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Abstract—In this paper we consider the classic schedul-
ing problem of minimizing total weighted completion time
on unrelated machines when jobs have release times, i.e,
R|rij| -, w;C; using the three-field notation. For this prob-
lem, a 2-approximation is known based on a novel convex
programming (J. ACM 2001 by Skutella). It has been a
long standing open problem if one can improve upon this
2-approximation (Open Problem 8 in J. of Sched. 1999 by
Schuurman and Woeginger). We answer this question in the
affirmative by giving a 1.8786-approximation. We achieve this
via a surprisingly simple linear programming, but a novel
rounding algorithm and analysis. A key ingredient of our
algorithm is the use of random offsets sampled from non-
uniform distributions.

We also consider the preemptive version of the problem,
i.e, Rlrij,pmin|)_; w;C;. We again use the idea of sampling
offsets from non-uniform distributions to give the first better
than 2-approximation for this problem. This improvement also
requires use of a configuration LP with variables for each
job’s complete schedules along with more careful analysis. For
both non-preemptive and preemptive versions, we break the
approximation barrier of 2 for the first time.

Keywords-scheduling; completion time; release times; ap-
proximation algorithms;

I. INTRODUCTION

Modern computing facilities serve a large number of jobs
with different characteristics. To cope with this challenge,
they are equipped with increasingly heterogeneous machines
that are clustered and connected in networks, so that each
job can be scheduled on a more suitable machine. Fur-
ther, the large number of machines of different generations
are deployed over a long period of time, increasing the
heterogeneity. The scheduling decision must factor in the
heterogeneity and communication overhead.

Unrelated machine scheduling is a widely studied classic
model that captures various scenarios including the above.
There is a set J of jobs to be scheduled on a set M of
unrelated machines. Each job j € J can have an arbitrary
processing time/size p; ; depending on the machine i it gets
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processed; if p; ; = oo, then job j cannot be scheduled on
machine ¢. Furthermore, due to the communication delay,
job j is available for service only from time r; ;, which can
be also arbitrary depending on the job j and the machine ¢
the job gets assigned to. The parameter r; ; is often called as
job j’s arrival/release time.! Another parameter w; is used
to capture job j’s importance.

Minimizing total (weighted) completion time is one of the
most popular scheduling objectives that has been extensively
studied, even dating back to 50’s [1]. The scheduler must as-
sign each job j to a machine ¢ and complete it. We consider
two settings, preemptive and non-preemptive schedules. In
the non-preemptive setting, each job must be completed
without interruption once it starts getting processed. On the
other hand, in the preemptive setting, each job’s processing
can be interrupted to process other jobs and be resumed
later. In both cases, job j’s completion time is, if j is
assigned to machine ¢, defined as the first time when the
job gets processed for p; ; units of time. Then, the objective
is to minimize jeg Wi C;. These two non-preemptive and
preemptive versions can be described as R|r;| >, w;C;
and R|rj,pmin|}_;w;C; respectively, using the popular
three-field notation in scheduling literature. Both versions
of the problem are strongly NP-hard even in the single
machine setting [2], and are APX-hard even when all jobs
are available for schedule at time O [3], in which case
preemption does not help.

For the non-preemptive case, Skutella gave a 2-
approximation based on a novel convex programming [4],
which improved upon the (2 + ¢)-approximation based on
linear programming [5]. It has been an outstanding open
problem if there exists a better than 2-approximation [4],
[6], [5], [7], [8]. In particular, it is listed in [6] as one
of the top 10 opens problems in the field of approximate
scheduling algorithms; see the Open Problem 8. When jobs

'For simplicity, we will mostly assume that job j’s release time rq,5 18
the same for all machines. This will justify using a simpler notation r; in
place of r; ;. Like most of previous works, extending our result to release
dates with dependency on machines is straightforward.



have no arrival times, i.e. 7; ; = 0 for all ¢, j, very recently
Bansal et al. [9] gave a better than 1.5-approximation in
a breakthrough result, improving upon the previous best
1.5-approximations due to Skutella [4] and Sethuraman and
Squillante [10]. In fact, the Open Problem 8 consists of two
parts depending on whether jobs have release times or not.
Bansal et al. [9] solved the first part of Open Problem 8,
and the second part still remained open.

A. Our Results

In this paper, we answer the second part of the open
problem in the affirmative by giving a better than 2-
approximation.

Theorem 1 (Section II). For a constant o < 1.8786, there
exists an a-approximation for R|r;| 3, w;Cj.

Surprisingly, we give this result by rounding a very simple
and natural LP that has not been studied in previous works.
Our LP can be viewed as a stronger version of the time-
indexed LP in [5], by taking the non-preemption requirement
into consideration. However, even with this stronger LP,
the rounding algorithm in [5] does not yield a better than
2-approximation (see the discussion about use of uniform
distribution in Section II-A), and we believe this is why the
previous works overlooked this simple LP. Improving the
2-approximation ratio requires not only the stronger LP, but
also novel rounding algorithm and analysis.

Our result also gives a positive answer to the conjecture
made by Sviridenko and Wiese [8]. They considered a
configuration LP where there is a variable for every machine
i € M and subset of jobs S C J. The variable is associated
with the optimal total weighted completion time of the jobs
in S on machine ¢. They showed that one can solve their LP
within a factor of 1 + ¢, but could not give a better than 2-
approximation, conjecturing that their LP have an integrality
gap strictly less than 2.

