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Importance of linear algebra
• Linear algebra 

• provides superior notations (algebra) 
• many topics can be understood better with 

vector-matrix-space idea (e.g., Fourier) 
• has a consistent intuition (geometry) 

• what is true for low dimensional space is 
usually also true for high dimensional space 
• not usually the case in general 

• computes efficiently (numerical algorithms) 
• Almost all numerical computation requires 

support of linear algebra 
• LAPACK is the backbone of Matlab, NumPy, R



• Fourier transform  

• FT provide eigenvectors for circulant matrix 
(discrete case) or LTI operator (continuous case) 

• proof of the fundamental convolution theorem (and 
its continuous version) becomes very easy

Algebra 



curse of dimensionality
• sphere inscribed in cube 

• Gaussian distribution in high dimension 
 



Numerical linear algebra
• NLA is behind the majority of numerical procedures 

for machine learning 
• The majority of ML algorithms are optimization 

problems [there is a small fraction is about 
integration instead of optimization] 

• All optimization problems are practically solved 
as a sequence of quadratic optimization 
problems  

• All quadratic optimization problems are solved as 
linear equations or eigenvalues



Overview
• Objects in linear algebra 

• vectors, linear spaces, matrices, linear transforms 
• Problems in linear algebra 

• linear equation Ax = b 
• eigenvalue equation Ax = ƛx 

• Techniques in linear algebra 
• Matrix factorizations: LU decomposition, eigen 

decomposition, QR decomposition, etc 
• Mostly we will work with 

• Symmetric positive (semi)definite matrices 



vectors, space and transforms
• Vectors are list of numbers over a field (real space) 

• Geometrically correspond to points 
• we use column vector by default 
• vector can add/subtract/scale 

• Linear space is the set of vectors closed under 
addition and scalar product 
• Subspace is a subset of a space including zero 
• A space can be spanned by a set of vectors 

• A linear transform is a mapping between points in 
two spaces that keeps linearity

Vectors

By x 2 Rn, we denote a column vector with n entries.

x =

0
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By convention we assume column vector.
A vector x is a point in an n-dimensional space.
The ith element of a vector x is denoted xi

Vector Operations

vector addition/subtraction: x + y, x � y
scaling: sx for s 2 R
linear combination: for ↵1, · · · ,↵k 2 R,

Pk
i=1 ↵ixi

convex combination: for ↵1, · · · ,↵k 2 R+,
Pk

i=1 ↵i = 1Pk
i=1 ↵ixi

transpose xT = (x1, · · · , xn)



• a set of vectors is linear independent if for any      is 
not in 

• A set of bases of a space V is a set of independent 
vectors that also span it 
• Canonical basis is the basis that are orthornormal 

• Coordinates are coefficients on basis  
• the max number of vectors  that are linearly 

independent in a space is its dimension 
• Dimension of a space 

may not be the same as 
the dimension of an  
individual vector in it

linear independence of vectors
⃗u i

span( ⃗u 1, ⋯, ⃗u i−1, ⃗u i+1, ⋯, ⃗u n)



additional structures of space
• distance between two vectors: metric 

• metric space 
• length of a vector: norm 

• norm space 
• angle between two vectors: inner product 

• inner product space (Hilbert space) 
• parallelogram by two vectors: exterior product

• Grassmann space



Vector metrics (distance)
• L2 (Euclidean) metric 

 

• L1 (Manhattan) metric 

 

• L∞ (Chebeshev) metric  
 

• Lp metric (p ≥ 1) 

  

• All metrics satisfy 
• symmetric: d(x,y) = d(y,x)  
• non-negativity: d(x,x) ≥ 0 
• triangle inequality:  

d(x,y) + d(y,z) ≥ d(x,z)

∥x − y∥2 =
n

∑
i=1

(xi − yi)2

∥x − y∥1 =
n

∑
i=1

|xi − yi |

∥x − y∥1 = max
i

|xi − yi |

∥x − y∥p = (∑n
i=1 (xi − yi)p)

1/p

L2(x,y)

L1(x,y)

L∞(x,y)



