On \((1, \epsilon)\)-Restricted Assignment Makespan Minimization

Shi Li, TTIC

Joint work with Deeparnab Chakrabarty and Sanjeev Khanna

SODA, Jan 5, 2015
Outline

1. Introduction
 - Restricted Makespan Minimization Problem
 - Our Result

2. $(2 - \delta^*)$-Approximation for $(1, \epsilon)$-Restricted Assignment
Restricted Assignment Makespan Minimization

Given:
- M: m machines
- J: n jobs
- p_j: processing time of job j
- $M_j \subseteq M$: machines j can be assigned to

Goal: assign jobs to machines, minimize makespan: find $\sigma: J \rightarrow M$ such that $\sigma(j) \in M_j$, $\forall j \in J$

minimize

$$\max_i \sum_{j \in \sigma^{-1}(i)} p_j$$

Known Results
- 2-approximation [LST90]
- 3/2-hardness of approximation

On $(1, \epsilon)$-Restricted Assignment Makespan Minimization
Restricted Assignment Makespan Minimization

Given:

- M: m machines

Known Results

- 2-approximation [LST90]
- 3/2-hardness of approximation
Restricted Assignment Makespan Minimization

Given:
- M: m machines
- J: n jobs

Known Results
- 2-approximation [LST90]
- 3/2-hardness of approximation
Restricted Assignment Makespan Minimization

Given:
- \(M: m \) machines
- \(J: n \) jobs
- \(p_j: \) processing time of job \(j \)

<table>
<thead>
<tr>
<th>Machines</th>
<th>Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Known Results
- 2-approximation [LST90]
- \(3/2\)-hardness of approximation
Restricted Assignment Makespan Minimization

Given:

- \(M \): \(m \) machines
- \(J \): \(n \) jobs
- \(p_j \): processing time of job \(j \)
- \(M_j \subseteq M \): machines \(j \) can be assigned to

Our Result

Known Results

- 2-approximation [LST90]
- 3/2-hardness of approximation
Restricted Assignment Makespan Minimization

Given:
- **M**: *m* machines
- **J**: *n* jobs
- **p_j**: processing time of job *j*
- **M_j ⊆ M**: machines *j* can be assigned to

Goal: assign jobs to machines, minimize makespan = max. load:
Restricted Assignment Makespan Minimization

Given:
- \(M: m \) machines
- \(J: n \) jobs
- \(p_j: \) processing time of job \(j \)
- \(M_j \subseteq M: \) machines \(j \) can be assigned to

Goal: assign jobs to machines, minimize makespan = max. load:
- find \(\sigma: J \rightarrow M \) such that \(\sigma(j) \in M_j, \forall j \in J \)
Restricted Assignment Makespan Minimization

Given:
- M: m machines
- J: n jobs
- p_j: processing time of job j
- $M_j \subseteq M$: machines j can be assigned to

Goal: assign jobs to machines, minimize makespan $= \max$ load:
- find $\sigma: J \rightarrow M$ such that $\sigma(j) \in M_j$, $\forall j \in J$
- minimize $\max_{i \in M} \sum_{j \in \sigma^{-1}(i)} p_j$
Restricted Assignment Makespan Minimization

Given:
- \(\mathcal{M} \): \(m \) machines
- \(\mathcal{J} \): \(n \) jobs
- \(p_j \): processing time of job \(j \)
- \(\mathcal{M}_j \subseteq \mathcal{M} \): machines \(j \) can be assigned to

Goal: assign jobs to machines, minimize makespan = \(\max \) load:
- find \(\sigma: \mathcal{J} \rightarrow \mathcal{M} \) such that \(\sigma(j) \in \mathcal{M}_j, \forall j \in \mathcal{J} \)
- minimize \(\max_{i \in \mathcal{M}} \sum_{j \in \sigma^{-1}(i)} p_j \)
Restricted Assignment Makespan Minimization

Given:
- \(M \): \(m \) machines
- \(J \): \(n \) jobs
- \(p_j \): processing time of job \(j \)
- \(M_j \subseteq M \): machines \(j \) can be assigned to

Goal: assign jobs to machines, minimize makespan = max. load:
- find \(\sigma : J \rightarrow M \) such that \(\sigma(j) \in M_j, \forall j \in J \)
- minimize \(\max_{i \in M} \sum_{j \in \sigma^{-1}(i)} p_j \)

Known Results

Known Results

2-approximation [LST90]
3/2-hardness of approximation

Shi Li, TTIC
On (1, \(\epsilon \))-Restricted Assignment Makespan Minimization
Restricted Assignment Makespan Minimization

Given:
- \(M \): \(m \) machines
- \(J \): \(n \) jobs
- \(p_j \): processing time of job \(j \)
- \(M_j \subseteq M \): machines \(j \) can be assigned to

Goal: assign jobs to machines, minimize makespan = max. load:
- find \(\sigma : J \rightarrow M \) such that \(\sigma(j) \in M_j, \forall j \in J \)
- minimize \(\max_{i \in M} \sum_{j \in \sigma^{-1}(i)} p_j \)

Known Results
- 2-approximation [LST90]
Restricted Assignment Makespan Minimization

Given:
- \(M \): \(m \) machines
- \(J \): \(n \) jobs
- \(p_j \): processing time of job \(j \)
- \(M_j \subseteq M \): machines \(j \) can be assigned to

Goal: assign jobs to machines, minimize makespan = \(\max \) load:
- find \(\sigma : J \rightarrow M \) such that \(\sigma(j) \in M_j, \forall j \in J \)
- minimize \(\max_{i \in M} \sum_{j \in \sigma^{-1}(i)} p_j \)