Indeed, one can show that the configuration LP of [8] is
the strongest among all convex programmings of the follow-
ing form: minimize ), fi(z;) subjectto > ., @i ; =1
for every j € J and x;; > 0 for every « € M,j € J,
where z; = (%;;)jes € [0,1]7 and f; is some convex
function over [0,1]7 such that if ; € {0,1}7, then fi(x;)
is at most the total weighted completion time of scheduling
jobs {j : z;; = 1} optimally on machine i. All results
mentioned in this paper (including our results) are based on
programmings of this form and thus the configuration LP is
the strongest among them. Hence, our result gives a 1.8786
upper bound on the integrality gap of the configuration LP.

With a solution to the configuration LP, one can derive
a natural independent rounding algorithm. For each job j,
independently assign j to a machine ¢ with probability x; ;.
Then for every machine ¢, we schedule all jobs assigned
to 4; this can be done optimally if all release times are
0 [1], and nearly optimally (within (1 + €) factor) in

general [11], [12]. When all jobs have release time 0, the
algorithm gives a 1.5-approximation. However, [9] showed
this independent rounding algorithm can not give a better
than 1.5-approximation, which motivated them to develop a
clever dependent rounding algorithm.

For R|rj|>_,w;Cj, the independent rounding algorithm
is known to give a 2-approximation [5], [4]. In contrast to
the status for R|| >, w;Cj, no matching lower bound was
known for this algorithm. Our result indirectly shows that the
independent rounding can achieve 1.8786-approximation.
Thus we do not need to apply the sophisticated dependence
rounding scheme of [9], which only led to a tiny improve-
ment on the approximation ratio for R|| }; w;C;. We com-
plement our positive result by showing that the independent
rounding algorithm can not give an approximation ratio
better than e/(e — 1) & 1.581. Due to the space limitation,
the proof is deferred to the full version of this paper.

Theorem 2. There is an instance for which the independent
rounding gives an approximation ratio worse than e/(e —
1) — e > 1.581 — € for any ¢ > 0.

We continue to study the preemptive case. In the pre-
emptive case, two variants were considered in the literature
depending on whether jobs can migrate across machines
or must be completed scheduled on one of the machines.
If migration is not allowed, the work in [5] still gives a
(2 + ¢)-approximation since the LP therein is a relaxation
for preemptive schedules but the rounding outputs a non-
preemptive schedule. If migration is allowed, [4] gives a
3-approximation. Our main result for the preemptive case is
the first better than 2-approximation when migration is not
allowed.

Theorem 3 (Section III). For a constant o < 1.99971, there
exists an c-approximation for R|r;, pmtn| ). w;Cj.

We note that our algorithm is based on a stronger linear
programming relaxation. The configuration LP of [8] is for
non-preemptive schedules hence not usable for preemptive
schedules. Our LP is a different type of configuration LP
where there are variables for each job’s complete schedules.
While we use an LP for preemptive schedules, we output a
non-preemptive schedule.

B. Our Techniques

As mentioned before, we give a better than 2-
approximation for the non-preemptive case based on a very
simple LP. In this LP, we have an indicator variable y; ; s
which is 1 if job j starts at time s on machine ¢. Then, we
add an obvious constraint that no more than one job can
be processed at any time on any machine. This LP has a
pseudo-polynomial size but can be reduced to a polynomial
size using standard techniques with a loss of (1 + ¢) factor
in approximation.



As mentioned earlier, our algorithm falls into the indepen-
dent rounding framework: we assign each job j to machine
i with probability z; ; = > v, ;s independently following
the optimal LP solution. Then, it remains to schedule jobs
assigned to each machine.> Any solution to our LP is also
a solution to the LP in [5]. When restricted to a solution to
our LP, the rounding algorithm of [5] works as follows. For
every j that is assigned to ¢, we choose s; = s randomly
with probability proportional to y; ; ;. Then we choose T;
uniformly at random from [s;, s+ p; ;]; here 7; — s; can be
viewed as a random extra offset applied to j. We schedule
jobs assigned to ¢ non-preemptively in increasing order of
7; values. While this gives a 2-approximation, this is the
best one can obtain using their LP since it has a matching
integrality gap. Even with our stronger LP, the algorithm
only gives a 2-approximation.

We use a more sophisticated distribution to sample 7; for
individual jobs. Discovering such a distribution and showing
how it helps improve the approximation ratio requires a
novel analysis. We are not the first that use non-uniform
distributions for scheduling problems. Goemans et al. [13]
used non-uniform distributions in their a-point rounding
for the single machine scheduling, ie. 1|r;[3 ; w;C; to
give a 1.6853-approximation. However, their analysis does
not lend itself to multiple machines. The LP objective
considered in [13] uses the notion of fractional completion
time, which views a job j of size p; as consisting of p;
unit pieces with weight w;/p;. In this view, the optimal
schedule trivially follows from the simple greedy Smith
rule. [13] heavily uses this special structure to get a better
than 2 approximation. However, this relaxation inherently
loses a factor 2 when applied to multiple machines even
with some correction terms [5], [4]. Hence to overcome
the 2-approximation barrier, one has to deviate from this
relaxation and the special structure used in [13], which calls
for use of a stronger LP along with new algorithms and/or
analysis. Intuitions on the effect of non-uniform distributions
can be found in Section II, particularly in discussion of the
limitations of uniform distributions.

