

CSI 436/536 Introduction to Machine Learning

Review of Linear Algebra and Calculus (2)

Professor Siwei Lyu Computer Science University at Albany, State University of New York

Matrices

- 2D tabular of numbers
- rank-2 tensor
- collection of column vectors, and their space

$$X = \begin{pmatrix} | & | & \cdots & | \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \\ | & | & \cdots & | \end{pmatrix}, \operatorname{col}(X) = \operatorname{span}(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n).$$

- collection of row vectors, and their space
- A linear transform

linear transforms and basis

•
$$T(\mathbf{v}) = T(\mathbf{a}_1\mathbf{e}_1 + \dots + \mathbf{a}_n\mathbf{e}_n)$$

= $a_1T(\mathbf{e}_1) + \dots + a_nT(\mathbf{e}_n)$
= $T\mathbf{a}$

- *T***a** is matrix-vector product
 - *T* is a matrix each column corresponding to $T(\mathbf{e}_i)$
 - **a** is a vector containing all the values of a_i
- so any linear transform is equivalent to a matrix and vice versa

linear transforms

- definition: T is a mapping between vector spaces, and satisfy: aT(x) + bT(y)
 = T(ax + by)
- two equivalent effects
 - move all the points (active transform)
 - move the basis (inactive transform)
 - translation T(x) = x+c is not linear (but can be made so)
- basic "linear transforms
 - rotation
 - scaling
 - isometric scaling
 - anisotropic scaling
 - rotation + scaling = shear transform
 - rotation + isometric scaling = conformal transform
 - rotation + translation = rigid transform
 - rotation + scaling + translation = affine transform

eigenvalue and eigenvector

• An eigenvector of a square matrix T (equivalently a linear transform) is a non-zero complex vector v which T sends to a complex multiple (the eigenvalue) of itself: $Tv = \lambda v$

- for an n x n matrized and complex numbers)
 - determinant is a polynomial of n-degree (Caley-Hamilton theorem)

how to solve eigenvalue problem

- solve: $\mathbf{T}\mathbf{v} = \lambda \mathbf{v}$
 - equivalently, we write $(\mathbf{T} \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$
 - so that if (λ,v) are eigenvalue-eigenvector of T, matrix
 (T λI) is singular
 - or we solve $det(\mathbf{T} \lambda \mathbf{I}) = 0$
 - this is known as the characteristic polynomial of matrix T

$$\begin{vmatrix} \mathbf{A} - \lambda \cdot \mathbf{I} \end{vmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = 0$$
$$\begin{vmatrix} -\lambda & 1 \\ -2 & -3 - \lambda \end{vmatrix} = \lambda^2 + 3\lambda + 2 = 0$$

an application of eigenvalues

Fibonacci number is defined as follows:

$$F_1 = 1, F_2 = 1, F_{n+1} = F_n + F_{n-1}, n = 3, \cdot$$

$$\begin{aligned} f_{k+2} &= f_{k+1} + f_k \\ v_k &= \begin{bmatrix} f_{k+1} \\ f_k \end{bmatrix} \\ v_{k+1} &= \begin{bmatrix} f_{k+2} \\ f_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} v_k \\ A &= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \\ |A - \lambda I| &= \begin{bmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{bmatrix} \end{aligned}$$

$$\lambda^2 - \lambda - 1 = 0$$
$$\lambda_1 = \frac{1 + \sqrt{5}}{2}$$
$$\lambda_2 = \frac{1 - \sqrt{5}}{2}$$

$$v_{100} = A^{100}v_0$$

$$A^{100} = S\Lambda^{100}S^{-1}$$

Matrix trace & determinant

- trace = sum of eigenvalues
 - Trace is a linear function of matrix
 - property: $tr(AB) = tr(BA^T)$
- determinant = product of eigenvalues

 $\det \mathsf{A} = (\overset{a_1}{a_2} \overset{b_2}{c_3} + \overset{a_1}{b_1} \overset{c_2}{c_2} \overset{a_3}{a_3} + \overset{a_1}{c_1} \overset{a_2}{a_2} \overset{b_3}{b_3}) - (\overset{a_3}{a_2} \overset{b_2}{c_1} + \overset{b_3}{b_3} \overset{c_2}{c_2} \overset{a_1}{a_1} + \overset{c_3}{c_3} \overset{a_2}{a_2} \overset{b_1}{b_1})$

- $det(aA) = a^ndet(A), det(AB) = det(A)det(B), det(A^{-1}) = det(A)^{-1}, det(e^A) = e^{tr(A)}$
- If A is not invertible, then det(A) = 0, and vice versa

 $\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ a_3 & b_3 \end{bmatrix} \begin{bmatrix} a_2 & b_2 \\ a_3 & b_3 \end{bmatrix}$

spectral theorem

• a real symmetric matrix can be decomposed as

$$A = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} \begin{bmatrix} x_1^T \\ \vdots \\ & & \lambda_n \end{bmatrix} = \lambda_1 x_1 x_1^T + \dots + \lambda_n x_n x_n^T$$

- x₁, x₂,...x_n are eigenvectors that can be chosen as real vectors
- $\lambda_1, \lambda_2, \dots, \lambda_n$ are real eigenvalues
- Real symmetric matrix is diagonalizable with orthonormal matrices as $A = U\Lambda U^T$

Some notes

- not every square matrix can be diagonalized, but every square matrix has a Jordan standard form
 - Example: rank-1 matrix uv^T when $u^Tv = 0$
- All normal matrices $A^*A = AA^*$ can be diagonalized
 - symmetric matrices
 - Hermitian matrices
 - Orthogonal matrices
- Every real rectangular matrix can be diagonalized using the singular value decomposition (SVD) as $A = U\Lambda V^T$, where U and V are orthonormal matrices, Λ is a rectangular diagonal matrix with positive diagonals (the singular values)

positive (semi) definite matrices

- $v^T A v$ is the quadratic form of vector v
 - A is p.d. if for any non-zero v, $v^TAv > 0$
 - A has all positive eigenvalues
 - A is p.s.d. if for any non-zero v, $v^T A v \ge 0$
 - A has all nonnegative eigenvalues

equivalence of PD

- a real symmetric matrix is p.d. iff all eigenvalues are positive
 - \implies : pick any eigenvalue, eigenvector
 - \Leftarrow : use spectral theorem

two important p.s.d. matrices

- for data matrix X (column vectors as data)
 - Gram (inner product) matrix: $G = X^T X$
 - correlation (covariance, outer product) matrix: $C = XX^T$
 - G and C are both positive definite matrices
 - G and C share the same **non-zero** eigenvalues
 - if λ and v are eigenvalue and the corresponding eigenvector of X^TX, we have X^TXv = λ v
 - then we have $XX^TXv = \lambda Xv$, or $XX^Tu = \lambda Xu$, where u = Xv
 - G and C's eigenvectors are related by X
 - They are dual to each other