating function of the vector $(d(j,S))_{j\in C}$, where $d(j,S) \triangleq \min_{i\in S} d(j,i)$.
- k-supplier-center: minimize $\max_{j \in C} d(j, S)$
- k-median: minimize $\sum_{j \in C} d(j, S)$
- k-means: minimize $\sum_{j \in C} d^2(j, S)$

The Motivational Question

Can we achieve better per-client guarantees by outputting a distribution over $\binom{F}{k} \triangleq \{S \subseteq F :$ $|S| = k \}?$

A Motivational Example

- k + 1 separated clusters with inter-cluster distances ≈ 1 .
- a single set $S \in \binom{F}{k}$: $\max_{j \in C} d(j, S) \approx 1$
- a dist. π over $\binom{F}{k}$: $\max_{j \in C} \mathbb{E}_{S \sim \pi} d(j, S) \approx \frac{1}{k+1}$

Stochastic Clustering

- Input: *C*, *F*, *d* as before
- Output: A random $S \in \binom{F}{k}$ so that each client j has a good guarantee stochastically. Measurements of QoS include:
- Covering Probability: $\Pr_S \left[d(j, S) \leq r_j \right]$, where r_j is pre-specified.
- Expected Service Cost: $\mathbb{E}_{S}[d(j, S)]$.

Applications

• Provider can periodically change service centers. $spring |summer| fall |winter| spring |summer| \cdot \cdot \cdot$ $\overline{S_1}$ S_2 S_3 S_4 S_1 S_2 \cdots

• Algorithmic Fairness: An e-commerce aggregator gives a sample of products to a randomly chosen set of k influencers, and each user hopes it will be similar to an influencer with high probability.

Problem 1: Chance k-Coverage

- Input: C, F, d as before
- $r_j \ge 0, p_j \in [0, 1]$ for every $j \in C$ • Instance is feasible: \exists dist. π^* over $\binom{F}{k}$ s.t. $\Pr_{S \sim \pi^*} \left[d(j, S) \le r_j \right] \ge p_j, \forall j \in C.$
- **Output**: A random S, following some dist. π .
- **Def.**: Algorithm is an (α, β) -approximation if $\Pr_{S \sim \pi} \left[d(j, S) \le \alpha r_j \right] \ge \beta p_j, \forall j \in C.$

Our Results for CkC

Cases	general	general	$p_j \equiv p$	$r_j \equiv r$
(lpha,eta)	(1, 1 - 1/e)	(9, 1)	(3, 1)	(3, 1)

Tool 1: Greedy Clustering

Algorithm 1 GreedyCluster $(r \in \mathbb{R}_{\geq 0}^C, w \in \mathbb{R}^C)$

- 1: $C^* \leftarrow \emptyset, C' \leftarrow C$
- 2: while $C' \neq \emptyset$ do
- $j \leftarrow \text{client in } C' \text{ with the smallest } w_j$
- $C^* \leftarrow C^* \cup \{j\}$ 4:
- $C' \leftarrow C' \setminus \{j' : B(j, r_j) \cap B(j', r_{j'}) \neq \emptyset\}$ 5:
- 6: return C^*
- r_j defines the radius of the ball around j
- w defines the order in which we consider C

• Lemma 1. (1A) For every two distinct clients $j, j' \in C^*$, we have $B(j, r_j) \cap B(j', r_{j'}) = \emptyset$. (1B) For every $j' \in C$, $\exists j \in C^*$ with $w_j \leq w_{j'}$ and $B(j, r_j) \cap B(j', r_{j'}) \neq \emptyset$.

