
CSI 436/536
Introduction to Machine Learning

Professor Siwei Lyu
Computer Science

University at Albany, State University of New York

Numerical optimization (1)

Numerical optimization
• Direct methods: solution affords a closed-form and can be

solved in one step
• Example: LLSE, PCA, LDA, etc

• Iterative methods: solution is not in a closed-form
equation, and needs to be obtained by iterative steps
• Coordinate descent methods (Robust LLSE, LASSO)
• Descent methods (every step reduce the objective)

• Gradient descent (steepest descent) method
• Newton’s (varying metric) method

• Non-descent methods
• (Sub)gradient method
• Stochastic (sub)gradient method

descent algorithms
• an iterative algorithm, at each iteration

• determine if convergence has been reached
• determine a direction to go
• determine a step size (how far to go along that

direction)
• together the direction and step size guarantees to

decrease the objective function

Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Properties of Lipschitz-Continuous Gradient
From Taylor’s theorem, for some z we have:

f (y) = f (x) + rf (x)T (y � x) +
1

2
(y � x)Tr2f (z)(y � x)

Use that r2f (z) � LI .

f (y) f (x) + rf (x)T (y � x) +
L

2
ky � xk2

Global quadratic upper bound on function value.

Stochastic vs. deterministic methods

• Minimizing g(✓) =
1

n

nX

i=1

fi(✓) with fi(✓) = `
�
yi, ✓��(xi)

�
+ µ�(✓)

• Batch gradient descent: ✓t = ✓t�1��tg
�(✓t�1) = ✓t�1�

�t

n

nX

i=1

f �
i(✓t�1)

• Stochastic gradient descent: ✓t = ✓t�1 � �tf �
i(t)(✓t�1)

minimizing by descending
• follow any descending direction with a step size
• general algorithm (local minimum)

• initialize t= 0, x0
• while not converge

• find a descending direction δx, such that
f(x) ≥ f(x+δx)

• decide step size ηt
• update xt+1 = xt + ηt δx
• t = t+1

• end

coordinate descent
• simple: each time solve 1D problem, no step size
• slow: convergence is O(1/t1/d)
• has trouble for non-smooth function

General descent direction
• Assume function f differential

• expand function with first order Taylor series
 f(x+d) ≐f(x) + dT∇f(x)

• we need f(x+d) ≤ f(x), so minimize dT∇f(x)
• use Cauchy-Schwartz inequality we have

 -||d||||∇f(x)|| ≤ dT∇f(x)
minimum (equality holds) for d = - ∇f(x)

• The negative gradient direction is the
steepest descent direction

• note that any direction with
dT∇f(x) ≤ 0 is a descent direction

determining step sizes
• precise line search
• backtrack search
• fixed step size

• need objective function to have Lipschitz
continuous gradients and step size smaller than 1/L
to guarantee convergence

• variable step size (not a descent method)
• may not guarantee decent of objective function
• can still converge if choose carefully

• we will discuss this case in (sub)gradient method

precise line search
• precise line search (Cauchy principle)

 minη f(xt + ηdt)
• 1D function of η, so can be computed exactly
• derivation dtT∇f(xt + αtdt) = dtT∇f(xt+1) = 0

• gradient at the next point orthogonal to descent
direction

• zigzag trajectory for gradient
descent method

convergence
• mathematical convergence ∇f(xt) = 0, difficult to check

due to numerical errors
• numerical convergence

• 0< ||∇f(xt)|| < ε
• f(x) - f(x+δx) ≥ ε

y

x

start

()

f x = c()

f x = c()

f x = c()

f x = c4

1

2

3

So there are a number of back and forth steps that only slowly converge to a minimum. This
situation can get very bad in a narrow valley, where successive steps undo some of their previous
progress. Ideally, in Rn we would like to take n perpendicular steps, each of which attains a
minimum. This idea will lead to the conjugate gradient method.

References

[1] M. Erdmann. Lecture notes for 16-811 Mathematical Fundamentals for Robotics. The Robotics
Institute, Carnegie Mellon University, 1998.

[2] D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, 2nd edition, 1984.

