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Importance of linear algebra

e Linear algebra
e provides superior notations (algebra)

* many topics can be understood better with
vector-matrix-space idea (e.g., Fourier)

* has a consistent intuition (geometry)

e what is true for low dimensional space is
usually also true for high dimensional space

* not usually the case in general
e computes efficiently (numerical algorithms)

e Almost all numerical computation requires
support of linear algebra

 LAPACK is the backbone of Matlab, NumPy, R



Algebra

e Fourier transform
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* FT provide eigenvectors for circulant matrix
(discrete case) or LTI operator (continuous case)

e proof of the fundamental convolution theorem (and
its continuous version) becomes very easy



curse of dimensionality

* sphere inscribed in cube

)
A

as d — 00,

e Gaussian distribution in high dimension

as d — 00,




Numerical linear algebra

* NLA is behind the majority of numerical procedures
for machine learning

* The majority of ML algorithms are optimization
problems [there is a small fraction is about
integration instead of optimization]

* All optimization problems are practically solved
as a seqguence of guadratic optimization
problems

* All quadratic optimization problems are solved as
inear equations or eigenvalues



Overview

* Objects in linear algebra

e vectors, linear spaces, matrices, linear transforms
* Problems in linear algebra

* |linear equation Ax=Db

* eigenvalue equation Ax = AX
e Techniques in linear algebra

* Matrix factorizations: LU decomposition, eigen
decomposition, QR decomposition, etc

* Mostly we will work with

e Symmetric positive (semi)definite matrices



vectors, space and transforms

e Vectors are list of numbers over a field (real space)

X2
X =

o (Geometrically correspond to points ;
* we use column vector by default

Xn

e vector can add/subtract/scale

e Linear space is the set of vectors closed under
addition and scalar product

e Subspace is a subset of a space including zero
* A space can be spanned by a set of vectors
for aq, -+ ,ax € R, Zf-; X

* Alinear transform is a mapping between points in
two spaces that keeps linearity



inear independence of vectors

* a set of vectors is linear independent if for any 7, is

— —

not in span(u’y, ==+, W;_, Wiy, s W)

o A set of bases of a space V is a set of independent
vectors that also span it

e Canonical basis is the basis that are orthornormal
e Coordinates are coefficients on basis

e the max number of vectors that are linearly
independent in a space is its dimension

 Dimension of a space
P(3,2)

may not be the same as
the dimension of an ;
individual vector in it

v = 3b: + 2b2
[vle = [3, 2]



additional structures of space

e distance between two vectors: metric
e metric space
* length of a vector: norm
* Norm space
e angle between two vectors: inner product
* inner product space (Hilbert space)
* parallelogram by two vectors: exterior product
« (Grassmann space



Vector metrics (distance)

* L2 (Euclidean) metric Loo(X,V)
— _ )
lx = yll, = \/Z (% = ¥,)°
e L1 (I\/Ianhattan ) metric

e =yl = Z X, — ¥l

* Lo (Chebeshev) metric

lx = yll; = max |x; -y,
l

L2(X,Y)

* Lpmetric(p=>1)
" I/p
e =yl = (20, G =) A

y-axis

e All metrics satisfy
e symmetric: d(x,y) = d(y,x) o
e non-negativity: d(x,x) >0

X-axis

* triangle inequality:
d(x,y) + d(y,z) > d(x,z)



Norms

L2 (Euclidean) norm, L1 (Manhattan) norm, Leo 1

norm, Lp norm (p > 1)
All norms satisty V'—

e ——

3

* non-negativity: |x| > 0 L
: : - \h
* triangle inequality: x| + |y| = |x+Y|

X

L

Normalization to unit vectors (w.r.t. to a norm)

e Projections onto unit spheres (w.r.t. to a norm)

Given a norm, we can define metric (distance) as

the norm of the different vector

due norm: ||X|[ox = max{sTx| ||s||p < 1}, L2 is self-dual,

L1 1s dual of Leo



Vector products
* inner (scalar) product: (v,v) =?a number x'y =3I, xy
* geometrically related with angles

* Cauchy-Schwartz inequality
[, V)Y L < eV

e <u,v> = 0iff uand v orthogonal .
* rect (Dirac) product: (v,v) —a vector Xy = (X”z)
Xn - VYn

» exterior (cross/wedge) product: (v,v) —a vector

e outer (tensor) product: (v,v) —a matrix (actually a
tensor)

X1-Y1 X1-Yo - X4 Ym
T X2-y1 Xe-Y2 -0 X2 Vm

XnY1 Xn-Y2 -+ Xn-Ym



matrix

* matrix is 2D table of numbers
 all matrices of the same dim form a vector space

* the transpose of a matrix A, denoted AT | is the
matrix whose (i,]) entry equals the (j,i) entry of A

* Matrix multiplication
* non communicative multiplication, AB = BA usually
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Matrix multiplication

* as outer product of “inner products”

—a =\(| | | aib, a{b, aib,

— a5 —||b by, by|=|ayb; ayb, a;b;

— af =)\ alb, aib, alb,
e as inner product of “outer products”

R Y

by by by||- al —|=bai+ba +bya]

