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Abstract: We consider the approximability of K-WAY HYPERGRAPH CUT problem: the
input is an edge-weighted hypergraph G = (V,E) and an integer k and the goal is to remove
a min-weight subset of the edges such that the residual graph has at least k connected
components. When G is a graph this problem admits a 2(1−1/k)-approximation [Saran and
Vazirani, SIAM J. Comput. 1995]. However, there has been no non-trivial approximation
ratio for general hypergraphs. In this note we show, via a very simple reduction, that
an α-approximation for K-WAY HYPERGRAPH CUT implies an α2-approximation for the
DENSEST K-SUBGRAPH problem. Our reduction combined with the hardness result of
[Manurangsi STOC’17] implies that under the Exponential Time Hypothesis (ETH), there
is no n1/(log logn)c

-approximation for K-WAY HYPERGRAPH CUT where c > 0 is a universal
constant and n is the number of nodes.

K-WAY HYPERGRAPH CUT is a special case of k-WAY SUBMODULAR MULTIWAY

PARTITION and hence our hardness applies to this latter problem as well. These hardness
results are in contrast to a 2-approximation for closely related problems where the goal is to
separate k given terminals [Chekuri and Ene, FOCS’11], [Ene et al. SODA’13].
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1 Introduction

We consider the following problem.

K-WAY HYPERGRAPH CUT: Let G = (V,E) be a hypergraph with edge weights given by w : E→ R+.
Given an integer k, find a min-weight subset of edges E′ ⊆ E such that G−E′ has at least k connected
components. Equivalently find a partition of V into k non-empty sets V1,V2, . . . ,Vk such that the weight of
the hyperedges that cross the partition1 is minimized.

K-WAY HYPERGRAPH CUT is known as the K-CUT problem when the input is a graph and is one of
the well-studied variants of graph partitioning problems. K-WAY HYPERGRAPH CUT is a special case of
a more general submodular partitioning problem defined below.

k-WAY SUBMODULAR PARTITION (K-WAY SUB-MP): Let f : 2V → R+ be a non-negative submodular
set function2 over a finite ground set V . The k-way submodular partition problem is to find a partition
V1, . . . ,Vk of V to minimize ∑

k
i=1 f (Vi) under the condition that each part Vi 6= /0. An important special

case is when f is symmetric and we refer to it as K-WAY SYM-SUB-MP.
We refer the reader to [14, 5] to see why K-WAY HYPERGRAPH CUT is a special case of K-WAY

SUB-MP. The K-CUT problem is not only a special case of K-WAY HYPERGRAPH CUT but it is
also a special case of K-WAY SYM-SUB-MP. When k is part of the input K-CUT is NP-Hard [8]
and hence all the problems we discussed so far are also NP-Hard. K-WAY SYM-SUB-MP admits a
2(1− 1/k)-approximation [15, 19] and hence also K-CUT [17]. For K-WAY HYPERGRAPH CUT a
2∆(1−1/k)-approximation easily follows from the 2(1−1/k)-approximation for K-CUT; here ∆ is the
rank of the hypergraph (the maximum size of any hyperedge). On the other hand, in the general case,
the known approximation algorithms for K-WAY HYPERGRAPH CUT and K-WAY SUB-MP provide an
approximation ratio of (k−1) [19]. Despite a claim of APX-Hardness for K-CUT in [17] (attributed to
Papadimitriou), no proof has been published in the literature; Manurangsi [13] showed that K-CUT does
not admit a (2− ε)-factor for any fixed ε > 0 under the Small Set Expansion Hypothesis. As far as we
are aware, prior to our work, no better hardness result was know for K-WAY HYPERGRAPH CUT.

In this note we show that a good approximation for K-WAY HYPERGRAPH CUT would imply a good
approximation for the DENSEST K-SUBGRAPH problem which has been extensively investigated and has
been shown to be conditionally hard.

DENSEST K-SUBGRAPH: Given a graph G = (V,E) and integer `, find a subset S ⊆ V of ` nodes to
maximize the number of edges in the induced graph G[S].

