CSI 436/536
 Introduction to Machine Learning

Review of Linear Algebra (1)

Professor Siwei Lyu

Computer Science
University at Albany, State University of New York

Importance of linear algebra

- Linear algebra
- provides superior notations (algebra)
- many topics can be understood better with vector-matrix-space idea (e.g., Fourier)
- has a consistent intuition (geometry)
- what is true for low dimensional space is usually also true for high dimensional space
- not usually the case in general
- computes efficiently (numerical algorithms)
- Almost all numerical computation requires support of linear algebra
- LAPACK is the backbone of Matlab, NumPy, R

Algebra

- Fourier transform

$D F T(F F T):$

$X(k)=\sum_{n=0}^{N-1} x(n) \cdot e^{-\int\left(\frac{2 \pi}{N}\right) n k}(k=0,1, \ldots, N-1)$
$\operatorname{IDFT}(I F F T)$:
$x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) \cdot e^{j\left(\frac{2 \pi}{N}\right) n k}(n=0,1, \ldots, N-1)$

$$
C=\left[\begin{array}{ccccc}
c_{0} & c_{n-1} & \ldots & c_{2} & c_{1} \\
c_{1} & c_{0} & c_{n-1} & & c_{2} \\
\vdots & c_{1} & c_{0} & \ddots & \vdots \\
c_{n-2} & & \ddots & \ddots & c_{n-1} \\
c_{n-1} & c_{n-2} & \ldots & c_{1} & c_{0}
\end{array}\right] .
$$

- FT provide eigenvectors for circulant matrix (discrete case) or LTI operator (continuous case)
- proof of the fundamental convolution theorem (and its continuous version) becomes very easy

curse of dimensionality

- sphere inscribed in cube

as $d \rightarrow \infty$.
- Gaussian distribution in high dimension

as $d \rightarrow \infty$.

Numerical linear algebra

- NLA is behind the majority of numerical procedures for machine learning
- The majority of ML algorithms are optimization problems [there is a small fraction is about integration instead of optimization]
- All optimization problems are practically solved as a sequence of quadratic optimization problems
- All quadratic optimization problems are solved as linear equations or eigenvalues

Overview

- Objects in linear algebra
- vectors, linear spaces, matrices, linear transforms
- Problems in linear algebra
- linear equation $\mathbf{A x}=\mathbf{b}$
- eigenvalue equation $\mathbf{A x}=\lambda \mathbf{x}$
- Techniques in linear algebra
- Matrix factorizations: LU decomposition, eigen decomposition, QR decomposition, etc
- Mostly we will work with
- Symmetric positive (semi)definite matrices

vectors, space and transforms

- Vectors are list of numbers over a field (real space)
- Geometrically correspond to points
- we use column vector by default

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

- vector can add/subtract/scale
- Linear space is the set of vectors closed under addition and scalar product
- Subspace is a subset of a space including zero
- A space can be spanned by a set of vectors

$$
\text { for } \alpha_{1}, \cdots, \alpha_{k} \in \mathcal{R}, \sum_{i=1}^{k} \alpha_{i} \mathbf{x}_{i}
$$

- A linear transform is a mapping between points in two spaces that keeps linearity

linear independence of vectors

- a set of vectors is linear independent if for any \vec{u}_{i} is not in $\operatorname{span}\left(\vec{u}_{1}, \cdots, \vec{u}_{i-1}, \vec{u}_{i+1}, \cdots, \vec{u}_{n}\right)$
- A set of bases of a space V is a set of independent vectors that also span it
- Canonical basis is the basis that are orthornormal
- Coordinates are coefficients on basis
- the max number of vectors that are linearly independent in a space is its dimension
- Dimension of a space may not be the same as the dimension of an individual vector in it

additional structures of space

- distance between two vectors: metric
- metric space
- length of a vector: norm
- norm space
- angle between two vectors: inner product
- inner product space (Hilbert space)
- parallelogram by two vectors: exterior product
- Grassmann space

Vector metrics (distance)

- L2 (Euclidean) metric

$$
\|x-y\|_{2}=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}
$$

- L1 (Manhattan) metric

$$
\|x-y\|_{1}=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|
$$

- $\mathrm{L} \infty$ (Chebeshev) metric $\|x-y\|_{1}=\max _{i}\left|x_{i}-y_{i}\right|$
- Lp metric ($p \geq 1$)

$$
\|x-y\|_{p}=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{p}\right)^{1 / p}
$$