As mentioned before, the preemptive result requires an
even stronger LP where there is a variable for each job’s
complete schedule. Since preemption is allowed, even when
all parameters are polynomially bounded, the LP has ex-
ponentially many variables. We solve this LP by solving its
dual with help of a separation oracle. While the algorithm for
the non-preemptive case naturally extends to the preemptive
case, the analysis doesn’t. At a high level, the analysis for
both cases needs to carefully handle the interaction between
busy times and idle times which both can contribute jobs
delays. Non-preemptive schedules possess better structural

2Since 1|r}]| >=; w;C; admits a PTAS, given the set of jobs assigned to
4, one can find a (1 + €)-approximately optimal schedule on ¢. However,
it is hard to directly relate this schedule to the fractional solution.

properties which allow us to break down the analysis into
that for each time step. However, preemptive schedules
lack such properties and require a different analysis of a
somewhat amortized flavor.

C. Other Related Work

The first non-trivial O(log? n)-approximation for
Rlrij| 3°;w;C;j was given by Stein et al. [14] using
a hypergraph matching. Then, subsequent works [12],
[5]1, [4] gave constant approximations, culminating in a
2-approximation [4] which was the best known prior to
our work. The work in [12] uses the celebrated rounding
for the generalized assignment problem [15] to round
an LP with intervals of doubling lengths, thereby giving
a 16/3-approximation. As mentioned before, [5] gives a
(2 + ¢)-approximation, and there is an easy instance of
matching integrality gap for their LP. Subsequently, Skutella
gave a 2-approximation using a convex programming [4],
which is tight since the CP has an integrality gap of 2.
When machines are identical, uniformly related, or a special
case of unrelated machines, PTASes are known [11], [16],
[17].

Minimizing makespan or equivalently the maximum com-
pletion time is a closely related objective. For this problem
when all jobs arrive at time 0, Lensta et al. gave a 2-
approximation and showed it does not admit a better than
1.5 approximation unless P = NP [18]. Reducing this gap
remains open. Svensson showed that one can estimate the
optimal makespan within a factor of 33/17+¢ for the special
case of restricted assignment [19]. For the dual objective of
maximizing the minimum load on any machine, see [20],
[21], [22]. For the minimizing £, norms of completion times,
see [23], [24].

For the objective of minimizing total flow time, i.e.
> j(Cj —r;), a poly-logarithmic approximation is known
[25]. For earlier works for the restricted assignment case,
see [26], [27]. Due to the vast literature on scheduling, our
discussion on related work is necessarily incomplete. For a
nice survey and more pointers, see [28].

II. NON-PREEMPTIVE SCHEDULING

We begin by giving an LP for the non-preemptive case. To
present our algorithm and analysis more transparently, we
assume that all parameters are polynomially bounded, i.e.
all w;,r;,p;; are poly(|J]|,|M|). Although we can also
handle the case when p;; = oo by not allowing j to be
scheduled on machine i, we assume such a case does not
happen since the extension is straightforward. Due to the
space constraints, in this paper we omit how one can remove
these simplifying assumptions.

Define T':= ), , pi,; +max; r; so that any ‘reasonable’
scheduler can complete all jobs by the time 7T'. Throughout
this section, s is always an integer.



min Z wjyi,j,s(s + pi,j) (I—Pinterval)
€M, jeJ, s€[0,T)
S.t. Z Yi,j,s = Li,j, Vi € M,] eJ (1)
s€[0,T)
iceM

Vie M,te[T] (3)

Z yi,j,s S ]-7

j€J, s€[max{0,t—p; ;},t)
Yije >0, Vi€ M,jeJsel0T)
Yijs =0, VieM,jeJs<rjors>T—p;;

To see this is a valid LP relaxation for non-preemptive
schedules, assume that all variables can only take integer
values. Then, the first two constraints require that each job j
must be assigned to exactly one machine, which is captured
by the indicator variable x; ;. The variable y; ; s = 1 if and
only if j starts getting processed at time s on machine <.
The constraints (3) ensure that only one job gets processed
at a time on any machine. The last constraint prohibits jobs
from getting processed before their arrival times. We obtain
a valid LP relaxation by allowing variables to have fractional
values.

Rounding. We now describe how to round the LP, which
consists of two steps. The first step is to define a ‘pseudo’
arrival time 7; > r; for each job j. For each job j, we can
view {y; j s }i,s as a probability distribution over pairs (i, s)
due to Constraint (1), and choose a pair (4, s;) according to
the distribution randomly and independently. Job ;5 will be
scheduled on machine i;. Let ® be some distribution over
real numbers in [0, 1] where no number in the distribution
occurs with positive probability; @ will be fixed later. We
randomly and independently choose a number 6; from ©.
Define 7; = s; + 0; - p;; ;. We assume w.l.o.g. that all
jobs have different 7; values since this event happens almost
surely.

In the second step, we finalize each machine’s schedule.
For each i € M, let J; = {j € J : i; = i} be the set
of jobs that are assigned to 7. Let m be the ordering of J;
according to increasing order of 7; values. We schedule jobs
in J; on machine 7 according to 7, pretending that 7; is job
7’s actual arrival time. That is, job 5 € J; starts when all
jobs in J; ahead of j in the ordering of m complete, or at
time 7;, whichever comes later.

Notice that if we use the actual arrival times r; instead of
the pseudo ones for scheduling, we can obtain the optimum
schedule on 7 respecting the ordering 7w — that is, each
job j € J; starts when all jobs in .J; before j according
to m complete, or at time r;, whichever comes later. The
schedule given by our algorithm might be worse than this
optimum schedule respecting 7. However, for the sake of

analysis, it is more convenient to use our schedule, rather
than the optimum one. Our schedule on machine 7 might
have fractional starting times, but it is not an issue since we
can convert the schedule to the optimum one respecting 7,
in which all starting times are integral.