[3] W. H. Press, et al. Numerical Recipes in C++: The Art of Scientific Computing. Cambridge
University Press, 2nd edition, 2002.

8

a different view of gradient descent
• gradient descent can be viewed as minimizing the

quadratic approximation of objective f

• we see the case when f has Lipschitz gradient and α <=
1/L
• the function being optimized is a majorization of

function f, F(x,y)
• F(x,x) = f(x), f(x) ≤ F(x,y)
• gradient descent is a majorization minimization

f(xt+1) ≤ F(xt+1,xt) ≤ F(xt,xt) = f(xt)
• very important view to develop proximal algorithms

Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Optimization with Simple Constraints

Recall: gradient descent minimizes quadratic approximation:

x+ = arg min
y

⇢
f (x) + rf (x)T (y � x) +

1

2↵
ky � xk2

�
.

Consider minimizing subject to simple constraints:

x+ = arg min
y2C

⇢
f (x) + rf (x)T (y � x) +

1

2↵
ky � xk2

�
.

Equivalent to projection of gradient descent:

xGD = x � ↵rf (x),

x+ = arg min
y2C

n
ky � xGDk

o
,

fixed step size
• we discuss when function has Lipschitz continuous

gradient and is strongly convex

Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Properties of Lipschitz-Continuous Gradient
From Taylor’s theorem, for some z we have:

f (y) = f (x) + rf (x)T (y � x) +
1

2
(y � x)Tr2f (z)(y � x)

Use that r2f (z) � LI .

f (y) f (x) + rf (x)T (y � x) +
L

2
ky � xk2

Global quadratic upper bound on function value.

f(x)

f(x) + ∇f(x)T(y-x)

f(y)

f(x) + ∇f(x)T(y-x) + (L/2)||y-x||2

Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Properties of Strong-Convexity
From Taylor’s theorem, for some z we have:

f (y) = f (x) + rf (x)T (y � x) +
1

2
(y � x)Tr2f (z)(y � x)

Use that r2f (z) ⌫ µI .

f (y) � f (x) + rf (x)T (y � x) +
µ

2
ky � xk2

Global quadratic upper bound on function value.

f(x)

f(x) + ∇f(x)T(y-x)

f(x) + ∇f(x)T(y-x) + (μ/2)||y-x||2

functions with Lipschitz gradient
• a function has Lipschitz gradient if exist L > 0

 ||∇f(z)-∇f(x)|| ≤ L||z-x||,
• descent lemma

f(y) ≤ f(x) + ∇f(x)T(y−x) + L/2 ||y−x||2
• global quadratic lower bound on function value

• minimize the right hand side w.r.t. y
• x+ = x - (1/L)∇f(x)

• f(x+) ≤ f(x) - (1/2L)||∇f(x)||2
• i.e., x+ will decrease the objective function

strongly convex function
• a function is strongly convex if ∇2f(z) ≽ µI, so

f(y) ≥ f(x) + ∇f(x)(y−x) + µ/2||y−x||2
• global quadratic upper bound on function value

• minimize both sides w.r.t. y
• f* = f(x*) ≥ f(x) - (1/2µ)||∇f(x)||2

• this is an upper-bound how far we are from the optimal
solution

results
• combining both results, we have

• f(x+) ≤ f(x) - (1/2L)||∇f(x)||2

• f(x*) ≥ f(x) - (1/2µ)||∇f(x)||2

Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Linear Convergence of Gradient Descent

We have bounds on x+ and x⇤:

f (x+) f (x) � 1

2L
krf (x)k2, f (x⇤) � f (x) � 1

2µ
krf (x)k2.

f(x) Guaranteed
Progress

Maximum
Suboptimality

f(x+)

results
• combining both results, we have

• f(x+) ≤ f(x) - (1/2L)||∇f(x)||2

• f(x*) ≥ f(x) - (1/2µ)||∇f(x)||2

• we have
 2µ(f(x) - f(x*)) ≤ ||∇f(x)||2 ≤ 2L(f(x) - f(x+))
then
 f(x+) - f* ≤ c(f(x) - f*), where c = µ/L < 1

