
CSI 436/536  
Introduction to Machine Learning

Professor Siwei Lyu
Computer Science

University at Albany, State University of New York

Review of Linear Algebra (1)

Importance of linear algebra
• Linear algebra

• provides superior notations (algebra)
• many topics can be understood better with

vector-matrix-space idea (e.g., Fourier)
• has a consistent intuition (geometry)

• what is true for low dimensional space is
usually also true for high dimensional space
• not usually the case in general

• computes efficiently (numerical algorithms)
• Almost all numerical computation requires

support of linear algebra
• LAPACK is the backbone of Matlab, NumPy, R

• Fourier transform

• FT provide eigenvectors for circulant matrix
(discrete case) or LTI operator (continuous case)

• proof of the fundamental convolution theorem (and
its continuous version) becomes very easy

Algebra

curse of dimensionality
• sphere inscribed in cube

• Gaussian distribution in high dimension

Numerical linear algebra
• NLA is behind the majority of numerical procedures

for machine learning
• The majority of ML algorithms are optimization

problems [there is a small fraction is about
integration instead of optimization]

• All optimization problems are practically solved
as a sequence of quadratic optimization
problems

• All quadratic optimization problems are solved as
linear equations or eigenvalues

Overview
• Objects in linear algebra

• vectors, linear spaces, matrices, linear transforms
• Problems in linear algebra

• linear equation Ax = b
• eigenvalue equation Ax = ƛx

• Techniques in linear algebra
• Matrix factorizations: LU decomposition, eigen

decomposition, QR decomposition, etc
• Mostly we will work with

• Symmetric positive (semi)definite matrices

vectors, space and transforms
• Vectors are list of numbers over a field (real space)

• Geometrically correspond to points
• we use column vector by default
• vector can add/subtract/scale

• Linear space is the set of vectors closed under
addition and scalar product
• Subspace is a subset of a space including zero
• A space can be spanned by a set of vectors

• A linear transform is a mapping between points in
two spaces that keeps linearity

Vectors

By x 2 Rn, we denote a column vector with n entries.

x =

0

BBB@

x1
x2
...

xn

1

CCCA
.

By convention we assume column vector.
A vector x is a point in an n-dimensional space.
The ith element of a vector x is denoted xi

Vector Operations

vector addition/subtraction: x + y, x � y
scaling: sx for s 2 R
linear combination: for ↵1, · · · ,↵k 2 R,

Pk
i=1 ↵ixi

convex combination: for ↵1, · · · ,↵k 2 R+,
Pk

i=1 ↵i = 1Pk
i=1 ↵ixi

transpose xT = (x1, · · · , xn)

• a set of vectors is linear independent if for any is
not in

• A set of bases of a space V is a set of independent
vectors that also span it
• Canonical basis is the basis that are orthornormal

• Coordinates are coefficients on basis
• the max number of vectors that are linearly

independent in a space is its dimension
• Dimension of a space

may not be the same as
the dimension of an
individual vector in it

linear independence of vectors
⃗u i

span(⃗u 1, ⋯, ⃗u i−1, ⃗u i+1, ⋯, ⃗u n)

additional structures of space
• distance between two vectors: metric

• metric space
• length of a vector: norm

• norm space
• angle between two vectors: inner product

• inner product space (Hilbert space)
• parallelogram by two vectors: exterior product

• Grassmann space

Vector metrics (distance)
• L2 (Euclidean) metric

• L1 (Manhattan) metric

• L∞ (Chebeshev) metric

• Lp metric (p ≥ 1)

• All metrics satisfy
• symmetric: d(x,y) = d(y,x)
• non-negativity: d(x,x) ≥ 0
• triangle inequality:

d(x,y) + d(y,z) ≥ d(x,z)

∥x − y∥2 =
n

∑
i=1

(xi − yi)2

∥x − y∥1 =
n

∑
i=1

|xi − yi |

∥x − y∥1 = max
i

|xi − yi |

∥x − y∥p = (∑n
i=1 (xi − yi)p)

1/p

L2(x,y)

L1(x,y)

L∞(x,y)

Norms
• L2 (Euclidean) norm, L1 (Manhattan) norm, L∞

norm, Lp norm (p ≥ 1)
• All norms satisfy

• non-negativity: |x| ≥ 0
• triangle inequality: |x| + |y| ≥ |x+y|

• Normalization to unit vectors (w.r.t. to a norm)
• Projections onto unit spheres (w.r.t. to a norm)