T
BT



Some special matrices

e Square and rectangular matrices
e Diagonal and identity matrices
1 0 1 0
0 4 0 1
* Upper and lower triangular matrices
1 0 1 2
2 4 0 4
e Symmetric matrices AT = A
e skew-symmetric matrices AT = - A

* Matrix inverse A-1A = AAT = |
* orthogonal matrices: ATA = AAT =1, or AT = A



Solving linear equati

The most important problem in

Ons

| A is solving

the linear equation: Ax = b, b is a known vector (dim n),

X IS unknown vector (dim m)

A is a matrix (dim n x m): collection of m vectors

| e |\

A — al az "t am — CO|(a1a2"',am)

I RS

Ax represents all vectors in the column space of A

Ax =xa; +x0, + - +x,0,,

Ax = 0 is the null space of A, with x = O always in it

Column space determines the existence of the solution,
null space determines the unigueness of the solution



Geometric interpretatior

* To solve Ax = b is equivalent to find a
representation of b in the column space of A

A.x — xlal +x2a2 + .- +Xmam — b
e Ifbisin col(A), solution exists

* |f null(A) = {0}, solution is unique




Solve Ax =D

- case 1: matrix A is square and full ranked
n = m, # of equations = # of unknowns
= complete problem = unique solution

- case 2: matrix X is tall & thin
n > m, # of equations > # of unknowns
= over-complete problem = no solution

- case 3: matrix A is short & fat
n <m, # of equations < # of unknowns
= under-complete problem = non-unique solution



mautrix inverse

e for square matrix A, it det(A) = 0, then A1 is defined
as the matrix satistying A-1A = AA1 = |

* matrix A is invertible, otherwise, it is singular

 For a2 x 2 matrix, inverses can be computed as

— If AD - BC # 0, then B
has an inverse, denoted Bt

B’ =15 BC[C A]

e for rectangular matrix A
* its [eft Moore-Penrose pseudo inverse (ATA)1AT

* its right Moore-Penrose pseudo inverse AT(AAT)-



Matrix trace & determinant

e frace ,,r3 8 g
* property: tr(AB) = tr(BAT) g j Z
* determinant =, Bl e

e computation involves Levi-Civita tensor

detA:( + + )-( + + )

e det(aA) = andet(A), det(AB) = det(A)det(B),
det(A1) = det(A)"

* A not invertible, then det(A) = 0, and vice versa



Solve Ax = b using matrix inverse

e for square matrix A, it det(A) = 0, then A1 is defined
as the matrix satistying A- 1A = AA1 = |

* matrix A is invertible, otherwise, it is singular

2x+3y=6 5 3 |
dx+9y=15 4 9

X

= . =A"
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* Why is this not a good way to solve linear equation

Running time is O(n3) 1 o\ 1 0
Numerically unstable <O €> —\o 1

€

|_ose of good structure in A, e.qg., sparsity

 On modern computers, for matrix smaller than 1000
dimension, direct inverse is feasible.



Solve Ax = b using decomposition

We can decompose a square matrix A = LDU,
where L and U are a lower triangular and upper
matrices with diagonal 1, and D is a diagonal
matrix with pivots

It A is not invertible, then one of the pivot is zero

Solving Ax = b becomes LDUXx = b, then two steps
Ly = b (forward elimination), DUx =y (backward
elimination)

e This is known as Gaussian elimination

e Solution time is O(n2), and numerically it is very
stable (caveat: if the pivots are chosen right)

e |tis numerically stable (only divide by pivot)



Projection

- for col(X) as a 2D subspace of the 3D space

- least squares problem is equivalent to finding the
projection of vector y in col(X)

The transform Mx(y) is known as the projection of y on X.
The geometrical interpretation of Mx(y) is that it is the vector in
col(X) that has the minimum /¢, distance to y.

() = XX X)Xy y
- idempotent Mx(x) = x, for x € col(X) col(X)
- orthogonality y - MNx(y) L X Xp

- Householder transform
mirror reflection

H(y) =2 lNx(y) -y




Positive definite matrix

* Ais asquare matrix, for any x = 0, we form a
guadratic form using A and x, xTAx, then if

 xXTAx > 0, A Is a positive definite matrix
« XTAX < 0O, A'is a negative definite matrix
e XTAx >0, A is a positive semi-definite matrix

* XTAx <0, A is a negative semi-definite matrix

. . . .. u'Ku u'Bu
e otherwise, A is indefinite
 Geometrical interpretation

o Symmetric positive (semi)definite
matrices play a very important role in machine
learning and optimization



Matrix inversion lemma
* Woodsbury identity: when A and D are invertible
(A+BDCH ' =A-1—A-lc(D~'+ cCA~'BT)"1BTA!
* Proof: multiply the matrix on both sides
e important special case
« B=C=z, a vector, D=|
A+z2zD)'=A""— @A 2zTA /(1 + 7FA7 1Y)
e B=-C=z, a vector, D=|
A-zzD) P =A"1+ @A 1zzT A7/ - 1A 1y)

* caching A1 and computing the inversion
recursively, typical inversion will take O(n3), while

this special case it is O(n)