In the preceding definition we used ` instead of k to denote the number of nodes in the subgraph
to be found. This is to avoid notational confusion since k is used in the K-WAY HYPERGRAPH CUT

problem. The current best approximation for DENSEST K-SUBGRAPH is O(n1/4+ε) [1]; note that an
`-approximation is easy. Although the problem is expected to be quite hard to approximate, the known
hardness results are weak; a PTAS for DENSEST K-SUBGRAPH can be ruled out only under the assumption
that NP 6⊆ ∩ε>0BPTIME(2nε

) [11]. Polynomial-factor integrality gaps for several strong SDP relaxations
are known [2]. In a breakthrough result, Manurangsi [12] showed that under the Exponential Time

1A hyperedge e crosses a partition of the vertex set if e properly intersects at least two parts of the partition.
2A set function f : 2V →R is submodular iff f (A)+ f (B)≥ f (A∩B)+ f (A∪B) for all A,B⊆V . Moreover, f is symmetric

if f (A) = f (V −A) for all A⊆V .
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Hypothesis (ETH), DENSEST K-SUBGRAPH is hard to be approximate to a factor better than n1/(log logn)c

where n is the number of nodes in the input graph and c > 0 is a universal constant. We state his result
more precisely in the theorem below.

Theorem 1.1 ([12]). There exists a constant c > 0 such that the following holds, assuming ETH. No
polynomial time algorithm can, given a graph G with n vertices and a positive integer `≤ n, distinguish
between the following two cases:

• G contains an `-clique as a subgraph.

• Every `-node subgraph of G has at most
(
`
2

)
/n1/(log logn)c

edges.

To formally state our result it is more convenient to relate the approximation ratio to the parameter s
of a given graph (or hyper-graph) which is the sum of the number of nodes and edges (or hyper-edges).
The above theorem gives an s1/(log logs)c′

-hardness for DENSEST K-SUBGRAPH for some c′ > 0, since s
and n are polynomially related for graphs. On the other hand, the tight instances for the algorithm of [1]
for DENSEST K-SUBGRAPH have |E|= Θ(|V |3/2). For these instances, it is not known how to obtain an
approximation ratio better than O(|V |1/4) = O(s1/6). Our main theorem is the following:

Theorem 1.2. A polynomial-time α(s) approximation algorithm for K-WAY HYPERGRAPH CUT implies
a polynomial-time `−1

`−2(α(s+1))2-approximation algorithm for DENSEST K-SUBGRAPH.

Combining the preceding theorem with Theorem 1.1, we obtain the following.

Corollary 1.3. Assuming ETH, there is no s1/(log logs)c
-approximation for K-WAY HYPERGRAPH CUT,

where c > 0 is a universal constant.

The reduction in the proof of Theorem 1.2 creates instances of K-WAY HYPERGRAPH CUT in which s
is upper bounded by a fixed polynomial in n where n is the number of nodes of the hypergraph. Therefore,
the preceding corollary in fact shows that, assuming ETH, there is no n1/(log logn)c

-approximation for
K-WAY HYPERGRAPH CUT, where c > 0 is some universal constant.

When k is a fixed constant one can reduce K-WAY HYPERGRAPH CUT and K-WAY SUB-MP to solving
O(nk−1) instances of the “terminal” version of these problems which have a 2(1−1/k) approximation.
We refer the readers to [5, 7] for more details on these related problems.

2 Proof of Theorem 1.2

Let (G = (V,E), `) be an instance of DENSEST K-SUBGRAPH. We construct a hypergraph H = (A,F)
as follows. For each edge e ∈ E we create a node ae and add it to A. Moreover we add a new special
node r to A. Thus A = {r}∪ {ae | e ∈ E}. For each node v ∈ V we add a hyperedge fv to F where
fv = {r}∪{ae | e ∈ δG(v)} where δG(v) is the set of edges in E that are incident to v in G. Thus H is
basically the hypergraph obtained from G by flipping the role of nodes and edges and then adding the
extra node r to each hyperedge. We also observe that |A|+ |F|= 1+ |V |+ |E|= s+1.