A. Analysis

It will be convenient to think of the LP solution as a set
R; of rectangles for each machine :. For each pair of j and s
with y; ; s > 0, we have a rectangle R; ; s of length p; ; and
height y; ; ; in R;. Horizontally, the rectangle R; ; ; covers
the time interval (s, s + p; ;]. For any machine %, the total
height of rectangles in R; covering any time point ¢ € (0, T
is at most 1.

We will analyze the expected completion time of each
job j and upper bound it by the corresponding LP quantity,
Y i s Yij.s(s + pij). Towards this end, henceforth we fix
a jéb j € J, the machine 7 € M job j is assigned to,
and a value of 7 € (0,7] job j is given. We consider
E[C)|i; = i,7; = 7], i.e, the expected completion time of j,
conditioned on the event that i; = 4 and 7; = 7. For nota-
tional convenience, we use E[] to denote E[-|i; = 4,75 = 7]
and Pr[-] to denote Pr[-|i; = i,7; = 7]. After bounding
I@[Cj] by 7 and p; ;, we will get the desired bound on E[C}]
by deconditioning.

The key issue we have to handle when jobs have arrival
times is that there can be idle times before job j starts. Hence
we have to consider not only the volume of jobs scheduled
before job j, but also the total length of idle times.

Definition 4. For a time point t € (0,T], we say that t is
idle, if there are no jobs scheduled at time t on machine i
in our schedule. Let idle(t) indicate whether the time point
t is idle or not.

With this definition, we are ready to formally break down
C; into several quantities of different characteristics.

Ci= >

J'E€JitTy <7

Dij + / idle(t)dt +pi ;. (4)
0

The first term is the total length of jobs scheduled before j
on machine ¢ and the second is the total length of idle times
before 7;. Notice that there are no idle points in [7;,C;)
since all jobs j' € J; scheduled before j have 7, < 7;.

Uniform Distribution and its Limitations. Before we
present a better than 2-approximation, we take a short detour
to discuss how we recover a simple 2-approximation by
setting © to be the uniform distribution over [0,1]. To
compute E[C};], we first consider IE[Z]»,EJ“T‘KT pij]. If
some j' € J; has 7;; < T = 7;, we say that the pair (4, 857)
contributed p; ; to the sum. For each j' # j and integer
s < T, the expected contribution of the pair (j', ) to the sum
is Prlij = i,s; = s|Prlry < 7liy =i,85 = s|pij =



Yijr,s min{1, (7—8)/pi o} pijr = Yijo s min{p; jr, 7—s}.
This is exactly the area of the portion of the rectangle R; ;s
before time point 7. Summing up over all pairs ( J#£4s<
7), B[ ey v <r Pijr] is at most the total area of the
portions of R; before 7, which is at most 7. The total
length of idle slots before 7 is obviously at most 7. Thus,
E[C]] S 2’7’ +pi,j- Since E[Tj|ij = ’i,Sj = S] = S +pi,j/2s
we have E[C;li; = i,s; = s] < 2(s +p;i;/2) +pij =
2(s 4+ p; ;). Since Prli; = i,s; = s] = y; s, We have
that E[C;] <237, vij,s(s + pi,j), which is exactly twice
the unweighted contribution of j to the LPjnterval Objective.
Thus, we obtain a 2-approximation for the problem.

However, uniform distribution does not yield a better than
2-approximation. To see this, consider the following instance
and LP solution. There are 1/¢ + 1 machines indexed by
1,2,...,1/e + 1. There is one unit-sized job j* with arrival
time r and it is scheduled on each of machines 1,2, ...,1/e
by e fraction during (r,7 + 1]; j* is not allowed to be
scheduled on machine 1/e + 1. There are 1/¢ big jobs of
sizes p > r with arrival time 0, which are indexed by
J1,J2, - J1/e- Each big job ji can be assigned to either
machine k& or machine 1/e+ 1. The job jj, starts on machine
k at time 0 by 1 — € fraction, and on machine 1/e + 1
by € fraction. For simplicity, say the unit-sized job has a
unit weight and the big jobs have zero (or infinitesimally
small) weights so that the objective is essentially dominated
by the unit sized job j*’s completion time. Clearly, j* has
completion time 7 + 1 in the LP solution.

We now show that the above rounding makes j*’s com-
pletion time arbitrarily close to 27 in expectation. Fix the
machine j* is assigned to by the above algorithm; w.l.o.g.
assume that the machine is 1. With 1 — € probability, job
71 1s assigned to machine 1; under this event, j; has a
smaller 7 value than j* with probability r/p. Hence j*
starts at time p with probability (1 — €)r/p, otherwise at
time r, meaning that j*’s expected starting time is at least
(1—¢€)(r/p) xp+ (1 = (1 —¢e)r/p) x r which tends to 2r
as € = 0 and p — oo. This shows one cannot get a better
than 2-approximation using uniform distribution.

Finding a Better Distribution. The above example is
simple yet illuminating. We first observe that pushing back
the small job a lot due to big job might be a sub-optimal
choice. Intuitively, a bigger job is less sensitive to delay
since the delay can be charged to the job’s processing time.
We could try to shift mass in the distribution ® to the right.
Then, big jobs will be less likely to have smaller 7 values
than the small job. However, this could increase 7; values
in expectation, thereby increasing the objective. We would
like to avoid increasing the offset added to 7; which was
Pi,;/2 (assuming that job j goes to machine 7). To satisfy
both requirements, we shall shift the mass from both ends
to the middle. In the above example, the job j* overlaps the
left-end of the big job j;. Shifting the mass from the left

to the middle will decrease the probability that 7;, < 7=.
On the other hand, shifting the mass from the right to the
middle will decrease the expectation of 7;-.

