

CSI 436/536 Introduction to Machine Learning

Review of Linear Algebra (1)

Professor Siwei Lyu Computer Science University at Albany, State University of New York

Importance of linear algebra

- Linear algebra
 - provides superior notations (algebra)
 - many topics can be understood better with vector-matrix-space idea (e.g., Fourier)
 - has a consistent intuition (geometry)
 - what is true for low dimensional space is usually also true for high dimensional space
 - not usually the case in general
 - computes efficiently (numerical algorithms)
 - Almost all numerical computation requires support of linear algebra
 - LAPACK is the backbone of Matlab, NumPy, R

Algebra

• Fourier transform

DFT(FFT):

$X(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-j \left(\frac{2\pi}{N}\right)nk} (k = 0, 1, \dots, N-1)$		$\begin{bmatrix} c_0 \\ c_1 \end{bmatrix}$	$c_{n-1} \ c_0$	$\ldots c_{n-1}$	c_2	$c_1 \ c_2$	
	C =	:	c_1	c_0	۰.	÷	
IDFT(IFFT):		c_{n-2}		۰.	۰.	c_{n-1}	
$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) \cdot e^{j \left(\frac{2\pi}{N}\right)nk} (n = 0, 1, \dots, N-1)$		c_{n-1}	c_{n-2}		c_1	c_0	

- FT provide eigenvectors for circulant matrix (discrete case) or LTI operator (continuous case)
- proof of the fundamental convolution theorem (and its continuous version) becomes very easy

curse of dimensionality

• sphere inscribed in cube

Gaussian distribution in high dimension

Numerical linear algebra

- NLA is behind the majority of numerical procedures for machine learning
 - The majority of ML algorithms are optimization problems [there is a small fraction is about integration instead of optimization]
 - All optimization problems are practically solved as a sequence of quadratic optimization problems
 - All quadratic optimization problems are solved as linear equations or eigenvalues

Overview

- Objects in linear algebra
 - vectors, linear spaces, matrices, linear transforms
- Problems in linear algebra
 - linear equation Ax = b
 - eigenvalue equation $Ax = \lambda x$
- Techniques in linear algebra
 - Matrix factorizations: LU decomposition, eigen decomposition, QR decomposition, etc
- Mostly we will work with
 - Symmetric positive (semi)definite matrices

vectors, space and transforms

- Vectors are list of numbers over a field (real space)
 - Geometrically correspond to points
 - we use column vector by default
 - vector can add/subtract/scale
- Linear space is the set of vectors closed under addition and scalar product
 - Subspace is a subset of a space including zero
 - A space can be **spanned** by a set of vectors for $\alpha_1, \dots, \alpha_k \in \mathcal{R}, \sum_{i=1}^k \alpha_i \mathbf{x}_i$
- A linear transform is a mapping between points in two spaces that keeps linearity

 $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$

linear independence of vectors

- a set of vectors is linear independent if for any \$\vec{u}_i\$ is not in span(\$\vec{u}_1\$, ..., \$\vec{u}_{i-1}\$, \$\vec{u}_{i+1}\$, ..., \$\vec{u}_n\$)
- A set of bases of a space V is a set of independent vectors that also span it
 - Canonical basis is the basis that are orthornormal
- Coordinates are coefficients on basis
- the *max* number of vectors that are linearly independent in a space is its dimension
- Dimension of a space may not be the same as the dimension of an individual vector in it

additional structures of space

- distance between two vectors: **metric**
 - metric space
- length of a vector: **norm**
 - norm space
- angle between two vectors: inner product
 - inner product space (Hilbert space)
- parallelogram by two vectors: exterior product
 - Grassmann space

Vector metrics (distance)

- L2 (Euclidean) metric $\|x y\|_2 = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$
- L1 (Manhattan) metric $||x - y||_1 = \sum_{i=1}^n |x_i - y_i|$
- L ∞ (Chebeshev) metric $\|x - y\|_1 = \max_i |x_i - y_i|$
- Lp metric (p ≥ 1) $||x - y||_p = \left(\sum_{i=1}^n (x_i - y_i)^p\right)^{1/p}$
- All metrics satisfy
 - symmetric: d(x,y) = d(y,x)
 - non-negativity: $d(x,x) \ge 0$
 - triangle inequality: $d(x,y) + d(y,z) \ge d(x,z)$

Norms

- L2 (Euclidean) norm, L1 (Manhattan) norm, L∞ norm, Lp norm (p ≥ 1)
- All norms satisfy
 - non-negativity: $|x| \ge 0$
 - triangle inequality: $|x| + |y| \ge |x+y|$
- Normalization to unit vectors (w.r.t. to a norm)
 - Projections onto unit spheres (w.r.t. to a norm)
- Given a norm, we can define metric (distance) as the norm of the different vector
- due norm: $||x||_{p^*} = \max\{s^T x | ||s||_p \le 1\}$, L2 is self-dual, L1 is dual of L ∞