- All metrics satisfy
- symmetric: $d(x, y)=d(y, x)$
- non-negativity: $\mathrm{d}(\mathrm{x}, \mathrm{x}) \geq 0$
- triangle inequality:
 $d(x, y)+d(y, z) \geq d(x, z)$

Norms

- L2 (Euclidean) norm, L1 (Manhattan) norm, L ∞ norm, Lp norm ($p \geq 1$)
- All norms satisfy
- non-negativity: $|x| \geq 0$
- triangle inequality: $|x|+|y| \geq|x+y|$
- Normalization to unit vectors (w.r.t. to a norm)
- Projections onto unit spheres (w.r.t. to a norm)
- Given a norm, we can define metric (distance) as the norm of the different vector
- due norm: $\|x\|_{p^{*}}=\max \left\{s^{\top} x \mid\|s\|_{p} \leq 1\right\}$, $L 2$ is self-dual, L 1 is dual of $\mathrm{L} \infty$

Vector products

- inner (scalar) product: $(\mathbf{v}, \mathbf{v}) \rightarrow$ a number $\mathbf{x}^{\top} \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}$
- geometrically related with angles
- Cauchy-Schwartz inequality

$$
|\langle\vec{u}, \vec{v}\rangle| \leq\|\vec{u}\|\|\vec{v}\|
$$

- $\langle u, v\rangle=0$ iff u and v orthogonal
- rect (Dirac) product: $(\mathbf{v}, \mathbf{v}) \rightarrow$ a vector

- exterior (cross/wedge) product: $(\mathbf{v}, \mathbf{v}) \rightarrow$ a vector $\left(x_{n} \cdot y_{n}\right)$
- outer (tensor) product: $(\mathbf{v}, \mathbf{v}) \rightarrow$ a matrix (actually a tensor)

$$
\mathbf{x y}^{T}=\left(\begin{array}{cccc}
x_{1} \cdot y_{1} & x_{1} \cdot y_{2} & \cdots & x_{1} \cdot y_{m} \\
x_{2} \cdot y_{1} & x_{2} \cdot y_{2} & \cdots & x_{2} \cdot y_{m} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n} \cdot y_{1} & x_{n} \cdot y_{2} & \cdots & x_{n} \cdot y_{m}
\end{array}\right)
$$

matrix

- matrix is 2D table of numbers
- all matrices of the same dim form a vector space
- the transpose of a matrix A, denoted A^{\top}, is the matrix whose (i,j) entry equals the (j, i) entry of A
- Matrix multiplication
- non communicative multiplication, $\mathrm{AB} \neq \mathrm{BA}$ usually

$$
\begin{gathered}
\text { "Dot Product" } \\
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \times\left[\begin{array}{cc}
7 & 8 \\
9 & 10 \\
11 & 12
\end{array}\right]=\left[\begin{array}{l}
58
\end{array}\right]}
\end{gathered}
$$

Matrix multiplication

- as outer product of "inner products"

$$
\left(\begin{array}{lll}
- & a_{1}^{T} & - \\
- & a_{2}^{T} & - \\
- & a_{3}^{T} & -
\end{array}\right)\left(\begin{array}{ccc}
\mid & \mid & \mid \\
b_{1} & b_{2} & b_{3} \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{lll}
a_{1}^{T} b_{1} & a_{1}^{T} b_{2} & a_{1}^{T} b_{3} \\
a_{2}^{T} b_{1} & a_{2}^{T} b_{2} & a_{2}^{T} b_{3} \\
a_{3}^{T} b_{1} & a_{3}^{T} b_{2} & a_{3}^{T} b_{3}
\end{array}\right)
$$

- as inner product of "outer products"

$$
\left(\begin{array}{ccc}
\mid & \mid & \mid \\
b_{1} & b_{2} & b_{3} \\
\mid & \mid & \mid
\end{array}\right)\left(\begin{array}{ccc}
- & a_{1}^{T} & - \\
- & a_{2}^{T} & - \\
- & a_{3}^{T} & -
\end{array}\right)=b_{1} a_{1}^{T}+b_{2} a_{2}^{T}+b_{3} a_{3}^{T}
$$