• Given a norm, we can define metric (distance) as
the norm of the different vector

• due norm: ||x||p* = max{sTx| ||s||p ≤ 1}, L2 is self-dual,
L1 is dual of L∞

Vector Products

inner product (scalar product, dot product) xT y =
Pn

i=1 xiyi
– measure “angles” between two vectors.
direct product (Dirac product)

x � y =

0

BBB@

x1 · y1
x2 · y2

...
xn · yn

1

CCCA
.

cross product – only for three dimensional space
tensor (outer) product – generate a matrix

xyT =

0

BBB@

x1 · y1 x1 · y2 · · · x1 · ym
x2 · y1 x2 · y2 · · · x2 · ym

...
...

xn · y1 xn · y2 · · · xn · ym

1

CCCA
.

Vector products
• inner (scalar) product: (v,v) →a number

• geometrically related with angles
• Cauchy-Schwartz inequality

• <u,v> = 0 iff u and v orthogonal

• rect (Dirac) product: (v,v) →a vector
• exterior (cross/wedge) product: (v,v) →a vector
• outer (tensor) product: (v,v) →a matrix (actually a

tensor)

Vector Products

inner product (scalar product, dot product) xT y =
Pn

i=1 xiyi
– measure “angles” between two vectors.
direct product (Dirac product)

x � y =

0

BBB@

x1 · y1
x2 · y2

...
xn · yn

1

CCCA
.

cross product – only for three dimensional space
tensor (outer) product – generate a matrix

xyT =

0

BBB@

x1 · y1 x1 · y2 · · · x1 · ym
x2 · y1 x2 · y2 · · · x2 · ym

...
...

xn · y1 xn · y2 · · · xn · ym

1

CCCA
.

Vector Products

inner product (scalar product, dot product) xT y =
Pn

i=1 xiyi
– measure “angles” between two vectors.
direct product (Dirac product)

x � y =

0

BBB@

x1 · y1
x2 · y2

...
xn · yn

1

CCCA
.

cross product – only for three dimensional space
tensor (outer) product – generate a matrix

xyT =

0

BBB@

x1 · y1 x1 · y2 · · · x1 · ym
x2 · y1 x2 · y2 · · · x2 · ym

...
...

xn · y1 xn · y2 · · · xn · ym

1

CCCA
.

|⟨ ⃗u , ⃗v ⟩ | ≤ ∥ ⃗u ∥∥ ⃗v ∥

matrix
• matrix is 2D table of numbers

• all matrices of the same dim form a vector space
• the transpose of a matrix A, denoted AT , is the

matrix whose (i,j) entry equals the (j,i) entry of A
• Matrix multiplication
• non communicative multiplication, AB ≠ BA usually

Matrix multiplication
• as outer product of “inner products”

• as inner product of “outer products”

− aT
1 −

− aT
2 −

− aT
3 −

| | |
b1 b2 b3

| | |
=

aT
1 b1 aT

1 b2 aT
1 b3

aT
2 b1 aT

2 b2 aT
2 b3

aT
3 b1 aT

3 b2 aT
3 b3

| | |
b1 b2 b3

| | |

− aT
1 −

− aT
2 −

− aT
3 −

= b1aT
1 + b2aT

2 + b3aT
3

Some special matrices
• Square and rectangular matrices
• Diagonal and identity matrices

• Upper and lower triangular matrices

• Symmetric matrices AT = A
• skew-symmetric matrices AT = - A
• Matrix inverse A-1A = AA-1 = I
• orthogonal matrices: ATA = AAT = I, or AT = A-1

(1 0
0 4) (1 0

0 1)
(1 0

2 4) (1 2
0 4)

Solving linear equations
• The most important problem in LA is solving

the linear equation: Ax = b, b is a known vector (dim n),
x is unknown vector (dim m)

• A is a matrix (dim n x m): collection of m vectors

• Ax represents all vectors in the column space of A

• Ax = 0 is the null space of A, with x = 0 always in it
• Column space determines the existence of the solution,

null space determines the uniqueness of the solution

A =
| | ⋯ |

a1 a2 ⋯, am

| | ⋯ |
= col(a1a2⋯, am)

Ax = x1a1 + x2a2 + ⋯ + xmam

Geometric interpretation
• To solve Ax = b is equivalent to find a

representation of b in the column space of A

• If b is in col(A), solution exists
• If null(A) = {0}, solution is unique

Ax = x1a1 + x2a2 + ⋯ + xmam = b

Solve Ax = b
• case 1: matrix A is square and full ranked  

n = m, # of equations = # of unknowns 
⇒ complete problem ⇒ unique solution

• case 2: matrix X is tall & thin  
n > m, # of equations > # of unknowns  
⇒ over-complete problem ⇒ no solution