Known Results
- 2-approximation [LST90]
- 3/2-hardness of approximation
(1, \epsilon)-Restricted Assignment

Given:
- \(M: m \) machines
- \(J: n \) jobs
- \(p_j: \) processing time of job \(j \)
- \(M_j \subseteq M: \) machines \(j \) can be assigned to

Goal: assign jobs to machines, minimize makespan = \(\max \) load:
- find \(\sigma : J \rightarrow M \) such that \(\sigma(j) \in M_j, \forall j \in J \)
- minimize \(\max_{i \in M} \sum_{j \in \sigma^{-1}(i)} p_j \)

Known Results
- 2-approximation [LST90]
- 3/2-hardness of approximation
(1, ε)-Restricted Assignment

Given:
- \(M \): \(m \) machines
- \(J \): \(n \) jobs
- \(p_j \): processing time of job \(j \), \(p_j \in \{\epsilon, 1\} \)
- \(M_j \subseteq M \): machines \(j \) can be assigned to

Goal: assign jobs to machines, minimize makespan=\(\max \) load:
- find \(\sigma : J \rightarrow M \) such that \(\sigma(j) \in M_j \), \(\forall j \in J \)
- minimize \(\max_{i \in M} \sum_{j \in \sigma^{-1}(i)} p_j \)

Known Results
- 2-approximation [LST90]
- 3/2-hardness of approximation
(1, ε)-Restricted Assignment

Given:
- M: m machines
- J: n jobs
- p_j: processing time of job j, $p_j \in \{\epsilon, 1\}$
- $M_j \subseteq M$: machines j can be assigned to

Goal: assign jobs to machines, minimize makespan = max. load:
- find $\sigma : J \rightarrow M$ such that $\sigma(j) \in M_j$, $\forall j \in J$
- minimize $\max_{i \in M} \sum_{j \in \sigma^{-1}(i)} p_j$

Known Results
- 2-approximation [LST90]
- 3/2-hardness of approximation
(1, \epsilon)-Restricted Assignment

Given:
- \(M: m \) machines
- \(J: n \) jobs
- \(p_j: \) processing time of job \(j, p_j \in \{\epsilon, 1\} \)
- \(M_j \subseteq M: \) machines \(j \) can be assigned to

Goal: assign jobs to machines, minimize makespan = max. load:
- find \(\sigma: J \rightarrow M \) such that \(\sigma(j) \in M_j, \forall j \in J \)
- minimize \(\max_{i \in M} \sum_{j \in \sigma^{-1}(i)} p_j \)

Known Results
- 2-approximation \([LST90]\)
- 3/2-hardness of approximation
(1, ε)-Restricted Assignment

Given:
- \(M: m \) machines
- \(J: n \) jobs
- \(p_j: \) processing time of job \(j, p_j \in \{\epsilon, 1\} \)
- \(M_j \subseteq M: \) machines \(j \) can be assigned to

Goal: assign jobs to machines, minimize makespan = max. load:
- find \(\sigma: J \rightarrow M \) such that \(\sigma(j) \in M_j, \forall j \in J \)
- minimize \(\max_{i \in M} \sum_{j \in \sigma^{-1}(i)} p_j \)

Known Results
- 2-approximation [LST90]
- 3/2-hardness of approximation
Given:
- M: m machines
- J: n jobs
- p_j: processing time of job j, $p_j \in \{\epsilon, 1\}$
- $M_j \subseteq M$: machines j can be assigned to

Goal: assign jobs to machines, minimize makespan = max. load:
- find $\sigma: J \rightarrow M$ such that $\sigma(j) \in M_j$, $\forall j \in J$
- minimize $\max_{i \in M} \sum_{j \in \sigma^{-1}(i)} p_j$

Known Results
- 2-approximation [LST90]
- $7/6$-hardness of approximation
Estimation vs. Approximation

Estimation: only estimate the optimum makespan
Approximation: estimate the optimum makespan, give correspondent assignment

Estimation algorithm of [Sve11]:
33/17 -factor estimation

(1, ϵ)-restricted assignment:
(5/3 + ϵ) -factor estimation

Used configuration LP relaxation
No efficient algorithms to find the correspondent assignment
Estimation vs. Approximation

- **Estimation**: only estimate the optimum makespan
Estimation vs. Approximation

- **Estimation**: only estimate the optimum makespan
- **Approximation**: estimate the optimum makespan, give correspondent assignment
Estimation vs. Approximation

- **Estimation**: only estimate the optimum makespan
- **Approximation**: estimate the optimum makespan, give correspondent assignment

Estimation algorithm of [Sve11]
Estimation vs. Approximation

- **Estimation**: only estimate the optimum makespan
- **Approximation**: estimate the optimum makespan, give correspondent assignment

Estimation algorithm of [Sve11]

- restricted assignment: 33/17-factor estimation
Estimation vs. Approximation

- **Estimation**: only estimate the optimum makespan
- **Approximation**: estimate the optimum makespan, give correspondent assignment

Estimation algorithm of [Sve11]

- restricted assignment: 33/17-factor estimation
- \((1, \epsilon)\)-restricted assignment: \((5/3 + \epsilon)\)-factor estimation
Estimation vs. Approximation

- **Estimation**: only estimate the optimum makespan
- **Approximation**: estimate the optimum makespan, give correspondent assignment

Estimation algorithm of [Sve11]

- restricted assignment: \(\frac{33}{17} \)-factor estimation
- \((1, \epsilon)\)-restricted assignment: \(\left(\frac{5}{3} + \epsilon \right) \)-factor estimation
- Used *configuration LP relaxation*
Estimation vs. Approximation

- **Estimation**: only estimate the optimum makespan
- **Approximation**: estimate the optimum makespan, give correspondent assignment

