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Numerical optimization

- Direct methods: solution affords a closed-form and can be
solved 1n one step

- Example: LLSE, PCA, LDA, etc

- Iterative methods: solution 1s not 1n a closed-form
equation, and needs to be obtained by iterative steps

+ Coordinate descent methods (Robust LLSE, LASSO)

- Descent methods (every step reduce the objective)

- Gradient descent (steepest descent) method
- Newton’s (varying metric) method
+ Non-descent methods
* (Sub)gradient method
» Stochastic (sub)gradient method



descent algorithms

an 1terative algorithm, at each iteration

determine 1f convergence has been reached
determine a to go

determine a step size (how far to go along that
direction)

together the direction and step size guarantees to
the objective function
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minimizing by descending
- follow any descending direction with a step size
- general algorithm (local minimum)

- 1nitialize t= 0, Xo

- while not converge

- find a descending direction 0x, such that
f(x) > f(x+0x)

- decide step size 1t
» update Xi+1 = Xt + 10X
c t=t+1

- end



Y

coordinate descent

- simple: each time solve 1D problem, no step size

- slow: convergence 1s O(1/t!/d)
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has trouble for non-smooth function

f(z,y) =5z* — 6ay + 5y°
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General descent direction

- Assume function f differential

- expand function with first order Taylor series
f(x+d) =f(x) + dTV1{(x)

- we need f(x+d) < {(x), so minimize dTV{(x)

- use Cauchy-Schwartz inequality we have
-l VEx)|| = dTV1(x)
minimum (equality holds) for d = - V{(x)

- The negative gradient direction is the i

steepest descent direction o
- note that any direction with \

dTV1(x) <0 1s a descent direction



determining step sizes

» precise line search
» backtrack search
- fixed step size

- need objective function to have Lipschitz
continuous gradients and step size smaller than 1/L
to guarantee convergence

- variable step size (not a descent method)
- may not guarantee decent of objective function
- can still converge 1f choose carefully

- we will discuss this case in (sub)gradient method



precise line search

- precise line search (Cauchy principle)
min, f(x¢ + ndy)

1D function of n, so can be computed exactly

- derivation diTV1(x¢ + oudi) = diTVE(x+1) = 0

- gradient at the next point orthogonal to descent
direction

- zigzag trajectory for gradient
descent method



convergence

- mathematical convergence V1(x;) = 0, difficult to check

due to numerical errors

Y

- numerical convergence
- O<||VI(xy)|| <€
- 1(x) - f(x+0x) > ¢
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a different view of gradient descent

- gradient descent can be viewed as minimizing the
quadratic approximation of objective f

1
xt = argmin{f(x) + V() (y = x) + %Hy _XHZ}
y

-+ we see the case when f has Lipschitz gradient and o <=
1/L

- the function being optimized 1s a majorization of
function f, F(x,y)

© F(x,x) = 1(x), f(x) < F(x,y)

- gradient descent 1s a majorization minimization
f(xe+1) < F(Xer1,Xt) < F(x1,X0) = f(X1)

- very important view to develop proximal algorithms



fixed step size

- we discuss when function has Lipschitz continuous

gradient and 1s strongly convex
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functions with Lipschitz gradient

- a function has Lipschitz gradient 1f exist L > 0
IVi(2)-VI(x)|| < L]|z-x]],

« descent lemma
f(y) < f(x) + VI(X)T(y—x) + L/2 ||y—x|]?

- global quadratic lower bound on function value
- minimize the right hand side w.r.t. y

- xt=x-(1/L)VI(x)

- f(x") <f(x) - (1/2L)||V1(x)||?

- 1.€., X" will decrease the objective function



strongly convex function
- a function 1s strongly convex if V2{(z) = ul, so
f(y) = f(x) + VIx)(y—x) + W2[[y—x]?
- global quadratic upper bound on function value
- minimize both sides w.r.t. y
- T =1(xF) 2 1(x) - (12 VEEX)[]?