• using this result in gradient descent, and set
 xt+1 = xt - (1/L)∇f(xt)
we have
 f(xt) - f* ≤ ct(f(x0) - f*)
i.e., error reduces by a constant factor c

results
• GD descent for a function with Lipschitz gradient and

strongly convex converges exponential with factor c = µ/
L
• c is known as the condition number
• it is bounded by the ratio of minimum and maximum

of the Hessian matrix
• the convergence speed of GD is strongly affected by the

condition number

backtrack search
• using definition of convex function we have

 f(x - α∇f(x)) ≥ f(x) - α||∇f(x)||2
so the decrement of objective function is limited by
 ε = α||∇f(x)||2 ≥ f(x) - f(x - α∇f(x))

• we pick constants 0 < β < 1, 0 < σ < 1, if current α does
not lead to decrement of σε, then α = αβ

• this is known as Amijo’s rule for backtracking search

problem with gradient descent
• Gradient descent is too local, taking steps optimal locally

• if we know the overall landscape of the objective
function, i.e., the curvature, then convergence can be a
lot faster

• not affine invariant: depending on variable representation
• linear convergence time with regards to number of

iteration
Deep learning via Hessian-free optimization

helps. Firstly, while bad local optima do exist in deep-
networks (as they do with shallow ones) in practice they do
not seem to pose a significant threat, at least not to strong
optimizers like ours. Instead of bad local minima, the diffi-
culty associated with learning deep auto-encoders is better
explained by regions of pathological curvature in the ob-
jective function, which to 1st-order optimization methods
resemble bad local minima.

2. Newton’s method
In this section we review the canonical 2nd-order optimiza-
tion scheme, Newton’s method, and discuss its main ben-
efits and why they may be important in the deep-learning
setting. While Newton’s method itself is impractical on
large models due to the quadratic relationship between the
size of the Hessian and the number of parameters in the
model, studying it nevertheless informs us about how its
more practical derivatives (i.e. quasi-Newton methods)
might behave.

Newton’s method, like gradient descent, is an optimization
algorithm which iteratively updates the parameters θ ∈ RN

of an objective function f by computing search directions p
and updating θ as θ + αp for some α. The central idea mo-
tivating Newton’s method is that f can be locally approxi-
mated around each θ, up to 2nd-order, by the quadratic:

f(θ + p) ≈ qθ(p) ≡ f(θ) + ∇f(θ)!p +
1

2
p!Bp (1)

where B = H(θ) is the Hessian matrix of f at θ. Find-
ing a good search direction then reduces to minimizing this
quadratic with respect to p. Complicating this idea is that
H may be indefinite so this quadratic may not have a mini-
mum, and moreover we don’t necessarily trust it as an ap-
proximation of f for large values of p. Thus in practice the
Hessian is “damped” or re-conditioned so that B = H + λI
for some constant λ ≥ 0.

2.1. Scaling and curvature

An important property of Newton’s method is “scale invari-
ance”. By this we mean that it behaves the same for any
linear rescaling of the parameters. To be technically pre-
cise, if we adopt a new parameterization θ̂ = Aθ for some
invertible matrixA, then the optimal search direction in the
new parameterization is p̂ = Ap where p is the original
optimal search direction. By contrast, the search direction
produced by gradient descent has the opposite response to
linear re-parameterizations: p̂ = A−!p.

Scale invariance is important because, without it, poorly
scaled parameters will be much harder to optimize. It also
eliminates the need to tweak learning rates for individual
parameters and/or anneal global learning-rates according
to arbitrary schedules. Moreover, there is an implicit “scal-
ing” which varies over the entire parameter space and is
determined by the local curvature of the objective function.

Figure 1. Optimization in a long narrow valley

By taking the curvature information into account (in the
form of the Hessian), Newton’s method rescales the gradi-
ent so it is a much more sensible direction to follow.