Norms
• L2 (Euclidean) norm, L1 (Manhattan) norm, L∞ 

norm, Lp norm (p ≥ 1) 
• All norms satisfy 

• non-negativity: |x| ≥ 0 
• triangle inequality: |x| + |y| ≥ |x+y| 

• Normalization to unit vectors (w.r.t. to a norm) 
• Projections onto unit spheres (w.r.t. to a norm) 

• Given a norm, we can define metric (distance) as 
the norm of the different vector 

• due norm: ||x||p* = max{sTx| ||s||p ≤ 1}, L2 is self-dual, 
L1 is dual of L∞



Vector Products

inner product (scalar product, dot product) xT y =
Pn

i=1 xiyi
– measure “angles” between two vectors.
direct product (Dirac product)

x � y =

0
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cross product – only for three dimensional space
tensor (outer) product – generate a matrix

xyT =

0
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x1 · y1 x1 · y2 · · · x1 · ym
x2 · y1 x2 · y2 · · · x2 · ym
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... . . . ...

xn · y1 xn · y2 · · · xn · ym
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Vector products
• inner (scalar) product: (v,v) →a number 

• geometrically related with angles  
• Cauchy-Schwartz inequality  

                    
• <u,v> = 0 iff u and v orthogonal   

• rect (Dirac) product: (v,v) →a vector 
• exterior (cross/wedge) product: (v,v) →a vector 
• outer (tensor) product: (v,v) →a matrix (actually a 

tensor)
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|⟨ ⃗u , ⃗v ⟩ | ≤ ∥ ⃗u ∥∥ ⃗v ∥



matrix
• matrix is 2D table of numbers 

• all matrices of the same dim form a vector space 
• the transpose of a matrix A, denoted AT , is the 

matrix whose (i,j) entry equals the (j,i) entry of A 
• Matrix multiplication 
• non communicative multiplication, AB ≠ BA usually



Matrix multiplication
• as outer product of “inner products” 

 

• as inner product of “outer products” 

− aT
1 −

− aT
2 −

− aT
3 −

| | |
b1 b2 b3

| | |
=

aT
1 b1 aT

1 b2 aT
1 b3

aT
2 b1 aT

2 b2 aT
2 b3

aT
3 b1 aT

3 b2 aT
3 b3

| | |
b1 b2 b3

| | |

− aT
1 −

− aT
2 −

− aT
3 −

= b1aT
1 + b2aT

2 + b3aT
3



Some special matrices
• Square and rectangular matrices 
• Diagonal and identity matrices 

 

• Upper and lower triangular matrices 
 

• Symmetric matrices AT = A 
• skew-symmetric matrices AT = - A 
• Matrix inverse A-1A = AA-1 = I  
• orthogonal matrices: ATA = AAT = I, or  AT = A-1

(1 0
0 4) (1 0

0 1)
(1 0

2 4) (1 2
0 4)



Solving linear equations
• The most important problem in LA is solving                 

the linear equation: Ax = b, b is a known vector (dim n), 
x is unknown vector (dim m)   

• A is a matrix (dim n x m): collection of m vectors 

• Ax represents all vectors in the column space of A 

• Ax = 0 is the null space of A, with x = 0 always in it 
• Column space determines the existence of the solution, 

null space determines the uniqueness of the solution

A =
| | ⋯ |

a1 a2 ⋯, am

| | ⋯ |
= col(a1a2⋯, am)

Ax = x1a1 + x2a2 + ⋯ + xmam



Geometric interpretation
• To solve Ax = b is equivalent to find a 

representation of b in the column space of A 

• If b is in col(A), solution exists 
• If null(A) = {0}, solution is unique

Ax = x1a1 + x2a2 + ⋯ + xmam = b



Solve Ax = b
• case 1: matrix A is square and full ranked  

n = m, # of equations = # of unknowns 
⇒ complete problem ⇒ unique solution

• case 2: matrix X is tall & thin  
n > m, # of equations > # of unknowns  
⇒ over-complete problem ⇒ no solution