² Department of Computer Science & Engineering, University at Buffalo

Tool 2: Dependent Rounding

Lemma 2. There exists a poly-time algorithm DepRound(y) which takes as input $y \in [0,1]^n$ and outputs a random set $Y \subseteq [n]$ such that (2A) $\Pr[i \in Y] = y_i, \forall i \in [n],$ (2B) $\lfloor y([n]) \rfloor \leq |Y| \leq \lceil y([n]) \rceil$, (2C) $\Pr[Y \cap S = \emptyset] \le \prod_{i \in S} (1 - y_i), \forall S \subseteq [n].$

LP Relaxation for CkC

• We can find a feasible solution y to LP:

$y(B(j,r_j)) \ge p_j$	$\forall j \in C$	(1)
$y(F) \le k$		(2)
$y_i \in [0, 1]$	$\forall i \in F$	(3)

 $\bullet B(j,r) \triangleq \{i \in F : d(i,j) \le r\}, \forall j \in C, r \ge 0.$ • $y(S) \triangleq \sum_{i \in S} y_i, \forall S \subseteq F.$

(1, 1 - 1/e)-Approx. for CkC

1: solve LP (1)-(3) to obtain y2: return $S \leftarrow \text{DepRound}(y)$

• (2B) and (2) \Rightarrow $|S| \leq \lceil y(F) \rceil \leq k$. $(2\mathbf{C}) \Rightarrow \Pr[d(j,S) \le r_j] = \Pr[S \cap B(j,r_j) \ne \emptyset]$ $\geq 1 - \prod (1 - y_j)$ $i \in B(j,r_j)$ $> 1 - e^{y(B(j,r_j))} \ge 1 - 1/e.$

(3,1)-Approx. When $r_i \equiv r / p_i \equiv p$

- 1: solve LP (1)-(3) to obtain y
- 2: $C^* \leftarrow \text{GreedyCluster}(r, -p / r)$
- 3: $V^* \leftarrow \text{DepRound}(p_{|C^*}) \triangleright p_{|C^*}$: p restricted to C^* 4: **return** {nearest $i \in F$ to $j : j \in V^*$ }

• By (2B), (1), (1A) and (2), we have $|V^*| \le \left\lceil \sum_{j \in C^*} p_j \right\rceil \le \left\lceil \sum_{j \in C^*} y(B(j, r_j)) \right\rceil \le \left\lceil y(F) \right\rceil \le k.$

Problem 2: Approximate $\mathbb{E}[d(j, S)]$

• **Output**: A random S, following some dist. π s.t. $\mathbb{E}_{S \sim \pi} d(j, S) \leq \beta t_j, \forall j \in C.$

• Using 0-sum-game and Multiplicative Weight Update: α -approx. for k-median implies ($\alpha + \epsilon$)approx. for Problem 2.

[1] R. Krishnaswamy, S. Li, and S. Sandeep. Constant approximation for k-median and k-means with outliers via iterative rounding. In Proceedings of the 50th annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 646–659, 2018.

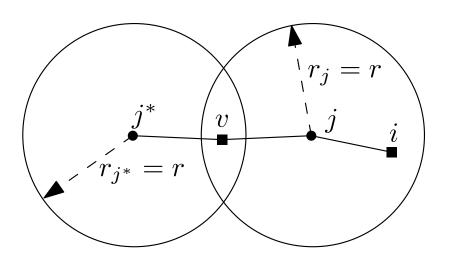


Figure 1: Analysis for covering probability of j^* . • Case $r_j \equiv r$: Fix $j^* \in C$ and we analyze its covering probability. See Figure 1. • (1B) $\Rightarrow \exists j \in C^* : B(j, r_j) \cap B(j^*, r_{j^*}) \neq \emptyset \& p_j \ge p_{j^*}.$ • Let *i* be nearest center to $j, v \in B(j, r_i) \cap B(j^*, r_{i^*})$. • $d(i, j^*) \leq 3r_{j^*}$, via 3 hops $j^* - v - j - i$ of length $\leq r_{j^*}$. • $\Pr[d(j,S) \leq 3r_{j^*}] \geq \Pr[i \in S] \geq \Pr[j \in V^*] \stackrel{(1A)}{=} p_j \geq p_{j^*}.$ • Case $p_j \equiv p$: we have $p_j = p_{j^*}$ and $r_j \leq r_{j^*}$; other parts of analysis are the same.

(9,1)-Approx. for CkC

• Use the iterative rounding framework of [1].

• Input: C, F, d as before, t_j for every $j \in C$ • Instance is feasible: \exists dist. π^* over $\binom{F}{k}$ s.t. $\mathbb{E}_{S \sim \pi^*} d(j, S) \le t_j, \forall j \in C.$

Our Result for Problem 2

References