The remainder of this section is devoted to studying the
effect of using different distributions on the approximation
ratio. Let f : [0,1] — Rxg be the probability density
function (PDF) of © and F(t fo t')dt’ be the cu-
mulative distribution function (CDF) of @ Recall that we
fixed a job j € J, the machine ¢ € M job j is assigned
to, and a value of 7 € [0,7) job j is given. For every
j' € J\j,t € (0,T] and integer s, we shall use s <1,/ t
to indicate that s € [max{0,¢ — p; j},t). In other words,
s<l;»t means that if j starts at s, then it must get processed
at time t. For every t € (0,7, define

t—s
0= Y et (52
JEING, s 0t Pi.j
and h(t) = Z Yij -F(t_8>
1,18 pi,j’ ‘

VDAV s< 1t

It is worth mentioning that qu e Yigrsf ( v ) % is
the density of the probability that - 7j» = t. Thus, fntegra]tmg
g(t) from time 0 to 7 = 7; will give the expected volume
of work done before job j, which is the first term of (4) in
expectation. The usefulness of h(t) will be discussed shortly.

> | = [ atoer

J'€JiTy<T

Lemma 5. ]ﬁ

Proof: LHS = Z Di,j’ 'f)\f[ij’ =i,7 <7]
VASPAV]
D pig D igs Prlmy <7lip =is; =]
VDAV s€[0,7)
mln{("'*s)/ﬁi,jhl}
Z Digr Z Yi, g’ a'/ f(0)do
J'EINI s€[0,7)

min{r, NG _
Z iy Z Yi,j', s/ s+p f(t ' S) dt

VE=DAV] s€l0,7) Pi.j! Pij!
t—s
Di 5

/tO Z Zymé.
:/0 g()dt. -

jreJ\j st

We now shift our attention to bounding the second term
in (4) using the function h(t). As we observed when
using uniform distributions, the obvious upper bound on
the second term is 7. To improve upon this, we need to
show a considerable fraction of times are not idle. We note
that Y2, Wigrs - P (£5) is the probability that job j'
is processed at time ¢ when starting at 7;,. If such an event




occurs, then time ¢ will be shown to be non-idle, hence we
get some credits.

Claim 6. h(t) <1 for every t € [0,T).

Proof: Since F is a CDF, we have F(t') < 1 for
every t' € [0,1]. Thus, h(t) < 3 icnj sq,e¥igis < 1
? J
by Constraint (3). [ |
Lemma 7. For every t € (0,7], we have E[idle(t)] <
—h(t)
e )

Proof: We say t' is empty if there are no jobs j' € J;
such that t' € (7j,7; + p;j]; let empty(t') denote the
indicator variable that is 1 iff ¢’ is empty. We first observe
that if some ¢’ € (0,7] is not empty, then ¢’ is not idle.
This is because a job j" such that t' € (7,7, 7;s +p; j/] is not
processed at time ¢’ only when other jobs are. Thus,

Efidle(t)] < E[empty(t)]
= H (1—Pr[ v=1,t € (Tj,Tjr + Py ”)

VASPAV]

< exp ( - E lg\r[ij/ =1i,t € (15,7 +pi7j/}])
FSIAV]
= t— s,
< exp ( — E Pr |:ij/ = i,t S (Sj/78j/ +pi7j/},9j/ < ! ])
= Pi,j
VMSPAV]

t—s
e (<X Y e (52))
J'€T\G st Di,j
_ —h() u
=e .

Lemma 8. /OTﬁ[idle(t)]dt <7-— (1 - i) /OT h(t)dt.

Proof: By Lemma 7, we have [/E Efidle(t)]dt <
Jo e~ "®dt. Notice that h(t) € [0,1] for every ¢ € [0,1] by
Claim 6. Thus by the convexity of the function e~*, we have
that e~ < (1 — h(t))e® + h(t)e ™' =1 — (1 — 1/e)h(t).
Taking the integral from ¢ = 0 to 7 gives the lemma. |

Lemma 9. Let p = supye o,y i (F(¢) - (1 -

8= fo 0)0d0 and o = 1 + max{p, (1 + p)B}. Then our
algorithm is an a-approximation algorithm.

To prove Lemma 9, we first upper bound I@[C’j] in terms
of 7 = 7; and p; j, then obtain an upper bound on E[C}] by
deconditioning.

Lemma 10. IE[CJ»] < (1+4p)7+pi;-

Proof: By applying the bounds in Lemmas 5 and 8 to
Eq. (4), we have

E[cj]—r—pi,jg/o g(t dt—<1—7>/ h(t)dt
2 w0 G) - (-0 ()

7 ;tjs<1 /1t

= E Yigtos

J'#3,5€[0,7)

L) Jy F(0)d),

min{T,s«l»pi,,-/} _ _
LG (-G«
s Pi,j € Pi,j’
= Z Yij’,s " Pi,j’

3'#3,5€[0,7)

. /Omi"w*sm’j“l} (f ) — <1 - %) F(O)) do.