Intuitively, if the curvature is low (and positive) in a par-
ticular descent direction d, this means that the gradient of
the objective changes slowly along d, and so d will remain
a descent direction over a long distance. It is thus sensi-
ble to choose a search direction p which travels far along
d (i.e. by making p!d large), even if the amount of reduc-
tion in the objective associated with d (given by−∇f!d) is
relatively small. Similarly if the curvature associated with
d is high, then it is sensible to choose p so that the dis-
tance traveled along d is smaller. Newton’s method makes
this intuition rigorous by computing the distance to move
along d as its reduction divided by its associated curvature:
−∇f!d/d!Hd. This is precisely the point along d after
which f is predicted by (1) to start increasing.

Not accounting for the curvature when computing search
directions can lead to many undesirable scenarios. First,
the sequence of search directions might constantly move
too far in directions of high curvature, causing an unstable
“bouncing” behavior that is often observed with gradient
descent and is usually remedied by decreasing the learning
rate. Second, directions of low curvature will be explored
much more slowly than they should be, a problem exacer-
bated by lowering the learning rate. And if the only direc-
tions of significant decrease in f are ones of low curvature,
the optimization may become too slow to be practical and
even appear to halt altogether, creating the false impression
of a local minimum. It is our theory that the under-fitting
problem encountered when optimizing deep nets using 1st-
order techniques is mostly due to such techniques becom-
ing trapped in such false local minima.

Figure 1 visualizes a “pathological curvature scenario”,
where the objective function locally resembles a long nar-
row valley. At the base of the valley is a direction of low
reduction and low curvature that needs to be followed in
order to make progress. The smaller arrows represent the
steps taken by gradient descent with large and small learn-
ing rates respectively, while the large arrow along the base
of the valley represents the step computed by Newton’s
method. What makes this scenario “pathological” is not
the presence of merely low or high curvature directions,

problem with gradient descent
• Rosenbrock function (the banana function)

GD

Gradient Descent

Nicolas Le Roux

Optimization

Basics

Approximations to Newton

method

Stochastic Optimization

Learning (Bottou)

TONGA

Natural Gradient

Online Natural Gradient

Results

Rosenbrock function

Hessian matrix
• symbolically, Hessian is outer product of gradient

operator

• intuition of Hessian matrix

Newton’s method
• quadratic approximation of a function

f(x+h) ≐f(x) + hT∇f(x) + ½ hT∇2f(x)h

• best approximation is h=- ∇2f(x)-1∇f(x)

• converge very fast, roughly O(r2t) for some r
• initialize: t= 0, x0
• while not converge

• dt = -∇2f(xt)-1∇f(xt)
• decide step size αt

• line search or Amijo
• update xt+1 = xt + αtdt

Convex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Newton’s Method

f(x)

f(x+)

f(x) + ∇f(x)T(y-x) + (1/2)(y-x)T∇2f(x)(y-x)

GD vs. NewtonConvex Functions Smooth Optimization Non-Smooth Optimization Stochastic Optimization

Newton’s Method

f(x)

xk

xk - !!f(xk)

Q(x,!)

xk - !dk

ideal direction

• GD is too local, taking steps optimal locally
• Newton’s method considers curvature, less locally

GD vs. Newton
• convergence speed (in number of iterations)

• linear vs. quadratic
• complexity of each iteration (in data dimension)

• linear vs. quadratic (or cubic if matrix inversion)
• forming Hessian matrix O(d2)
• inverting Hessian matrix O(d3)

• for small scale problems, Newton always preferred
• for medium scale problems, some smart tricks can help

to improve Newton’s method (like quasi-newton)
• for large scale problems, GD (particularly stochastic GD)

is the only choice

Comparing GD & Newton’s method
• Rosenbrock function (the banana function)

• GD can go fast down to the valley but stuck
• Newton’s method makes continuous progress

Gradient Descent

Nicolas Le Roux

Optimization

Basics

Approximations to Newton

method

Stochastic Optimization

Learning (Bottou)

TONGA

Natural Gradient

Online Natural Gradient

Results

Rosenbrock function

problems with Newton’s method
• inversion of Hessian may be hard to compute

• no explicit matrix inversion
• solve quadratic optimization problem

• conjugate gradient descent
• Hessian may be too large to form

• quasi-Newton BFGS, L-BFGS,
• Gauss-Newton

• H may not be p.d., i.e., objective not convex
• Levenberg-Marquadt