For a subset S⊆V , we let EG(S) denote the set of edges in E with both endpoints in S. The following
is a simple but useful claim about the relationship between G and H.
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Claim 2.1. For any 1≤ `≤ |V |, if there is set S ⊆V with |S|= ` and |EG(S)|= L−1 then the K-WAY

HYPERGRAPH CUT instance on H with k = L has a cut of value at most `. Moreover, given any
F ⊆ F of size |F |= `′ such that H−F has L′ connected components, there is a subset S′ ⊆V such that
|S′|= |F |= `′ and |EG(S′)|= L′−1.

Proof. Consider a set F ⊆ F of hyperedges in H. Suppose we remove them from H. Let VF = {v ∈V |
fv ∈ F} be the nodes in G that correspond to the hyperedges in F . Then a node ae ∈ A corresponding to
an edge e = uv is separated from r in H iff both u,v ∈VF ; in this case the node ae becomes an isolated
node in H−F . Thus the number of connected components in H−F is precisely equal to |EG(VF)|+1.
This correspondence proves both parts of the claim.

Suppose we have an α(s) approximation for K-WAY HYPERGRAPH CUT. We will obtain an `−1
`−2 α(s+

1)2-approximation for DENSEST K-SUBGRAPH as follows. Let (G, `) be a given instance of DENSEST

K-SUBGRAPH. First assume that we know the optimum solution value L for the given instance. We
construct the hypergraph H as described and give H and k = L+1 to the α(s) approximation algorithm
for K-WAY HYPERGRAPH CUT. By Claim 2.1 there is an optimum solution to the K-WAY HYPERGRAPH

CUT instance on H of value at most `.
Thus, the approximation algorithm will output a set F ⊆ F such that |F | ≤ α(s+ 1) · ` such that

H−F has at least L+ 1 connected components. By the second part of the claim we can obtain a set
S′ ⊆V such that |S′| ≤ α · ` and |EG(S′)| ≥ L. Then we shall output a random subset S′ ⊆ S of size ` as
the solution for the DENSEST K-SUBGRAPH problem. For simplicity, we let α = α(s+1). Then, the
expected number of edges induced by S is

|EG(S′)| ·
`

|S′|
· `−1
|S′|−1

≥ L · `

α · `
· `−1

α · `−1
=

L
α

(
1
α
− 1−1/α

α`−1

)
≥ L

α

(
1
α
− 1

α`−α

)
=

`−2
`−1

· L
α2 .

In the above sequence, we used α ≥ 1 and assumed `≥ 2. One can indeed efficiently and deterministically
find a set S⊆V of size ` such that |EG(S)| ≥ `−2

`−1 ·
L

α2 , using the method of conditional expectations. This
holds since conditioned on the event that S contains a given set of vertices, the expectation of |EG(S)| can
be computed easily. Since L is the optimum value for the given instance of DENSEST K-SUBGRAPH, we
obtain the desired `−1

`−2 ·α
2 = `−1

`−2 · (α(s+1))2-approximation. The assumption that the algorithm knows
the value L can be easily removed by trying all possible values of L from 0 to |E(G)|. This finishes the
proof of Theorem 1.2.

3 Discussion and open problems

We proved conditional hardness of K-WAY HYPERGRAPH CUT. An important open question is to obtain
hardness of approximation for K-WAY HYPERGRAPH CUT under the standard P 6= NP assumption. At
this point we do not even have APX-Hardness. For K-WAY SYM-SUB-MP Santiago [16] has shown
an exponential lower bound on the number of value oracle queries required to obtain an approximation
ratio strictly below 2. Can one show exponential query lower bounds for K-WAY SUB-MP even for
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super-constant approximation factors? This question was raised in [16] based on a preliminary version of
this paper.

For any fixed constant k, K-CUT in graphs can be solved in polynomial time [8]; there are several
different algorithms for this problem by now and we refer the reader to [6, 10] for a discussion of recent
work and other pointers. It was an open problem whether K-WAY HYPERGRAPH CUT can be solved in
polynomial time when k is a fixed constant. Recently a randomized polynomial algorithm was developed
in [4], and very recently a deterministic algorithm is claimed in [3]. The complexity status of K-WAY

SUB-MP is open for any fixed k > 3; for k ≤ 3 there is a polynomial time algorithm [14] building upon
[18]. For K-WAY SYM-SUB-MP a polynomial-time algorithm is known for k ≤ 4 [9] and the complexity
status is open for any fixed k > 4.
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