By the definition of p and that fod) f(6)do = F(¢) for
¢ € 10, 1], we have

E[C)] <

S Yigre iy p-min{(T = 8)/pig, 1} + 7+ pi
J'#3,5€[0,7)
=p > Yige-min{r—spiy}+7+pi;
J'#34,s€[0,7)

<pr+7+piy=1+p)T+piy,

where the last inequality holds because the sum is the total
area of the portions of rectangles in R; before time 7. ®

Lemma 11. E[C)] < o} ;s scior) Yings (8 + Pij)-

Proof: Now, we consider all machines ¢ € M. Then
E[C;] equals to

>

ieM,s€[0,T)

1
: / FOVE(Ci; = iy 55 = ,7; = 5 + Opi ;]d0

< Zyus/f

1€M,s€[0,T)

= > yua(/ (1 +p)s +pi,j)d0+/0}(9)(1+p)9pi,jd9)

1€M,s€[0,T)

< D wigsmax{l+p, 1+ (1+ p)BHs + piy)
i€ M,s€[0,T)

i€M,s€[0,T)
We are now ready to complete the proof of Lemma 9.
Summing up E[w;C};] over all jobs j € J, we have

E[ijCj} <a Z

jeJ 1€M,j€J,s€[0,T)

Pr[i]' = i, S = S]

L+ p)(s + 0pi;) + pi;)do

=a Yij,s (8 + Dij)-

W;Yi,j,5(8 + Pij)-

Notice that the right-hand-side is exactly « times the cost of
the LP solution. Thus, our algorithm is an a-approximation.

To complete the proof of Theorem 1, we only need to
find a distribution ® whose « value is no greater than
the approximation ratio claimed in the theorem. We note
that we first used a factor revealing LP to find out the
best distribution that minimizes «. Then we discovered a
truncated quadratic function is the best fit for the obtained
discretized PDF. To find the best coefficients, we ran another
program and obtained a distribution that yields a slightly
better approximation ratio than one we could using the factor
revealing LP. We set the PDF f as follows:

£(0) = 0.17026% + 0.57686 + 0.8746 0 < # < 0.85897
0 otherwise '



Notice that f(6) increases as 6 goes from 0 to 0.85897
and becomes 0 when 6 > 0.85897. This is consistent with
the previous discussion that we shift the probability mass
from both ends to the middle. Then, by easy calculation
one can show that 8 < 0.46767 and p < 0.8785. Thus
a=1+max{p, (14 p)B} < 1.8786.

III. PREEMPTIVE SCHEDULING

This section is devoted to proving Theorem 3, which
claims a better than 2-approximation for the preemptive case.
Note that migration is not allowed, i.e. each job must be
processed on only one of the machines. In the preemptive
setting, a job’s processing may be interrupted, so we need to
choose p; ; unit-length time slots on machine ¢ to schedule
job 7 on machine ¢. This motivates the following definition.

Definition 12 (Chains). A chain A for job j € J on machine
i € M is a sequence (ty,t,--- ,tp, ) of integers such that
ry <ty <ty < -0 <ty < T. Equivalently, we may
view A as the set {t1,ta,-- stp, ), or as a function from
(0,pi5] to (0,T] such that A(Y) = try + 0 — [V] for all
9 € (0,pi ] For all t € (0,T), let A71(t) = sup{¥ €
(0,pij] - A(Y) < t}.

A chain A = (ty,tz, -+ ,1p, ;) completely describes
j’s schedule on machine i: we schedule j on slots (t; —
Lt1], (t2 — 1,ta],- -+, (tp,, — 1,tp,,]. Thus, A(¥) is the
time at which we have run j for © units of time. In
particular, A(p; ;) is the completion time of j. We may
use C4 := A(p; ;) to denote j’s completion time under the
schedule A of job j. Notice that A=1(t) is the amount of
time in which j is processed before ¢ in A. Let A»J denote
the set of all chains for job j on machine .

Linear Programming. We are now ready to present our
LP using the notion of chains. For notational convenience,
when we refer to a chain A, we assume it is associated with
a machine i and a job j satisfying A € A%,

min Z Z ’LUjOA CZA (LPchain)
ieM,jedJ Ac AL
st Y, Y, =2l VieJ )
1EM Ac At
> >zl Vie MitelT] (6)
jeJ AEAHI tEA
24a>0 VieM,jeJ Ac AW

To see LPcpajn is a valid relaxation, assume that variables
can only take integer values. In LP¢,,;, we have an indicator
variable z 4 for every possible chain A € A%/ for all 7 and j,
which is 1 if and only if j is scheduled following the chain
description A. The first constraint requires that every job
must complete; note that we do not need equality here since
the optimal solution will satisfy equality. It is also worth
mentioning that job j never gets processed before its arrival
time 7; since j’s chains don’t allow it. Finally, the second

constraint ensures that every machine is used by at most
one job at any point in time — there is at most one chain
that schedules a job at any time. Thus we get a valid LP
relaxation by allowing variables to have fractional values.

Although the LP has exponentially many variables, we
can solve it using standard techniques — we solve the dual
using the Ellipsoid method with a separation oracle. Due to
the space constraints, we omit the details.

Algorithm. Our rounding is a natural generalization of
the rounding for non-preemptive scheduling. To see this,
suppose that a chain A € A" is a sequence of p;;
consecutive integers. Then A corresponds to an interval. If
every chain in the support of z corresponds to an interval,
then the fractional solution is a valid solution to LP;yterval for
non-preemptive scheduling. In this scenario, our rounding
works exactly in the same way as that for non-preemptive
scheduling. Thus, we can generalize the former rounding by
generalizing intervals to chains.

More specifically, our rounding algorithm works as fol-
lows. Let ® be some distribution over [0,1]. For every
j € J, we randomly and independently choose a pair
(¢, A;) such that Pr[(i;, A;) = (i, A)] = za for every
i€ M,A € A, As ZieM,Ae.Ai’J za = 1 for every
J, the random procedure is well-defined. For each j, we
randomly and independently choose a number §; from ©.
Let 7; = A;(0; - pi; ;). We assume that all jobs have
different 7; values since the event happens almost surely.
As in the algorithm for the non-preemptive scheduling, we
let J; = {j € J :i; = i} and schedule all jobs in J;
on machine ¢ in increasing order of 7;. We schedule the
jobs as early as possible, maintaining the property that job
j starts no earlier than 7;. Notice that the schedule our
algorithm constructed is non-preemptive, even though the
problem allows preemption.