Estimation algorithm of [Sve11]

- restricted assignment: \(\frac{33}{17} \)-factor estimation
- \((1, \epsilon)\)-restricted assignment: \(\left(\frac{5}{3} + \epsilon\right) \)-factor estimation
- Used **configuration LP relaxation**
- No efficient algorithms to find the correspondent assignment
Outline

1. Introduction
 - Restricted Makespan Minimization Problem
 - Our Result

2. $(2 - \delta^*)$-Approximation for $(1, \epsilon)$-Restricted Assignment
Our Result

Theorem

There is a polynomial time $(2 - \delta^*)$-approximation algorithm, for the $(1, \epsilon)$-restricted assignment makespan minimization, where $\delta^* > 0$ is a constant independent of ϵ.
Our Result

Theorem

There is a polynomial time \((2 - \delta^*)\)-approximation algorithm, for the \((1, \epsilon)\)-restricted assignment makespan minimization, where \(\delta^* > 0\) is a constant independent of \(\epsilon\).

Remark: there is a simple \((2 - \epsilon)\)-approximation
Our Result

Theorem

There is a polynomial time \((2 - \delta^*)\)-approximation algorithm, for the \((1, \epsilon)\)-restricted assignment makespan minimization, where \(\delta^* > 0\) is a constant independent of \(\epsilon\).

- Remark: there is a simple \((2 - \epsilon)\)-approximation
- Think of \(\epsilon = o(1)\)
Our Result

Theorem

There is a polynomial time $(2 - \delta^*)$-approximation algorithm, for the $(1, \epsilon)$-restricted assignment makespan minimization, where $\delta^* > 0$ is a constant independent of ϵ.

Remark: there is a simple $(2 - \epsilon)$-approximation
Think of $\epsilon = o(1)$
Remark: δ^* is tiny
Our Result

Theorem

There is a polynomial time \((2 - \delta^*)\)-approximation algorithm, for the \((1, \epsilon)\)-restricted assignment makespan minimization, where \(\delta^* > 0\) is a constant independent of \(\epsilon\).

- Remark: there is a simple \((2 - \epsilon)\)-approximation
- Think of \(\epsilon = o(1)\)
- Remark: \(\delta^*\) is tiny

Why is \((1, \epsilon)\)-Restricted Case Interesting?
Our Result

Theorem

There is a polynomial time $(2 - \delta^*)$-approximation algorithm, for the $(1, \epsilon)$-restricted assignment makespan minimization, where $\delta^* > 0$ is a constant independent of ϵ.

- Remark: there is a simple $(2 - \epsilon)$-approximation
- Think of $\epsilon = o(1)$
- Remark: δ^* is tiny

Why is $(1, \epsilon)$-Restricted Case Interesting?
- Simplest case: we did not know better-than-2-approximation
Our Result

Theorem

There is a polynomial time \((2 - \delta^*)\)-approximation algorithm, for the \((1, \epsilon)\)-restricted assignment makespan minimization, where \(\delta^* > 0\) is a constant independent of \(\epsilon\).

- Remark: there is a simple \((2 - \epsilon)\)-approximation
- Think of \(\epsilon = o(1)\)
- Remark: \(\delta^*\) is tiny

Why is \((1, \epsilon)\)-Restricted Case Interesting?

- Simplest case: we did not know better-than-2-approximation
- Captures difficulties of general problem
Our Result

Theorem

There is a polynomial time \((2 - \delta^*)\)-approximation algorithm, for the \((1, \epsilon)\)-restricted assignment makespan minimization, where \(\delta^* > 0\) is a constant independent of \(\epsilon\).

- Remark: there is a simple \((2 - \epsilon)\)-approximation
- Think of \(\epsilon = o(1)\)
- Remark: \(\delta^*\) is tiny

Why is \((1, \epsilon)\)-Restricted Case Interesting?

- Simplest case: we did not know better-than-2-approximation
- Captures difficulties of general problem
- \([Sve11]\) used this case to deliver ideas
Outline

1 Introduction

2 (2 − δ*)-Approximation for (1, ε)-Restricted Assignment
 - Natural LP and Compact LP Relaxations
 - (p, q)-Canonical Instance
 - Overview of Rounding Algorithm
Outline

1 Introduction

2 (2 − δ*)-Approximation for (1, ε)-Restricted Assignment
 - Natural LP and Compact LP Relaxations
 - (p, q)-Canonical Instance
 - Overview of Rounding Algorithm
Natural LP Relaxation

\[(2 - \delta^*)\text{- Approximation for (1, } \epsilon \text{)-Restricted Assignment}\]

\[\text{Natural LP and Compact LP Relaxations}\]

\[(p, q)\text{- Canonical Instance}\]

\[\text{Overview of Rounding Algorithm}\]
Natural LP Relaxation

- [LST90] based on natural LP relaxation
Natural LP Relaxation

- [LST90] based on natural LP relaxation
- $x_{i,j} \in [0, 1], i \in M, j \in J$: whether j is assigned to i
Natural LP Relaxation

- [LST90] based on natural LP relaxation
- $x_{i,j} \in [0, 1], i \in M, j \in J$: whether j is assigned to i
- $x_{i,j} = 0$ if $i \notin M_j$
Natural LP Relaxation

- [LST90] based on natural LP relaxation
- \(x_{i,j} \in [0, 1], i \in M, j \in J \): whether \(j \) is assigned to \(i \)
- \(x_{i,j} = 0 \) if \(i \notin M_j \)

minimize \(T \)
Natural LP Relaxation

- [LST90] based on natural LP relaxation
- \(x_{i,j} \in [0, 1], i \in M, j \in J \): whether \(j \) is assigned to \(i \)
- \(x_{i,j} = 0 \) if \(i \notin M_j \)

\[
\text{minimize } \quad T
\]
\[
\sum_{j \in J} p_j x_{i,j} \leq T \quad \forall i \in M
\]
\[
p_j \leq T \quad \forall j \in J
\]
Natural LP Relaxation