+ this 1s an upper-bound how far we are from the optimal
solution



results

+ combining both results, we have

. f(x*) < f(x) - (1/2L)

- f(x®) > 1(x) - (1/2p)
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results

+ combining both results, we have
- f(x*) <A{(x) - (1/2010)||V1(x)| |2
- f(x™) > 1(x) - (172p)||VE(X)|?

- we have

2u(t(x) - 1(x*)) < [[VIx)[]> < 2L(1(x) - {(x*))
then
f(x*) - £* <c(f(x) - £*), where c = W/L <1
- using this result in gradient descent, and set

Xt+1 — Xt - (I/L)Vf(Xt)

we have
f(xi) - * <ct(f(x0) - f*)

1.e., error reduces by a constant factor ¢



results

+ GD descent for a function with Lipschitz gradient and

strongly convex converges exponential with factor ¢ = p/
L

« ¢ 1s known as the condition number

» 1t 1s bounded by the ratio of minimum and maximum
of the Hessian matrix

- the convergence speed of GD 1s strongly affected by the
condition number



backtrack search

- using definition of convex function we have
f(x - aV1(x)) = {(x) - a||VI(x)|]2
so the decrement of objective function 1s limited by
e = af|VI(x)|]2 > {(x) - f(x - aV1(x))

- we pick constants 0 < <1, 0 <o < 1, 1f current a does
not lead to decrement of cg, then o = af

- this 1s known as Amijo’s rule for backtracking search

f(z+ ad)

f(@) + oV i(z)Td
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problem with gradient descent

- Gradient descent 1s too local, taking steps optimal locally

- 1f we know the overall landscape of the objective
function, 1.e., the curvature, then convergence can be a
lot faster

- not affine invariant: depending on variable representation

- linear convergence time with regards to number of
iteration



problem with gradient descent

log(F)

- Rosenbrock function (the banana function)
flz,y) = (1 - 2)* 4+ 100(y — z°)*.

GD




Hessian matrix

- symbolically, Hessian is outer product of gradient

operator (9f\ (2f  Pf P
0x1 0x? 9x10x, dx10x,
of 2 RS #f
Vf = %y and V2f = 90X 0x, ax3 9x, 0x),
of >f >f >f
dxp ) \8x,, X, 0x,0%xy dx2 )

- Intuition of Hessian matrix

iy 2 2 -
=ty x7 £ Y

(definite) (semidefinite) (indefinite)



Newton’s method

» quadratic approximation of a function
f(x+h) ={(x) + hTV{(x) + 2 hTV2{(x)h

- best approximation 1s h=- V2{(x)-1V1{(x)

* converge very fast, roughly O(;2!) for some r

- 1nitialize: t= 0, Xo
-+ while not converge
. d; = -V2f(x0) VH(x0) o

- decide step size o

» line search or Amijo

» update X¢+1 = X¢ + oeds




GD vs. Newton

- GD 1s too local, taking steps optimal locally

- Newton’s method considers curvature, less locally
/




GD vs. Newton

- convergence speed (in number of 1terations)
» linear vs. quadratic
- complexity of each iteration (in data dimension)
» linear vs. quadratic (or cubic 1f matrix inversion)
- forming Hessian matrix O(d?)
- 1nverting Hessian matrix O(d?3)
- for small scale problems, Newton always preferred

» for medium scale problems, some smart tricks can help
to improve Newton’s method (like quasi-newton)

- for large scale problems, GD (particularly stochastic GD)
is the only choice



Comparing GD & Newton’s method

Rosenbrock function (the banana function)
flz,y)=(1- I)Q + 100(y — IQT}Q.

* GD can go fast down to the valley but stuck

- Newton’s method makes continuous progress




problems with Newton’s method

- 1nversion of Hessian may be hard to compute
* no explicit matrix inversion
» solve quadratic optimization problem
- conjugate gradient descent
- Hessian may be too large to form
- quasi-Newton BFGS, L-BFGS,
+  Gauss-Newton
- H may not be p.d., 1.e., objective not convex

- Levenberg-Marquadt



