

CSI 436/536 Introduction to Machine Learning

Evaluating Classifiers

Professor Siwei Lyu Computer Science University at Albany, State University of New York

Classification problems

- Classification problem definition: mapping input data to discrete labels using a parametric function (classifier) $f_{\theta}(x) = y$, x: input data, θ : parameter, y: output label(s)
 - Single-label classification: output is a single label
 - Binary classification: $y \in \{0,1\}$ or $y \in \{-1,1\}$
 - Multi-class classification: $y \in \{1, \dots, m\}, m > 2$
 - Note: multi-class classification problem can be solved with a series of binary classification problems
 - Multi-label classification: output is a set of labels $Y \subseteq \{1, \dots, m\}$, i.e., each data can have multiple labels
 - Multi-label classification can be solved with a serious of binary predictors and ranking

Evaluating classifiers

- Given two different classifiers, how do we evaluate and compare them?
 - Note that classification evaluation metric and training objective function (loss function) may not be the same
 - For instance, which of the two binary classifiers is a better one?

Definitions

- A binary classifier with a threshold (positive on right)
 - actual = positive, classification = positive (TP)
 - 5 + examples > threshold
 - actual = negative, classification = negative (TN)
 - 5 examples < threshold
 - actual = negative, classification = positive (FP)
 - 2 examples > threshold
 - actual = positive, classification = negative (FN)
 - 2 + examples < threshold

Confusion matrix

Confusion matrix

TP = 5	FN = 2	Actual positives = 7
FP = 2	TN = 5	Actual negatives = 7
Classified positives = 7	Classified negatives = 7	All examples $= 14$

Confusion matrix

Confusion matrix

ТР	FN	Actual positives
FP	TN	Actual negatives
Classified positives	Classified negatives	All examples

- Diagonal is correct classification
- Anti-diagonal is incorrect classification

Accuracy based metrics

- accuracy = $(TP + TN)/(TP + TN + FP + FN) \approx 71.4\%$
- error rate = $(FP+FN)/(TP+TN+FP+FN) \approx 28.6\%$
- true positive rate (TPR) = $TP/(TP+FN) = 5/7 \approx 71.4\%$
- false positive rate (FPR) = $FP/(TN+FP) = 2/7 \approx 28.6\%$
- precision (PR) = TP/(TP+FN) = TPR = $5/7 \approx 71.4\%$
- recall (RC) = TP/(TP+FP) = $5/7 \approx 71.4\%$

• F1 score =
$$\frac{1}{\frac{1}{2}\left(\frac{1}{TP} + \frac{1}{TN}\right)} = \frac{2TP \times TN}{TP + TN} \approx 71.4\%$$

TPR-FPR vs. PR-RC

Why single rates are not good

- consider a data set with 10 positive and 90 negative examples, and two binary classifiers
 - Classifier 1

10	0	10
8	82	90
18	82	100

• Classifier 2

2	8	10
0	90	90
2	98	100

ROC curve

- Receiver Operator Characteristics (ROC) curve
 - tracing the curve of (FPR, TPR) with varying classification threshold

┿

- connecting (0,0) and (1,1)
- non-decreasing

negative

• In practice, ROC may not be smooth if there are not enough number of data

Reading ROC curves

how to read ROC: summary

- ROC curve is trickier to understand
 - ideal ROC is line segment connecting (0,0) to (0,1) to (1,1)
 - worst ROC (random classifier) is the diagonal line connecting (0,0) and (1,1)
 - a good ROC is a convex curve connecting (0,0) and (1,1)
 - a ROC symmetric to the diagonal line can be obtained by flipping the class labels
 - support overlapping causes inflective ROC curve
 - multi-modal distribution causes multi-turn ROC curve

Choosing threshold

- using maximum classification separation rule we get the intersection of the two distributions
 - The point with the minimum overall classification error
 - The point on ROC with (1,1) derivative

Area under ROC curve (AUR)

- AUC ∈ [0.5,1.0], 0.5 is the random binary classifier, 1.0 is the perfect binary classifier
 - In this case, AUC is $35/49 \approx 71.4\%$

Computing AUC on finite data

• AUC on finite data set can be computed using the Mann-Whitney-Wilcoxon (MWW) statistics

$$\frac{1}{n_{+}n_{-}}\sum_{i=1}^{n_{+}}\sum_{j=1}^{n_{-}}1_{x_{i}^{-}\leq x_{j}^{+}}$$

• Proof:

$$Pr(X>Y) = \iint_{x>y} f(x)g(y)dxdy = \iint \delta(x>y)f(x)g(y)dxdy$$
$$= \int f(x)dx \int \delta(x>y)g(y)dy = \int G(x) f(x)dx$$
$$= \int G(x) dF(x) = \int ROC(F)dF = AUC$$

• MWW statistics is the fraction of pairs with correct orders $\frac{7+7+7+6+5+2+1}{7 \times 7} \approx 71.4\%$

Multi-class classifier

- confusion matrix
 - Diagonal: correct examples, Off-diagonal: errors
 - Accuracy: sum of diagonal dividing the total sum

	А	В	С	D
A	10	2	3	0
В	4	12	1	5
С	3	0	7	2
D	1	3	0	5