- [LST90] based on natural LP relaxation
- $x_{i,j} \in [0, 1], i \in M, j \in J$: whether j is assigned to i
- $x_{i,j} = 0$ if $i \notin M$

minimize T

$$\sum_{j \in J} p_j x_{i,j} \leq T \quad \forall i \in M$$

$$p_j \leq T \quad \forall j \in J$$

$$\sum_{i \in M} x_{i,j} = 1, \quad \forall j \in J$$
Natural LP Relaxation

- [LST90] based on natural LP relaxation
- $x_{i,j} \in [0, 1], i \in M, j \in J$: whether j is assigned to i
- $x_{i,j} = 0$ if $i \notin M_j$

minimize T

$$\sum_{j \in J} p_j x_{i,j} \leq T \quad \forall i \in M$$

$$p_j \leq T \quad \forall j \in J$$

$$\sum_{i \in M} x_{i,j} = 1, \quad \forall j \in J$$

- Integrality gap $= 2$
Natural LP Relaxation

- [LST90] based on natural LP relaxation
- \(x_{i,j} \in [0, 1], i \in M, j \in J \): whether \(j \) is assigned to \(i \)
- \(x_{i,j} = 0 \) if \(i \notin M_j \)

minimize \(T \)

\[
\sum_{j \in J} p_j x_{i,j} \leq T \quad \forall i \in M
\]

\[
p_j \leq T \quad \forall j \in J
\]

\[
\sum_{i \in M} x_{i,j} = 1, \quad \forall j \in J
\]

- Integrality gap = 2
Natural LP Relaxation

- \([\text{LST90}]\) based on natural LP relaxation
- \(x_{i,j} \in [0, 1], i \in M, j \in J\): whether \(j\) is assigned to \(i\)
- \(x_{i,j} = 0\) if \(i \notin M_j\)

\[
\text{minimize} \quad T \\
\sum_{j \in J} p_j x_{i,j} \leq T \quad \forall i \in M \\
p_j \leq T \quad \forall j \in J \\
\sum_{i \in M} x_{i,j} = 1, \quad \forall j \in J
\]

- Integrality gap = 2

\(1/\eta\) machines
Natural LP Relaxation

- [LST90] based on natural LP relaxation
- \(x_{i,j} \in [0, 1], i \in M, j \in J \): whether \(j \) is assigned to \(i \)
- \(x_{i,j} = 0 \) if \(i \notin M_j \)

\[
\text{minimize} \quad T \\
\sum_{j \in J} p_j x_{i,j} \leq T \quad \forall i \in M \\
p_j \leq T \quad \forall j \in J \\
\sum_{i \in M} x_{i,j} = 1, \quad \forall j \in J
\]

- Integrality gap = 2

(1 − \(\eta \))/\(\epsilon \) small jobs
Natural LP Relaxation

- **[LST90]** based on natural LP relaxation
- \(x_{i,j} \in [0, 1], i \in M, j \in J \): whether \(j \) is assigned to \(i \)
- \(x_{i,j} = 0 \) if \(i \notin M_j \)

\[
\begin{align*}
\text{minimize} & \quad T \\
\sum_{j \in J} p_j x_{i,j} & \leq T \quad \forall i \in M \\
p_j & \leq T \quad \forall j \in J \\
\sum_{i \in M} x_{i,j} & = 1, \quad \forall j \in J
\end{align*}
\]

- Integrality gap = 2
- **[Sve11]**: Configuration LP overcomes the integrality gap

\(\frac{(1 - \eta)}{\epsilon} \) small jobs
Compact LP for $(1, \epsilon)$-Restricted Case, \(\OPT = 1\)
Compact LP for \((1, \varepsilon)\)-Restricted Case, \(\text{OPT} = 1\)

- \(x_{i,j} \in [0, 1], i \in M, j \in J\): whether \(j\) is assigned to \(i\)
- \(x_{i,j} = 0\) if \(i \notin M_j\)

\[
\sum_{j \in J} p_j x_{i,j} \leq 1, \quad \forall i \in M
\]

\[
\sum_{i \in M} x_{i,j} = 1, \quad \forall j \in J
\]
Compact LP for $(1, \epsilon)$-Restricted Case, OPT = 1

- $x_{i,j} \in [0, 1], i \in M, j \in J$: whether j is assigned to i
- $x_{i,j} = 0$ if $i \notin M_j$

\[
\sum_{j \in J} p_j x_{i,j} \leq 1, \quad \forall i \in M
\]
\[
\sum_{i \in M} x_{i,j} = 1, \quad \forall j \in J
\]
\[
\sum_{j \in J_{\text{big}}} x_{i,j} + x_{i,j'} \leq 1 \quad \forall i \in M, j' \in J_{\text{small}}
\]

$(1 - \eta)/\epsilon$ small jobs

Light job assignment

Integrality gap = $\frac{3}{2}$
Compact LP for $(1, \epsilon)$-Restricted Case, $\text{OPT} = 1$

- $x_{i,j} \in [0, 1], i \in M, j \in J$: whether j is assigned to i
- $x_{i,j} = 0$ if $i \notin M$

\[
\sum_{j \in J} p_j x_{i,j} \leq 1, \quad \forall i \in M
\]

\[
\sum_{i \in M} x_{i,j} = 1, \quad \forall j \in J
\]

\[
\sum_{j \in J_{\text{big}}} x_{i,j} + x_{i,j'} \leq 1 \quad \forall i \in M, j' \in J_{\text{small}}
\]