Overview of the Analysis. The analysis is more involved
than the one for the non-preemptive case. To see this, let’s
recall how we gave a better than 2-approximation for the
non-preemptive case. We can still break down a job’s com-
pletion time as in Eq. (4) where job j’s completion time is
decomposed into three quantities: total volume of jobs with
smaller 7 values, total length of idle times before 7;, and
the size of job j itself. As we observed, if we use a uniform
distribution for ©, it is easy to get a 2-approximation by
showing that both quantities are bounded by 7;, which is
7’s starting time plus half of its size in expectation. Then,
by using a non-uniform distribution ® with more mass
around the center, we could have the following benefits:
(i) if a job j' # j is processed a little before 7;, it is
less likely to have a smaller 7 value; and (ii) otherwise,
a considerable fraction of job j is processed before 7, thus
contributes to reducing the number of idle times. Then, using
the non-preemptive structure of the schedule, we were able
to analyze each time’s contribution to the first and second



quantities in Eq. (4).

While the high-level idea is the same, we have to take a
different analysis route for the preemptive case since each
job’s schedule is scattered over time, which keeps us from
defining h. Note that many jobs may contribute to making
a time ¢ busy since we don’t have a nice structural property
given by the intervals but not by the chains. In particular,
when a lot of jobs are partially processed around time ¢, the
time will highly likely to become non-idle. This create an
issue for the analysis since we don’t get enough idle times
compared to the volume of jobs we used.

Hence we have to bound C; by taking a more global
view of the schedule. In the analysis, we will consider two
cases. Let W denote the volume of work done by LP before
7;. If W mostly comes from jobs that are processed very
little before 7;, we can reduce the first quantity in (4) using
the non-uniform distribution. Otherwise, we can show that
a large fraction of W comes from jobs that are processed
a lot by the LP by time (9/10)7;. Then, either a lot of
jobs complete by time 7; or the entire interval [(9/10)7;, 7]
becomes non-idle. In either case, we can have a better
bound on the second quantity in Eq. (4) than the trivial 7;.
Somewhat subtle definitions are needed for the analysis, but
this is a high-level overview.

A. Analysis

We fix j € J,i € M and 7 € (0,T] and condition on the
event that i; = ¢ and 7; = 7. Using the same notations as
before, let E[-] denote E[-|i; = i,7; = 7] and Pr[-] denote
Pr[-|i; = i,7; = 7]. For any ¢t € (0,7, we say t is idle if
there are no jobs scheduled at time ¢ on machine ¢, and use
idle(t) to indicate whether ¢ is idle or not. We will again
use Eq. (4) for the analysis of E C;.

We do not try to optimize the approximation ratio. Rather
we will use a distribution ® that is very close to the uniform
distribution to make the analysis more transparent. The prob-
ability density function (PDF) of ® is f(6) = 1/(1 —2\) if
6 € (A\,1—X) and f(#) = 0 otherwise, where A € (0,0.005)
is some constant to be decided later. Let F'(t) = fg f(6)do
be its cumulative distribution function (CDF). Note that this
is a uniform distribution with small portion of both ends
clipped out. It is not hard to show that if A\ = 0 then we can
still obtain a 2-approximation. The following claims easily
follow from elementary algebra.

Claim 13. For any 0,0’ such that X < 6 < 6§’ < 1, we have
F(0) < 0'—=X
9 = g(1—2n"

Claim 14. For any 0,6’ such that A < ¢’ < 1/2 and §' <

F(0) 0’ =\
6‘§1, WehaveTZm.

We start by defining heavy and light chains. Roughly
speaking, a chain A € A% is said to be heavy if a
considerable fraction of the corresponding job j is processed
before 7; = 7, otherwise light.

Definition 15. Given a chain A € A" for some job j' £ 7,
we say A is heavy if A=Y (1) > p; j/15 and light otherwise.
Let Af]’j " and A,i’j " be the sets of heavy and light chains in
Ab3" | respectively.

Let W Djrss acapy #aATH(T) and Wi =
Zj’#j,AEAr'j, ZAAil(T). Let W = Wh + Mfl =
> iitjacais’ 2aATH(T). Then, W is the total area of the
portions of the rectangle chains before 7; here we view z4
fraction of chain A as a chain of rectangles with height z 4

on times in A. In the light of this view, we immediately
have W < .

We continue our analysis by considering two cases de-
pending on how much light/heavy chains contribute to W.

1) Case 1: W, > W/3.: In this case, we focus on the
expected total length of jobs scheduled on machine 7 before
j. For a light chain, a large portion is after 7. Since the non-
uniform distribution © moves the mass to the middle, it will
give smaller expected total length if many chains are light.
In the following, the first inequality is due to Claim 13 with
6 =1/15and § = 4 ),

i,5’

0x ol 5 (S

J'€diT <7 j'#5, AcAid’ Pig
1 A™(T)
< i\
=1_2x > , ZA( py )P
j'#5, A€ A}
(1/15 = X) A7)
faanao A\ Ty )T
J'#5,A€A
! . 1 1—15) .
e _Z_’fA () (172,\ uzA)Z?{A (7)
§'#5 A€ AL 3’ #5A€A
w 15\ 1—5A 1—5A
= — < < .
sy s s U s 4
Thus, we have:
~ 3\
EjC)] < (2— 172/\)T+pi,j. %)

2) Case 2: Wy, > 2W/3.: In this case, we shall further
divide heavy chains into good and bad ones. Roughly
speaking, a good chain doesn’t process the corresponding
job too much very close to 7. Intuitively, good chains will
likely lead to the job being processed considerably before
time 7. We will show that there are ‘enough’ good chains
that will make a lot of times before 7 non-idle. Due to the
space constraints, we omit most of the proofs.

