

# CSI 436/536 Introduction to Machine Learning

#### Numerical optimization (1)

Professor Siwei Lyu Computer Science University at Albany, State University of New York

# Numerical optimization

- Direct methods: solution affords a closed-form and can be solved in one step
  - Example: LLSE, PCA, LDA, etc
- Iterative methods: solution is not in a closed-form equation, and needs to be obtained by iterative steps
  - Coordinate descent methods (Robust LLSE, LASSO)
  - Descent methods (every step reduce the objective)
    - Gradient descent (steepest descent) method
    - Newton's (varying metric) method
  - Non-descent methods
    - (Sub)gradient method
    - Stochastic (sub)gradient method

# descent algorithms

- an iterative algorithm, at each iteration
  - determine if **convergence** has been reached
  - determine a **direction** to go
  - determine a step size (how far to go along that direction)
  - together the direction and step size guarantees to decrease the objective function



# minimizing by descending

- follow any descending direction with a step size
- general algorithm (local minimum)
  - initialize  $t=0, x_0$
  - while not converge
    - find a descending direction  $\delta x$ , such that  $f(x) \ge f(x+\delta x)$
    - decide step size  $\eta_t$
    - update  $x_{t+1} = x_t + \eta_t \, \delta x$
    - t = t+1
  - end

### coordinate descent

- simple: each time solve 1D problem, no step size
- slow: convergence is  $O(1/t^{1/d})$
- has trouble for non-smooth function



# General descent direction

- Assume function f differential
  - expand function with first order Taylor series  $f(\mathbf{x}+\mathbf{d}) \doteq f(\mathbf{x}) + \mathbf{d}^T \nabla f(\mathbf{x})$
  - we need  $f(\mathbf{x}+\mathbf{d}) \leq f(\mathbf{x})$ , so minimize  $\mathbf{d}^T \nabla f(\mathbf{x})$
  - use Cauchy-Schwartz inequality we have  $-||\mathbf{d}|| ||\nabla f(\mathbf{x})|| \le \mathbf{d}^{T} \nabla f(\mathbf{x})$ minimum (equality holds) for  $\mathbf{d} = -\nabla f(\mathbf{x})$
  - The negative gradient direction is the steepest descent direction
  - note that any direction with  $\mathbf{d}^{T}\nabla f(\mathbf{x}) \leq 0$  is a descent direction



# determining step sizes

- precise line search
- backtrack search
- fixed step size
  - need objective function to have Lipschitz continuous gradients and step size smaller than 1/L to guarantee convergence
- variable step size (not a descent method)
  - may not guarantee decent of objective function
  - can still converge if choose carefully
    - we will discuss this case in (sub)gradient method

# precise line search

- precise line search (Cauchy principle)  $\min_{\eta} f(\mathbf{x}_t + \eta \mathbf{d}_t)$ 
  - 1D function of  $\eta$ , so can be computed exactly
  - derivation  $\mathbf{d}_t^T \nabla f(\mathbf{x}_t + \alpha_t \mathbf{d}_t) = \mathbf{d}_t^T \nabla f(\mathbf{x}_{t+1}) = 0$ 
    - gradient at the next point orthogonal to descent direction
    - zigzag trajectory for gradient descent method

#### convergence

- mathematical convergence  $\nabla f(x_t) = 0$ , difficult to check due to numerical errors
- numerical convergence
  - $0 < \|\nabla f(\mathbf{x}_t)\| < \varepsilon$
  - $f(x) f(x + \delta x) \ge \varepsilon$



# a different view of gradient descent

• gradient descent can be viewed as minimizing the quadratic approximation of objective f

$$x^+ = \operatorname*{arg\,min}_{y} \left\{ f(x) + \nabla f(x)^T (y - x) + \frac{1}{2\alpha} \|y - x\|^2 \right\}$$

- we see the case when f has Lipschitz gradient and  $\alpha \leq 1/L$ 
  - the function being optimized is a majorization of function f, F(x,y)
  - $F(x,x) = f(x), f(x) \le F(x,y)$
  - gradient descent is a majorization minimization  $f(x_{t+1}) \le F(x_{t+1}, x_t) \le F(x_t, x_t) = f(x_t)$
  - very important view to develop proximal algorithms

# fixed step size

• we discuss when function has Lipschitz continuous gradient and is strongly convex



# functions with Lipschitz gradient

- a function has Lipschitz gradient if exist L > 0 $\|\nabla f(z) \cdot \nabla f(x)\| \le L \|z \cdot x\|,$
- descent lemma  $f(y) \le f(x) + \nabla f(x)^{T}(y-x) + L/2 ||y-x||^{2}$ 
  - global quadratic lower bound on function value
- minimize the right hand side w.r.t. y
  - $\mathbf{x}^+ = \mathbf{x} (1/L)\nabla \mathbf{f}(\mathbf{x})$
  - $f(x^+) \le f(x) (1/2L) \|\nabla f(x)\|^2$
  - i.e., x<sup>+</sup> will decrease the objective function