- Light job assignment $\leq 1 - \eta \Rightarrow$ fractional solution invalid
Compact LP for $(1, \epsilon)$-Restricted Case, $\text{OPT} = 1$

- $x_{i,j} \in [0, 1], i \in M, j \in J$: whether j is assigned to i
- $x_{i,j} = 0$ if $i \not\in M_j$

\[
\sum_{j \in J} p_j x_{i,j} \leq 1, \quad \forall i \in M
\]

\[
\sum_{i \in M} x_{i,j} = 1, \quad \forall j \in J
\]

\[
\sum_{j \in J_{\text{big}}} x_{i,j} + x_{i,j'} \leq 1 \quad \forall i \in M, j' \in J_{\text{small}}
\]

- Light job assignment $\leq 1 - \eta \Rightarrow$ fractional solution invalid
Compact LP for \((1, \epsilon)\)-Restricted Case, \(\text{OPT} = 1\)

- \(x_{i,j} \in [0, 1], i \in M, j \in J\): whether \(j\) is assigned to \(i\)
- \(x_{i,j} = 0\) if \(i \not\in M_j\)

\[
\sum_{j \in J} p_j x_{i,j} \leq 1, \quad \forall i \in M
\]

\[
\sum_{i \in M} x_{i,j} = 1, \quad \forall j \in J
\]

\[
\sum_{j \in J_{\text{big}}} x_{i,j} + x_{i,j'} \leq 1 \quad \forall i \in M, j' \in J_{\text{small}}
\]

- Light job assignment \(\leq 1 - \eta \Rightarrow\) fractional solution invalid
Compact LP for \((1, \epsilon)\)-Restricted Case, \(\text{OPT} = 1\)

- \(x_{i,j} \in [0, 1], i \in M, j \in J\): whether \(j\) is assigned to \(i\)
- \(x_{i,j} = 0\) if \(i \notin M_j\)

\[
\sum_{j \in J} p_j x_{i,j} \leq 1, \quad \forall i \in M
\]

\[
\sum_{i \in M} x_{i,j} = 1, \quad \forall j \in J
\]

\[
\sum_{j \in J_{\text{big}}} x_{i,j} + x_{i,j'} \leq 1 \quad \forall i \in M, j' \in J_{\text{small}}
\]

- Light job assignment \(\leq 1 - \eta \Rightarrow\) fractional solution invalid
- Integrrality gap = 3/2
Outline

1. Introduction

2. $(2 - \delta^*)$-Approximation for $(1, \epsilon)$-Restricted Assignment
 - Natural LP and Compact LP Relaxations
 - (p, q)-Canonical Instance
 - Overview of Rounding Algorithm
(\(p, q\))-Canonical Instance

machines ■ ■ ■ ■ ■ ■ ■
\((p, q)\)-Canonical Instance

- Big job \(j\): "private" set \(M_j\) of \(p\) machines;
- \(\{M_j\}_{j \in J_{\text{big}}}\) form a partitioning of \(M\)
\((p, q) \)-Canonical Instance

- Big job \(j \): “private” set \(M_j \) of \(p \) machines;
 - \(\{M_j\}_{j \in J_{\text{big}}} \) form a partitioning of \(M \)
- Small job has size \(1/q \) (instead of \(\epsilon \))
(p, q)-Canonical Instance

- Big job \(j \): “private” set \(M_j \) of \(p \) machines;
 - \(\{M_j\}_{j \in J_{\text{big}}} \) form a partitioning of \(M \)
- Small job has size \(1/q \) (instead of \(\epsilon \))
- Small job can be assigned to exactly 2 machines
(p, q)-Canonical Instance

- Big job j: "private" set M_j of p machines;
 - $\{M_j\}_{j \in J_{\text{big}}}$ form a partitioning of M
- Small job has size $1/q$ (instead of ϵ)
- Small job can be assigned to exactly 2 machines
- Associated fractional assignment:
(p, q)-Canonical Instance

- Big job \(j \): “private” set \(M_j \) of \(p \) machines;
 - \(\{M_j\}_{j \in J_{\text{big}}} \) form a partitioning of \(M \)
- Small job has size \(1/q \) (instead of \(\epsilon \))
- Small job can be assigned to exactly 2 machines
- Associated fractional assignment:
 - \(j \in J_{\text{big}}, \forall i \in M_j: x_{i,j} = 1/p \)
(p, q)-Canonical Instance

- Big job j: “private” set M_j of p machines;
 - $\{M_j\}_{j \in J_{\text{big}}}$ form a partitioning of M
- Small job has size $1/q$ (instead of ϵ)
- Small job can be assigned to exactly 2 machines
- Associated fractional assignment:
 - $j \in J_{\text{big}}, \forall i \in M_j$: $x_{i,j} = 1/p$
 - small job j with $M_j = \{i, i'\}$: $x_{i,j} = 1/p$ and $x_{i',j} = 1 - 1/p$
\((p, q)\)-Canonical Instance

- Big job \(j\): “private” set \(M_j\) of \(p\) machines;
 - \(\{M_j\}_{j \in J_{big}}\) form a partitioning of \(M\)
- Small job has size \(1/q\) (instead of \(\epsilon\))
- Small job can be assigned to exactly 2 machines
- Associated fractional assignment:
 - \(j \in J_{big}, \forall i \in M_j: x_{i,j} = 1/p\)
 - small job \(j\) with \(M_j = \{i, i'\}\): \(x_{i,j} = 1/p\) and \(x_{i',j} = 1 - 1/p\)
 - call \(j\) small job of type-\((i, i')\)
(\(p, q\))-Canonical Instance