• case 3: matrix A is short & fat 
n < m, # of equations < # of unknowns 
⇒ under-complete problem ⇒ non-unique solution



matrix inverse
• for square matrix A, if det(A) ≠ 0, then A-1 is defined 

as the matrix satisfying A-1A = AA-1 = I 
• matrix A is invertible, otherwise, it is singular  
• For a 2 x 2 matrix, inverses can be computed as 

• for rectangular matrix A 
• its left Moore-Penrose pseudo inverse (ATA)-1AT 
• its right Moore-Penrose pseudo inverse AT(AAT)-1



Matrix trace & determinant 
• trace 

• property: tr(AB) = tr(BAT) 
• determinant 

• computation involves Levi-Civita tensor 

• det(aA) = andet(A), det(AB) = det(A)det(B), 
det(A-1) = det(A)-1 

• A not invertible, then det(A) = 0, and vice versa



Solve Ax = b using matrix inverse
• for square matrix A, if det(A) ≠ 0, then A-1 is defined 

as the matrix satisfying A-1A = AA-1 = I 
• matrix A is invertible, otherwise, it is singular  

• Why is this not a good way to solve linear equation 
• Running time is O(n3) 
• Numerically unstable 
• Lose of good structure in A, e.g., sparsity 

• On modern computers, for matrix smaller than 1000  
dimension, direct inverse is feasible. 

⇒ ⇒

(1 0
0 ϵ)

−1

= (
1 0
0 1

ϵ )



Solve Ax = b using decomposition
• We can decompose a square matrix A = LDU, 

where L and U are a lower triangular and upper 
matrices with diagonal 1, and D is a diagonal 
matrix with pivots 

• If A is not invertible, then one of the pivot is zero 
• Solving Ax = b becomes LDUx = b, then two steps 

Ly = b (forward elimination), DUx = y (backward 
elimination)  
• This is known as Gaussian elimination  
• Solution time is O(n2), and numerically it is very 

stable (caveat: if the pivots are chosen right) 
• It is numerically stable (only divide by pivot)



Projection 
• for col(X) as a 2D subspace of the 3D space
• least squares problem is equivalent to finding the 

projection of vector y in col(X)

• idempotent ΠX(x) = x, for x ∈ col(X)
• orthogonality y - ΠX(y) ⟂ X
• Householder transform  

mirror reflection  
H(y) = 2 ΠX(y) - y

y

col(X)

Xp

Least Squares Regression

case 2: m < n, so rank(X T X ) = m [Why?], or matrix X T X is
invertible.
The implication is X T X is positive definite [Why?], which further
means minp ky � Xpk2

2 has a unique minimum.
The solution is given by X T Xp = X T y ) p = (X T X )�1X T y.
The predicted target is given by ỹ = ⇧X (y) = X (X T X )�1X T y.
The prediction error is given by
y � ỹ = y � X (X T X )�1X T y = (I � X (X T X )�1X T )y.
The transform ⇧X (y) is known as the projection of y on X .
The geometrical interpretation of ⇧X (y) is that it is the vector in
col(X ) that has the minimum `2 distance to y.

ΠX(y) = X(XT X)−1XTy



Positive definite matrix
• A is a square matrix, for any x ≠ 0, we form a 

quadratic form using A and x, xTAx, then if  
• xTAx > 0, A is a positive definite matrix 
• xTAx < 0, A is a negative definite matrix 
• xTAx ≥ 0, A is a positive semi-definite matrix 
• xTAx ≤ 0, A is a negative semi-definite matrix 
• otherwise, A is indefinite 

• Geometrical interpretation 
• Symmetric positive (semi)definite 

matrices play a very important role in machine 
learning and optimization



Matrix inversion lemma
• Woodsbury identity: when A and D are invertible 

• Proof: multiply the matrix on both sides 
• important special case  

• B=C=z, a vector, D=I 

• B=-C=z, a vector, D=I 

• caching A-1 and computing the inversion 
recursively, typical inversion will take O(n3), while 
this special case it is O(n)

(A + zzT)−1 = A−1 − (A−1zzT A−1)/(1 + zT A−1z)

(A − zzT)−1 = A−1 + (A−1zzT A−1)/(1 − zT A−1z)

(A + BDCT)−1 = A−1 − A−1C(D−1 + CA−1BT)−1BT A−1