Definition 16. We say a heavy chain A € Abd’ for some
j' # jis good, if A71(97/10) > A~Y(7)/2, and bad

otherwise. Let A\ and ALD be the sets of good and bad

.
heavy chains in Ap” | respectively.

Let Whg = i ZAAfl(T) and Wy, =
hg

Zj’#]’,AE



Z] 15, Ac ALY zAA71(7) respectively. So, Wy, = Wi +
Whb. Next we show that there are not many bad chains.

Claim 17. th < 7'/5

Thus, we have secured lots of good chains, precisely
Whe > 2W/3 — 1/5.

Lemma 18./ (1 —idle(t))dt > min {7’/10, Z pi7j/}
0 €575 <97 /10

We will lower bound the expected value of the RHS in
Lemma 18 as follows. Note that we only use jobs j’ that
have good chains since other jobs are not very useful for
deriving a lower bound. The proof is somewhat technical,
so we first derive an upper bound on EC'; assuming that the
bound is true.

Lemma 19. Q := E min

Lemmas 18 and 19 will give us an upper bound on the
length of idle times before 7. To bound the total expected
volume of jobs with smaller 7 values than job j, we use the

following obvious bound.
A7(r
) ZAF( ( ))Pm’

B Y nl-

J€JiTy <t Jr£§, A Aid’ Di, 5
1 A—l(T) 1
< z A W
Cl=2A ZA( piy )V T 12X
J'#J,AEANT ’

Applying these two bound to Eq. (4) and using the fact
that W < 7, we have

~ 1 'VWh
1 vy (2W T
< _ (22 .
STVt 10(3 5)“)”
< n ha 7T+
=1 _on T T 10 15 TP
220 — (1 1/e)(1/30 — A)(7/150)
- 1—2) TP
(®

This bound (8) will be combined with (7) for Case 1 in
the following section to complete the analysis.

The remainder of this section is devoted to proving
Lemma 19. The main difficulty in lower bounding () is no
matter how big the second term in () is, the quantity is
capped at 7/10. Hence if jobs are very large compared to the
cap, Q can be very small. Fortunately, we have found lots of
good chains. Good chains process their corresponding jobs
considerably before 7. This implies that such jobs cannot be
very large compared to 7.

For formal proof, we define a random function ¥(a, p’)

over a vector a € [0,1]7V and p’' € RQ)] as follows.

T ..
10° ZjIGJiZAj/ G.Aéigj/ ,T;1<97/10 Pij’ }

Initially let S < 0. Then for every j’ # j, with probability
ajr, we let S = S+pj. Then let U(«, p’) = min{r/10, S}.
We define o, = Pr[j' € Ji, Ay € Ai’g/,Tj/ < 97/10] and
pj = pij forevery j' # j. Then Q is exactly E ¥(a*, p*).
The following lemma will allow us to increase job sizes
while keeping their expected contribution to .S the same.

Lemma 20. If for some job j' # j and some real number
a > 1, we update aj to oy /a and p;, to ap;,, then
EU(a,p’) can only decrease.

The next step is to show that a large fraction of the second
quantity in @ (or >, 17 @5Pj) comes from good chains.

Lemma 21. Zj,# rpj Z 2(1 3%) Whg.

Notice if aj, > 0 then Ayl # 0. Thus, taking an
arbitrary A € Ahb, we have pi, = p;j < 15A71(r) <
157. Initially let « = «o* and p’ = p*. Then we apply
Lemma 20: for every j’ such that oj; > 0, we scale
down «; and scale up p by the same factor so that p /
becomes 157. After the update we have EU(a,p’) < Q
Moreover, Zj, £ ozj/pg, > %Whg as the operations
maintained the left-hand-side in the bound of Lemma 21.
Thus, > g O 2 33 (—1?:02/\)\ ; @ Now, consider the process
for computing ¥(a,p’). The probability that we add some
p;-, =157 to S is

1-JJa=a)y=1-[] e

J'#] J'#]

(1 —300)W,
=1-ew (=Y o) Zl‘exp(‘w
J'#j
> (1= 1 % — 7%.
e/ 30(1—2\)r1 T

Thus, EW(a,p/) > e . 1 — T Note that the
expectation is lower bounded by the probability multiplied
by 7/10 since the total size of S is capped at 7/10 in .
This completes the proof of Lemma 19.

3) Wrapping up: Combining the Two Cases: We set
A = 1/5100, then in both cases (Eq. (7) and (8)), we
have IE[C’]-] < 1.999427 + p; ;. For a chain 4 € A%,
E[rjli; = i,A; = A] is at most A(p; ;) — pi ;/2; this is
where LP.nain with each chain’s cost associated with the
corresponding job’s completion time plays a crucial role.

E(C;] < Y 24(1.99942(Ca —pi;/2) + pi;j)
ieM,Ac Abd
i€M,A€ AT

< 1.99971 Z
i€eM,A€ A"

24(1.99942C 4 + 0.00029p; ;)
ZACA.

This is exactly 1.99971 times the (unweighted) contri-
bution of j to the LP solution. Thus, our algorithm is a
1.99971-approximation, implying Theorem 3.
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