- big jobs
- machines
- small jobs

- small job \(j\) of type-(\(i, i'\)) \(\Rightarrow\) edge \((i, i') \in E\)
(p, q)-Canonical Instance

- big jobs
- machines
- small jobs

- small job j of type-$(i, i') \Rightarrow$ edge $(i, i') \in E$
\((p, q)\)-Canonical Instance

- big jobs
- machines
- small jobs

- small job \(j\) of type-\((i, i')\) \(\Rightarrow\) edge \((i, i') \in E\)
- Directed multi-graph \(G = (M, E)\) to denote small jobs
(p, q)-Canonical Instance

- small job j of type-$(i, i') \Rightarrow$ edge $(i, i') \in E$
- Directed multi-graph $G = (M, E)$ to denote small jobs
- Instance specified by $(\{M_j\}_{j \in J_{\text{big}}}, G)$
\[(p, q)\]-Canonical Instance

- small job \(j \) of type-\((i, i')\) \(\Rightarrow \) edge \((i, i')\) \(\in E \)
- Directed multi-graph \(G = (M, E) \) to denote small jobs
- Instance specified by \((\{M_j\}_{j \in J_{\text{big}}}, G) \)

\[
\frac{1}{p} + \frac{1}{q} \left[\left(1 - \frac{1}{p} \right) d_{\text{in}}(i) + \frac{1}{p} d_{\text{out}}(i) \right] \leq 1, \quad \forall i \in M
\]
Semi-integral assignment: big jobs integrally assigned, small jobs fractionally assigned
Semi-integral assignment: big jobs integrally assigned, small jobs fractionally assigned

Lemma (follows from [LST90])
Semi-integral assignment of makespan T
\Rightarrow integral assignment of makespan $T + \epsilon$
• Semi-integral assignment: big jobs integrally assigned, small jobs fractionally assigned

Lemma (follows from [LST90])

Semi-integral assignment of makespan T
\[\Rightarrow \text{integral assignment of makespan } T + \epsilon \]

• Given assignment of big jobs:
assigning small jobs = network-flow problem, easy
Good Assignment of big Jobs

- Semi-integral assignment: big jobs integrally assigned, small jobs fractionally assigned

Lemma (follows from [LST90])

Semi-integral assignment of makespan T

\Rightarrow **integral assignment of makespan $T + \epsilon$**

- Given assignment of big jobs:
 assigning small jobs = network-flow problem, easy

Definition (Good Assignment of big Jobs)

An assignment $f : J_{\text{big}} \rightarrow M$ of big jobs is **good** if small jobs can be fractionally assigned so that the makespan is $2 - \delta$.
Good Assignment for Canonical Instances

Theorem (From Hall’s Theorem)

An assignment \(f: J_{\text{big}} \rightarrow M \) is good iff

\[
\forall S \subseteq M: |S \cap f(J_{\text{big}})| + 1 \leq (2 - \delta^*) |S|.
\]

\((*)\)

Goal: find \(f: J_{\text{big}} \rightarrow M \) so that \((*)\) holds for every \(S \subseteq M \).
(2 − δ*)-Approximation for (1, ϵ)-Restricted Assignment

Good Assignment for Canonical Instances

- machines
- big jobs
- small jobs

Theorem (From Hall's Theorem)
An assignment \(f : J_{\text{big}} \rightarrow M \) is good iff
\[|S \cap f(J_{\text{big}})| + 1 \leq (2 - \delta^*) |S| \]

Goal: find \(f : J_{\text{big}} \rightarrow M \) so that (*) holds for every \(S \subseteq M \).
Good Assignment for Canonical Instances

Theorem (From Hall’s Theorem)

An assignment \(f : J_{\text{big}} \rightarrow M \) is good iff \(\forall S \subseteq M \):

\[
|S \cap f(J_{\text{big}})| + \frac{1}{q} E_{S,S} \leq (2 - \delta)|S|.
\]

(*)
Good Assignment for Canonical Instances

Theorem (From Hall’s Theorem)

An assignment $f : J_{\text{big}} \rightarrow M$ is good iff $\forall S \subseteq M$:

$$|S \cap f(J_{\text{big}})| + \frac{1}{q} E_{S,S} \leq (2 - \delta)|S|. \quad (*)$$
Good Assignment for Canonical Instances

Theorem (From Hall’s Theorem)

An assignment \(f : J_{\text{big}} \rightarrow M \) is good iff \(\forall S \subseteq M : \)

\[
|S \cap f(J_{\text{big}})| + \frac{1}{q} E_{S,S} \leq (2 - \delta)|S|. \tag{*}
\]

goal: find \(f : J{\text{big}} \rightarrow M \) so that \((*) \) holds for every \(S \subseteq M \).
Outline

1 Introduction

2 (2 − δ*)-Approximation for (1, ε)-Restricted Assignment
 - Natural LP and Compact LP Relaxations
 - (p, q)-Canonical Instance
 - Overview of Rounding Algorithm
Overview of Algorithm

1. Reduce to \((p, q)\)-canonical instance
2. Reduce \(p\) and \(q\) if
 - \(p > \max\{q, q_0\}\), then reduce to a \((p/2, q_0)\)-instance
 - \(q > \max\{p, q_0\}\), then reduce to a \((p, q/2)\)-instance
 Good \(f\) for new instance \(\Rightarrow\) good \(f\) for original instance
3. Solve a \((p, q)\)-canonical instance with \(p \leq q_0, q \leq q_0\)
 Can easily obtain \((2 - 1/q_0)\)-makespan
 Not enough: lost a factor of \(\tilde{\Theta}(1/\sqrt{q_0})\) in reductions
 Our goal: \((2 - \Omega(1/poly \log q_0))\)-makespan