Vector products

• inner (scalar) product: $(\mathbf{v}, \mathbf{v}) \rightarrow a$ number $\mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i y_i$

 $\mathbf{b} = \|\mathbf{a}\| \cos \theta$

 $\mathbf{x} \odot \mathbf{y} =$

 $X_2 \cdot Y_2$

- geometrically related with angles
- Cauchy-Schwartz inequality $|\langle \overrightarrow{u}, \overrightarrow{v} \rangle| \leq ||\overrightarrow{u}|| ||\overrightarrow{v}||$
- <u,v>=0 iff u and v orthogonal
- rect (Dirac) product: (v,v) → a vector
- exterior (cross/wedge) product: $(\mathbf{v}, \mathbf{v}) \rightarrow a$ vector
- outer (tensor) product: (𝗸,𝑌) → a matrix (actually a tensor)

$$\mathbf{x}\mathbf{y}^{T} = \begin{pmatrix} x_{1} \cdot y_{1} & x_{1} \cdot y_{2} & \cdots & x_{1} \cdot y_{m} \\ x_{2} \cdot y_{1} & x_{2} \cdot y_{2} & \cdots & x_{2} \cdot y_{m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n} \cdot y_{1} & x_{n} \cdot y_{2} & \cdots & x_{n} \cdot y_{m} \end{pmatrix}$$

matrix

- matrix is 2D table of numbers
 - all matrices of the same dim form a vector space
- the transpose of a matrix A, denoted A^T, is the matrix whose (i,j) entry equals the (j,i) entry of A
- Matrix multiplication
- non communicative multiplication, AB \neq BA usually

Matrix multiplication

• as outer product of "inner products"

$$\begin{pmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{pmatrix} \begin{pmatrix} | & | & | \\ b_1 & b_2 & b_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} a_1^T b_1 & a_1^T b_2 & a_1^T b_3 \\ a_2^T b_1 & a_2^T b_2 & a_2^T b_3 \\ a_3^T b_1 & a_3^T b_2 & a_3^T b_3 \end{pmatrix}$$

• as inner product of "outer products"

$$\begin{pmatrix} | & | & | \\ b_1 & b_2 & b_3 \\ | & | & | \end{pmatrix} \begin{pmatrix} - & a_1^T & - \\ - & a_2^T & - \\ - & a_3^T & - \end{pmatrix} = b_1 a_1^T + b_2 a_2^T + b_3 a_3^T$$

Some special matrices

- Square and rectangular matrices
- Diagonal and identity matrices

• Upper and lower triangular matrices $\begin{pmatrix}
1 & 0 \\
2 & 4
\end{pmatrix}$ $\begin{pmatrix}
1 & 2 \\
0 & 4
\end{pmatrix}$

 $\begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- Symmetric matrices $A^T = A$
- skew-symmetric matrices $A^{T} = -A$
- Matrix inverse $A^{-1}A = AA^{-1} = I$
- orthogonal matrices: $A^{T}A = AA^{T} = I$, or $A^{T} = A^{-1}$

Solving linear equations

- The most important problem in LA is solving the linear equation: Ax = b, b is a known vector (dim n), x is unknown vector (dim m)
- A is a matrix (dim n x m): collection of m vectors

$$A = \begin{pmatrix} | & | & \cdots & | \\ a_1 & a_2 & \cdots, & a_m \\ | & | & \cdots & | \end{pmatrix} = \operatorname{col}(a_1 a_2 \cdots, a_m)$$

• Ax represents all vectors in the **column space** of A

$$Ax = x_1a_1 + x_2a_2 + \dots + x_ma_m$$

- Ax = 0 is the **null space** of A, with x = 0 always in it
- Column space determines the existence of the solution, null space determines the uniqueness of the solution

Geometric interpretation

 To solve Ax = b is equivalent to find a representation of b in the column space of A

$$Ax = x_1a_1 + x_2a_2 + \dots + x_ma_m = b$$

- If b is in col(A), solution exists
- If null(A) = {0}, solution is unique

Solve Ax = b

- case 1: matrix A is square and full ranked n = m, # of equations = # of unknowns
 ⇒ complete problem ⇒ unique solution
- case 2: matrix X is tall & thin
 n > m, # of equations > # of unknowns
 ⇒ over-complete problem ⇒ no solution
- case 3: matrix A is short & fat
 n < m, # of equations < # of unknowns
 ⇒ under-complete problem ⇒ non-unique solution

matrix inverse

- for square matrix A, if det(A) ≠ 0, then A⁻¹ is defined as the matrix satisfying A⁻¹A = AA⁻¹ = I
 - matrix A is invertible, otherwise, it is singular
 - For a 2 x 2 matrix, inverses can be computed as

$$\mathbf{B} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \text{ If AD - BC } \neq 0, \text{ then B} \\ \text{has an inverse, denoted B}^{-1}$$
$$\mathbf{B}^{-1} = \frac{1}{AD - BC} \begin{bmatrix} D & -B \\ -C & A \end{bmatrix}$$