Some special matrices

- Square and rectangular matrices
- Diagonal and identity matrices

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- Upper and lower triangular matrices

$$
\left(\begin{array}{ll}
1 & 0 \\
2 & 4
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 2 \\
0 & 4
\end{array}\right)
$$

- Symmetric matrices $A^{\top}=A$
- skew-symmetric matrices $A^{\top}=-A$
- Matrix inverse $A^{-1} A=A A^{-1}=1$
- orthogonal matrices: $A^{\top} A=A A^{\top}=I$, or $A^{\top}=A^{-1}$

Solving linear equations

- The most important problem in LA is solving the linear equation: $A x=b, b$ is a known vector ($\operatorname{dim} n$), x is unknown vector (dim m)
- A is a matrix ($\operatorname{dim} \mathrm{n} \times \mathrm{m}$): collection of m vectors

$$
A=\left(\begin{array}{cccc}
\mid & \mid & \cdots & \mid \\
a_{1} & a_{2} & \cdots, & a_{m} \\
\mid & \mid & \cdots & \mid
\end{array}\right)=\operatorname{col}\left(a_{1} a_{2} \cdots, a_{m}\right)
$$

- Ax represents all vectors in the column space of A

$$
A x=x_{1} a_{1}+x_{2} a_{2}+\cdots+x_{m} a_{m}
$$

- $\mathrm{Ax}=0$ is the null space of A , with $\mathrm{x}=0$ always in it
- Column space determines the existence of the solution, null space determines the uniqueness of the solution

Geometric interpretation

- To solve $A x=b$ is equivalent to find a representation of b in the column space of A

$$
A x=x_{1} a_{1}+x_{2} a_{2}+\cdots+x_{m} a_{m}=b
$$

- If b is in $\operatorname{col}(A)$, solution exists
- If null $(A)=\{0\}$, solution is unique

Solve $A x=b$

- case 1: matrix A is square and full ranked $\mathrm{n}=\mathrm{m}$, \# of equations = \# of unknowns
\Rightarrow complete problem \Rightarrow unique solution
- case 2: matrix X is tall \& thin $\mathrm{n}>\mathrm{m}$, \# of equations > \# of unknowns
\Rightarrow over-complete problem \Rightarrow no solution
- case 3: matrix A is short \& fat $\mathrm{n}<\mathrm{m}$, \# of equations < \# of unknowns
\Rightarrow under-complete problem \Rightarrow non-unique solution

matrix inverse

- for square matrix A, if $\operatorname{det}(A) \neq 0$, then A^{-1} is defined as the matrix satisfying $A^{-1} A=A A^{-1}=1$
- matrix A is invertible, otherwise, it is singular
- For a 2×2 matrix, inverses can be computed as

$$
\begin{aligned}
& \mathbf{B}=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \begin{array}{l}
\text { If } A D-B C \neq 0, \text { then } B \\
\text { has an inverse, denoted } B^{-1}
\end{array} \\
& \mathbf{B}^{-1}=\frac{1}{A D-B C}\left[\begin{array}{cc}
D & -B \\
-C & A
\end{array}\right]
\end{aligned}
$$

- for rectangular matrix A
- its left Moore-Penrose pseudo inverse $\left(A^{\top} A\right)^{-1} A^{\top}$
- its right Moore-Penrose pseudo inverse $\mathrm{A}^{\top}\left(\mathrm{AA}^{\top}\right)^{-1}$

Matrix trace \& determinant

- trace
- property: $\operatorname{tr}(\mathrm{AB})=\operatorname{tr}\left(\mathrm{BA}^{\top}\right)$
- determinant

- computation involves Levi-Civita tensor

$\operatorname{det} A=\left(a_{1} b_{2} c_{3}+b_{1} c_{2} a_{3}+c_{1} a_{2} b_{3}\right)-\left(a_{3} b_{2} c_{1}+b_{3} c_{2} a_{1}+c_{3} a_{2} b_{1}\right)$
- $\operatorname{det}(a A)=a^{n} \operatorname{det}(A), \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$, $\operatorname{det}\left(\mathrm{A}^{-1}\right)=\operatorname{det}(\mathrm{A})^{-1}$
- A not invertible, then $\operatorname{det}(A)=0$, and vice versa