Use Lovasz Local Lemma many times
Overview of Algorithm

1. Reduce to \((p, q)\)-canonical instance
Overview of Algorithm

1. Reduce to \((p, q)\)-canonical instance
2. Reduce \(p\) and \(q\)
Overview of Algorithm

1. Reduce to \((p, q)\)-canonical instance
2. Reduce \(p\) and \(q\)
 - \(q_0 = O(1)\): a large constant
Overview of Algorithm

1. Reduce to \((p, q)\)-canonical instance
2. Reduce \(p\) and \(q\)
 - \(q_0 = O(1)\): a large constant
 - If \(p > \max\{q, q_0\}\), then reduce to a \((p/2, q)\)-instance

\[(2 - \delta^*)\text{-Approximation for } (1, \epsilon)\text{-Restricted Assignment} \]
Overview of Algorithm

1. Reduce to \((p, q)\)-canonical instance

2. Reduce \(p\) and \(q\)
 - \(q_0 = O(1)\): a large constant
 - If \(p > \max\{q, q_0\}\), then reduce to a \((p/2, q)\)-instance
 - If \(q > \max\{p, q_0\}\), then reduce to a \((p, q/2)\)-instance
Overview of Algorithm

1. Reduce to \((p, q)\)-canonical instance
2. Reduce \(p\) and \(q\)
 - \(q_0 = O(1)\): a large constant
 - If \(p > \max\{q, q_0\}\), then reduce to a \((p/2, q)\)-instance
 - If \(q > \max\{p, q_0\}\), then reduce to a \((p, q/2)\)-instance
 - Good \(f\) for new instance \(\Rightarrow\) good \(f\) for original instance
Overview of Algorithm

1. Reduce to \((p, q)\)-canonical instance

2. Reduce \(p\) and \(q\)
 - \(q_0 = O(1)\): a large constant
 - If \(p > \max\{q, q_0\}\), then reduce to a \((p/2, q)\)-instance
 - If \(q > \max\{p, q_0\}\), then reduce to a \((p, q/2)\)-instance
 - Good \(f\) for new instance \(\Rightarrow\) good \(f\) for original instance

3. Solve a \((p, q)\)-canonical instance with \(p \leq q_0, q \leq q_0\)
Overview of Algorithm

1. Reduce to \((p, q)\)-canonical instance
2. Reduce \(p\) and \(q\)
 - \(q_0 = O(1)\): a large constant
 - If \(p > \max\{q, q_0\}\), then reduce to a \((p/2, q)\)-instance
 - If \(q > \max\{p, q_0\}\), then reduce to a \((p, q/2)\)-instance
 - Good \(f\) for new instance \(\Rightarrow\) good \(f\) for original instance
3. Solve a \((p, q)\)-canonical instance with \(p \leq q_0, q \leq q_0\)
 - Can easily obtain \((2 - 1/q_0)\)-makespan

\((2 - \delta^*)\)-Approximation for \((1, \epsilon)\)-Restricted Assignment

Natural LP and Compact LP Relaxations

\((p, q)\)-Canonical Instance

Overview of Rounding Algorithm
Overview of Algorithm

1. Reduce to \((p, q)\)-canonical instance

2. Reduce \(p\) and \(q\)
 - \(q_0 = O(1)\): a large constant
 - If \(p > \max\{q, q_0\}\), then reduce to a \((p/2, q)\)-instance
 - If \(q > \max\{p, q_0\}\), then reduce to a \((p, q/2)\)-instance
 - Good \(f\) for new instance \(\Rightarrow\) good \(f\) for original instance

3. Solve a \((p, q)\)-canonical instance with \(p \leq q_0, q \leq q_0\)
 - Can easily obtain \((2 - 1/q_0)\)-makespan
 - Not enough: lost a factor of \(\tilde{\Theta}(1/\sqrt{q_0})\) in reductions
Overview of Algorithm

1. Reduce to \((p, q)\)-canonical instance
2. Reduce \(p\) and \(q\)
 - \(q_0 = O(1)\): a large constant
 - If \(p > \max\{q, q_0\}\), then reduce to a \((p/2, q)\)-instance
 - If \(q > \max\{p, q_0\}\), then reduce to a \((p, q/2)\)-instance
 - Good \(f\) for new instance \(\Rightarrow\) good \(f\) for original instance
3. Solve a \((p, q)\)-canonical instance with \(p \leq q_0, q \leq q_0\)
 - Can easily obtain \((2 - 1/q_0)\)-makespan
 - Not enough: lost a factor of \(\tilde{\Theta}(1/\sqrt{q_0})\) in reductions
 - Our goal: \((2 - \Omega(1/poly \log q_0))\)-makespan
Overview of Algorithm

1. Reduce to \((p, q)\)-canonical instance
2. Reduce \(p\) and \(q\)
 - \(q_0 = O(1)\): a large constant
 - If \(p > \max\{q, q_0\}\), then reduce to a \((p/2, q)\)-instance
 - If \(q > \max\{p, q_0\}\), then reduce to a \((p, q/2)\)-instance
 - Good \(f\) for new instance \(\Rightarrow\) good \(f\) for original instance
3. Solve a \((p, q)\)-canonical instance with \(p \leq q_0, q \leq q_0\)
 - Can easily obtain \((2 - 1/q_0)\)-makespan
 - Not enough: lost a factor of \(\tilde{\Theta}(1/\sqrt{q_0})\) in reductions
 - Our goal: \((2 - \Omega(1/poly \log q_0))\)-makespan