## strongly convex function

- a function is strongly convex if  $\nabla^2 f(z) \ge \mu I$ , so  $f(y) \ge f(x) + \nabla f(x)(y-x) + \mu/2||y-x||^2$ 
  - global quadratic upper bound on function value
- minimize both sides w.r.t. y
  - $f^* = f(x^*) \ge f(x) (1/2\mu) \|\nabla f(x)\|^2$
  - this is an upper-bound how far we are from the optimal solution

#### results

- combining both results, we have
  - $f(x^+) \le f(x) (1/2L) \|\nabla f(x)\|^2$
  - $f(x^*) \ge f(x) (1/2\mu) \|\nabla f(x)\|^2$



#### results

- combining both results, we have
  - $f(x^+) \le f(x) (1/2L) ||\nabla f(x)||^2$
  - $f(x^*) \ge f(x) (1/2\mu) \|\nabla f(x)\|^2$
  - we have

 $2\mu(f(x) - f(x^*)) \leq \|\nabla f(x)\|^2 \leq 2L(f(x) - f(x^+))$  then

 $f(x^+)$  -  $f^* \le c(f(x) - f^*)$ , where  $c = \mu/L < 1$ 

• using this result in gradient descent, and set  $x_{t+1} = x_t - (1/L)\nabla f(x_t)$ 

we have

$$f(x_t)$$
 -  $f^* \leq c^t(f(x_0) - f^*)$ 

i.e., error reduces by a constant factor c

### results

- GD descent for a function with Lipschitz gradient and strongly convex converges exponential with factor  $c = \mu/L$ 
  - c is known as the condition number
  - it is bounded by the ratio of minimum and maximum of the Hessian matrix
- the convergence speed of GD is strongly affected by the condition number

# backtrack search

- using definition of convex function we have  $f(x - \alpha \nabla f(x)) \ge f(x) - \alpha ||\nabla f(x)||^2$ so the decrement of objective function is limited by  $\epsilon = \alpha ||\nabla f(x)||^2 \ge f(x) - f(x - \alpha \nabla f(x))$
- we pick constants  $0 < \beta < 1$ ,  $0 < \sigma < 1$ , if current  $\alpha$  does not lead to decrement of  $\sigma\epsilon$ , then  $\alpha = \alpha\beta$
- this is known as Amijo's rule for backtracking search



# problem with gradient descent

- Gradient descent is too local, taking steps optimal locally
  - if we know the overall landscape of the objective function, i.e., the curvature, then convergence can be a lot faster
- not affine invariant: depending on variable representation
- linear convergence time with regards to number of iteration



# problem with gradient descent

• Rosenbrock function (the banana function)  $f(x,y) = (1-x)^2 + 100(y-x^2)^2.$ GD



### Hessian matrix

• symbolically, Hessian is outer product of gradient operator  $\left(\frac{\partial f}{\partial f}\right) = \left(\frac{\partial^2 f}{\partial f} - \frac{\partial^2 f}{\partial f} - \frac{\partial^2 f}{\partial f}\right)$ 

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} \quad \text{and} \quad \nabla^2 f = \begin{pmatrix} \frac{\partial f}{\partial x_1^2} & \frac{\partial f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

• intuition of Hessian matrix



# Newton's method

- quadratic approximation of a function  $f(\mathbf{x}+\mathbf{h}) \doteq f(\mathbf{x}) + \mathbf{h}^{T} \nabla f(\mathbf{x}) + \frac{1}{2} \mathbf{h}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{h}$
- best approximation is  $\mathbf{h} = -\nabla^2 f(\mathbf{x})^{-1} \nabla f(\mathbf{x})$
- converge very fast, roughly  $O(r^{2t})$  for some r
- initialize:  $t=0, x_0$
- while not converge
  - $d_t = -\nabla^2 f(x_t)^{-1} \nabla f(x_t)$
  - decide step size  $\alpha_t$ 
    - line search or Amijo
  - update  $x_{t+1} = x_t + \alpha_t d_t$



## GD vs. Newton

- GD is too local, taking steps optimal locally
- Newton's method considers curvature, less locally



# GD vs. Newton

- convergence speed (in number of iterations)
  - linear vs. quadratic
- complexity of each iteration (in data dimension)
  - linear vs. quadratic (or cubic if matrix inversion)
    - forming Hessian matrix O(d<sup>2</sup>)
    - inverting Hessian matrix O(d<sup>3</sup>)
- for small scale problems, Newton always preferred
- for medium scale problems, some smart tricks can help to improve Newton's method (like quasi-newton)
- for large scale problems, GD (particularly stochastic GD) is the only choice

# Comparing GD & Newton's method

- Rosenbrock function (the banana function)  $f(x,y) = (1-x)^2 + 100(y-x^2)^2.$ 
  - GD can go fast down to the valley but stuck
  - Newton's method makes continuous progress





# problems with Newton's method

- inversion of Hessian may be hard to compute
  - no explicit matrix inversion
  - solve quadratic optimization problem
    - conjugate gradient descent
- Hessian may be too large to form
  - quasi-Newton BFGS, L-BFGS,
  - Gauss-Newton
- H may not be p.d., i.e., objective not convex
  - Levenberg-Marquadt