- for rectangular matrix A
 - its left Moore-Penrose pseudo inverse (A^TA)⁻¹A^T
 - its right Moore-Penrose pseudo inverse A^T(AA^T)⁻¹

Matrix trace & determinant

- trace
 - property: $tr(AB) = tr(BA^{T})$
- determinant

computation involves Levi-Civita tensor

 $\det A = (a_1 b_2 c_3 + b_1 c_2 a_3 + c_1 a_2 b_3) - (a_3 b_2 c_1 + b_3 c_2 a_1 + c_3 a_2 b_1)$

- $det(aA) = a^n det(A)$, det(AB) = det(A)det(B), $det(A^{-1}) = det(A)^{-1}$
- A not invertible, then det(A) = 0, and vice versa

Solve Ax = b using matrix inverse

- for square matrix A, if det(A) ≠ 0, then A⁻¹ is defined as the matrix satisfying A⁻¹A = AA⁻¹ = I
 - matrix A is invertible, otherwise, it is singular

$$2x + 3y = 6$$

$$4x + 9y = 15 \implies \begin{bmatrix} 2 & 3 \\ 4 & 9 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 \\ 15 \end{bmatrix} \implies \begin{bmatrix} x \\ y \end{bmatrix} = A^{-1} \begin{bmatrix} 6 \\ 15 \end{bmatrix}$$

- Why is this not a good way to solve linear equation
 - Running time is $O(n^3)$ $(1 \ 0)^{-1}$ $(1 \ 0)^{-1}$
 - Numerically unstable
- $\begin{pmatrix} 1 & 0 \\ 0 & \epsilon \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{\epsilon} \end{pmatrix}$
 - Lose of good structure in A, e.g., sparsity
- On modern computers, for matrix smaller than 1000 dimension, direct inverse is feasible.

Solve Ax = b using decomposition

- We can decompose a square matrix A = LDU, where L and U are a lower triangular and upper matrices with diagonal 1, and D is a diagonal matrix with pivots
- If A is not invertible, then one of the pivot is zero
- Solving Ax = b becomes LDUx = b, then two steps Ly = b (forward elimination), DUx = y (backward elimination)
 - This is known as Gaussian elimination
 - Solution time is O(n²), and numerically it is very stable (caveat: if the pivots are chosen right)
 - It is numerically stable (only divide by pivot)

Projection

- for col(X) as a 2D subspace of the 3D space
- least squares problem is equivalent to finding the projection of vector y in col(X)

The transform $\Pi_X(\mathbf{y})$ is known as the *projection* of \mathbf{y} on X. The geometrical interpretation of $\Pi_X(\mathbf{y})$ is that it is the vector in col(X) that has the minimum ℓ_2 distance to \mathbf{y} .

col(X

$$\Pi_X(y) = X(X^T X)^{-1} X^T y$$

- idempotent $\Pi_X(\mathbf{x}) = x$, for $x \in col(X)$
- orthogonality **y** $\Pi_X(\mathbf{y}) \perp X$
- Householder transform mirror reflection H(y) = 2 Π_X(y) - y

Positive definite matrix

- A is a square matrix, for any x ≠ 0, we form a quadratic form using A and x, x^TAx, then if
 - $x^TAx > 0$, A is a positive definite matrix
 - x^TAx < 0, A is a negative definite matrix
 - $x^TAx \ge 0$, A is a positive semi-definite matrix
 - $x^TAx \le 0$, A is a negative semi-definite matrix

 $u^{T}Ku$

u^TBu

 u_1

u2

- otherwise, A is indefinite
- Geometrical interpretation
- Symmetric positive (semi)definite matrices play a very important role in machine learning and optimization

Matrix inversion lemma

- Woodsbury identity: when A and D are invertible $(A + BDC^T)^{-1} = A^{-1} A^{-1}C(D^{-1} + CA^{-1}B^T)^{-1}B^TA^{-1}$
 - Proof: multiply the matrix on both sides
- important special case
 - B=C=z, a vector, D=I $(A + zz^{T})^{-1} = A^{-1} - (A^{-1}zz^{T}A^{-1})/(1 + z^{T}A^{-1}z)$
 - B=-C=z, a vector, D=I $(A - zz^T)^{-1} = A^{-1} + (A^{-1}zz^TA^{-1})/(1 - z^TA^{-1}z)$
 - caching A⁻¹ and computing the inversion recursively, typical inversion will take O(n³), while this special case it is O(n)