- Use Lovasz Local Lemma many times
Overview of Algorithm

1. Reduce to \((p, q)\)-canonical instance
2. Reduce \(p\) and \(q\)
 - \(q_0 = O(1)\): a large constant
 - If \(p > \max\{q, q_0\}\), then reduce to a \((p/2, q)\)-instance
 - If \(q > \max\{p, q_0\}\), then reduce to a \((p, q/2)\)-instance
 - Good \(f\) for new instance \(\Rightarrow\) good \(f\) for original instance
3. Solve a \((p, q)\)-canonical instance with \(p \leq q_0, q \leq q_0\)
 - Can easily obtain \((2 - 1/q_0)\)-makespan
 - Not enough: lost a factor of \(\tilde{\Theta}(1/\sqrt{q_0})\) in reductions
 - Our goal: \((2 - \Omega(1/poly \log q_0))\)-makespan

- Use Lovasz Local Lemma many times
Solving \((p, q)\)-canonical instance with \(p, q \leq q_0\)

- A edge in \(G\) is **dense** if it has many parallel edges, and **sparse** otherwise.
Solving \((p, q)\)-canonical instance with \(p, q \leq q_0\)

- A edge in \(G\) is **dense** if it has many parallel edges, and **sparse** otherwise.

Case 1: all edges are sparse:

Randomly assign big jobs to machines

Apply uniform LLL

Case 2: all edges are dense:

Pre-processing, randomly assign big jobs to machines

Apply LLL, related to Galton-Watson process

General case: mixture of two cases
A edge in G is **dense** if it has many parallel edges, and **sparse** otherwise.

Case 1: all edges are sparse:

- Randomly assign big jobs to machines
A edge in G is **dense** if it has many parallel edges, and **sparse** otherwise.

Case 1: all edges are sparse:
- Randomly assign big jobs to machines
- Apply uniform LLL

Case 2: all edges are dense:
- Pre-processing, randomly assign big jobs to machines
- Apply LLL, related to Galton-Watson process

General case: mixture of two cases
Solving \((p, q)\)-canonical instance with \(p, q \leq q_0\)

- A edge in \(G\) is **dense** if it has many parallel edges, and **sparse** otherwise.

 Case 1: all edges are sparse:
 - Randomly assign big jobs to machines
 - Apply uniform LLL

 Case 2: all edges are dense:
 - Pre-processing, randomly assign big jobs to machines
 - Apply LLL, related to Galton-Watson process

Shi Li, TTIC
Solving \((p, q)\)-canonical instance with \(p, q \leq q_0\)

- A edge in \(G\) is **dense** if it has many parallel edges, and **sparse** otherwise.

Case 1: all edges are sparse:
- Randomly assign big jobs to machines
- Apply uniform LLL

Case 2: all edges are dense:
- Pre-processing, randomly assign big jobs to machines
Solving \((p, q)\)-canonical instance with \(p, q \leq q_0\)

- A edge in \(G\) is **dense** if it has many parallel edges, and **sparse** otherwise.

Case 1: all edges are sparse:
- Randomly assign big jobs to machines
- Apply uniform LLL

Case 2: all edges are dense:
- Pre-processing, randomly assign big jobs to machines
- Apply LLL, related to Galton-Watson process
A edge in G is dense if it has many parallel edges, and sparse otherwise.

Case 1: all edges are sparse:
- Randomly assign big jobs to machines
- Apply uniform LLL

Case 2: all edges are dense:
- Pre-processing, randomly assign big jobs to machines
- Apply LLL, related to Galton-Watson process

General case: mixture of two cases
Summary
Summary

- $(2 - \delta^*)$-approximation for $(1, \epsilon)$-restricted assignment makespan minimization problem
(2 − δ*)-approximation for (1, ε)-restricted assignment makespan minimization problem

Reduce to (p, q)-canonical instances
Summary

- $(2 - \delta^*)$-approximation for $(1, \epsilon)$-restricted assignment makespan minimization problem
 1. Reduce to (p, q)-canonical instances
 2. Repeatedly reduce parameters p and q
Summary

- $(2 - \delta^*)$-approximation for $(1, \epsilon)$-restricted assignment makespan minimization problem
 1. Reduce to (p, q)-canonical instances
 2. Repeatedly reduce parameters p and q
 3. Solve (p, q)-canonical instances with $p, q \leq q_0$
Summary

- \((2 - \delta^*)\)-approximation for \((1, \epsilon)\)-restricted assignment makespan minimization problem
 - Reduce to \((p, q)\)-canonical instances
 - Repeatedly reduce parameters \(p\) and \(q\)
 - Solve \((p, q)\)-canonical instances with \(p, q \leq q_0\)

Open Problems
Summary

- $(2 - \delta^*)$-approximation for $(1, \epsilon)$-restricted assignment makespan minimization problem
 1. Reduce to (p, q)-canonical instances
 2. Repeatedly reduce parameters p and q
 3. Solve (p, q)-canonical instances with $p, q \leq q_0$

Open Problems

- Simpler algorithm?
Summary

- $(2 - \delta^*)$-approximation for $(1, \epsilon)$-restricted assignment makespan minimization problem
 1. Reduce to (p, q)-canonical instances
 2. Repeatedly reduce parameters p and q
 3. Solve (p, q)-canonical instances with $p, q \leq q_0$

Open Problems

- Simpler algorithm?
- Better-than-2-approximation for restricted assignment makespan minimization?
Summary

- $(2 - \delta^*)$-approximation for $(1, \epsilon)$-restricted assignment makespan minimization problem
 1. Reduce to (p, q)-canonical instances
 2. Repeatedly reduce parameters p and q
 3. Solve (p, q)-canonical instances with $p, q \leq q_0$

Open Problems

- Simpler algorithm?
- Better-than-2-approximation for restricted assignment makespan minimization?

Thank you!