Solve $A x=b$ using matrix inverse

- for square matrix A, if $\operatorname{det}(A) \neq 0$, then A^{-1} is defined as the matrix satisfying $A^{-1} A=A A^{-1}=1$
- matrix A is invertible, otherwise, it is singular

$$
\begin{aligned}
& 2 x+3 y=6 \\
& 4 x+9 y=15
\end{aligned} \Rightarrow\left[\begin{array}{ll}
2 & 3 \\
4 & 9
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
6 \\
15
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x \\
y
\end{array}\right]=A^{-1}\left[\begin{array}{l}
6 \\
15
\end{array}\right]
$$

- Why is this not a good way to solve linear equation
- Running time is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Numerically unstable

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & \epsilon
\end{array}\right)^{-1}=\left(\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{\epsilon}
\end{array}\right)
$$

- Lose of good structure in A, e.g., sparsity
- On modern computers, for matrix smaller than 1000 dimension, direct inverse is feasible.

Solve $A x=b$ using decomposition

- We can decompose a square matrix $\mathrm{A}=\mathrm{LDU}$, where L and U are a lower triangular and upper matrices with diagonal 1 , and D is a diagonal matrix with pivots
- If A is not invertible, then one of the pivot is zero
- Solving $\mathrm{Ax}=\mathrm{b}$ becomes LDUx $=\mathrm{b}$, then two steps Ly = b (forward elimination), DUx =y (backward elimination)
- This is known as Gaussian elimination
- Solution time is $\mathrm{O}\left(\mathrm{n}^{2}\right)$, and numerically it is very stable (caveat: if the pivots are chosen right)
- It is numerically stable (only divide by pivot)

Projection

- for $\operatorname{col}(X)$ as a 2D subspace of the 3D space
- least squares problem is equivalent to finding the projection of vector \mathbf{y} in $\operatorname{col}(\mathrm{X})$

The transform $\Pi_{X}(\mathbf{y})$ is known as the projection of \mathbf{y} on X. The geometrical interpretation of $\Pi_{X}(\mathbf{y})$ is that it is the vector in $\operatorname{col}(X)$ that has the minimum ℓ_{2} distance to \mathbf{y}.

$$
\Pi_{X}(y)=X\left(X^{T} X\right)^{-1} X^{T} y
$$

- idempotent $\Pi_{x}(\mathbf{x})=\mathrm{x}$, for $\mathrm{x} \in \operatorname{col}(\mathrm{X})$
- orthogonality $\mathbf{y}-\Pi_{x}(\mathbf{y}) \perp X$
- Householder transform mirror reflection $H(\mathbf{y})=2 \Pi_{x}(\mathbf{y})-\mathbf{y}$

Positive definite matrix

- A is a square matrix, for any $x \neq 0$, we form a quadratic form using A and $x, x^{\top} A x$, then if
- $x^{\top} A x>0, A$ is a positive definite matrix
- $x^{\top} A x<0, A$ is a negative definite matrix
- $x^{\top} A x \geq 0, A$ is a positive semi-definite matrix
- $x^{\top} A x \leq 0, A$ is a negative semi-definite matrix
- otherwise, A is indefinite
- Geometrical interpretation
- Symmetric positive (semi)definite matrices play a very important role in machine learning and optimization

Matrix inversion lemma

- Woodsbury identity: when A and D are invertible $\left(A+B D C^{T}\right)^{-1}=A^{-1}-A^{-1} C\left(D^{-1}+C A^{-1} B^{T}\right)^{-1} B^{T} A^{-1}$
- Proof: multiply the matrix on both sides
- important special case
- $\mathrm{B}=\mathrm{C}=\mathrm{z}$, a vector, $\mathrm{D}=\mathrm{I}$

$$
\left(A+z z^{T}\right)^{-1}=A^{-1}-\left(A^{-1} z z^{T} A^{-1}\right) /\left(1+z^{T} A^{-1} z\right)
$$

- $\mathrm{B}=-\mathrm{C}=\mathrm{z}$, a vector, $\mathrm{D}=1$

$$
\left(A-z z^{T}\right)^{-1}=A^{-1}+\left(A^{-1} z z^{T} A^{-1}\right) /\left(1-z^{T} A^{-1} z\right)
$$

- caching A^{-1} and computing the inversion recursively, typical inversion will take $\mathrm{O}\left(\mathrm{n}^{3}\right)$, while this special case it is $\mathrm{O}(\mathrm{n})$