• case 3: matrix A is short & fat 
n < m, # of equations < # of unknowns 
⇒ under-complete problem ⇒ non-unique solution

matrix inverse
• for square matrix A, if det(A) ≠ 0, then A-1 is defined

as the matrix satisfying A-1A = AA-1 = I
• matrix A is invertible, otherwise, it is singular
• For a 2 x 2 matrix, inverses can be computed as

• for rectangular matrix A
• its left Moore-Penrose pseudo inverse (ATA)-1AT
• its right Moore-Penrose pseudo inverse AT(AAT)-1

Matrix trace & determinant
• trace

• property: tr(AB) = tr(BAT)
• determinant

• computation involves Levi-Civita tensor

• det(aA) = andet(A), det(AB) = det(A)det(B),
det(A-1) = det(A)-1

• A not invertible, then det(A) = 0, and vice versa

Solve Ax = b using matrix inverse
• for square matrix A, if det(A) ≠ 0, then A-1 is defined

as the matrix satisfying A-1A = AA-1 = I
• matrix A is invertible, otherwise, it is singular

• Why is this not a good way to solve linear equation
• Running time is O(n3)
• Numerically unstable
• Lose of good structure in A, e.g., sparsity

• On modern computers, for matrix smaller than 1000
dimension, direct inverse is feasible.

⇒ ⇒

(1 0
0 ϵ)

−1

= (
1 0
0 1

ϵ)

Solve Ax = b using decomposition
• We can decompose a square matrix A = LDU,

where L and U are a lower triangular and upper
matrices with diagonal 1, and D is a diagonal
matrix with pivots

• If A is not invertible, then one of the pivot is zero
• Solving Ax = b becomes LDUx = b, then two steps

Ly = b (forward elimination), DUx = y (backward
elimination)
• This is known as Gaussian elimination
• Solution time is O(n2), and numerically it is very

stable (caveat: if the pivots are chosen right)
• It is numerically stable (only divide by pivot)

Projection
• for col(X) as a 2D subspace of the 3D space
• least squares problem is equivalent to finding the

projection of vector y in col(X)

• idempotent ΠX(x) = x, for x ∈ col(X)
• orthogonality y - ΠX(y) ⟂ X
• Householder transform  

mirror reflection  
H(y) = 2 ΠX(y) - y

y

col(X)

Xp

Least Squares Regression

case 2: m < n, so rank(X T X) = m [Why?], or matrix X T X is
invertible.
The implication is X T X is positive definite [Why?], which further
means minp ky � Xpk2

2 has a unique minimum.
The solution is given by X T Xp = X T y) p = (X T X)�1X T y.
The predicted target is given by ỹ = ⇧X (y) = X (X T X)�1X T y.
The prediction error is given by
y � ỹ = y � X (X T X)�1X T y = (I � X (X T X)�1X T)y.
The transform ⇧X (y) is known as the projection of y on X .
The geometrical interpretation of ⇧X (y) is that it is the vector in
col(X) that has the minimum `2 distance to y.

ΠX(y) = X(XT X)−1XTy

Positive definite matrix
• A is a square matrix, for any x ≠ 0, we form a

quadratic form using A and x, xTAx, then if
• xTAx > 0, A is a positive definite matrix
• xTAx < 0, A is a negative definite matrix
• xTAx ≥ 0, A is a positive semi-definite matrix
• xTAx ≤ 0, A is a negative semi-definite matrix
• otherwise, A is indefinite

• Geometrical interpretation
• Symmetric positive (semi)definite

matrices play a very important role in machine
learning and optimization

Matrix inversion lemma
• Woodsbury identity: when A and D are invertible

• Proof: multiply the matrix on both sides
• important special case

• B=C=z, a vector, D=I

• B=-C=z, a vector, D=I

• caching A-1 and computing the inversion
recursively, typical inversion will take O(n3), while
this special case it is O(n)

(A + zzT)−1 = A−1 − (A−1zzT A−1)/(1 + zT A−1z)

(A − zzT)−1 = A−1 + (A−1zzT A−1)/(1 − zT A−1z)

(A + BDCT)−1 = A−1 − A−1C(D−1 + CA−1BT)−1BT A−1

