CSI 436/536

Introduction to Machine Learning

Review of Linear Algebra and Calculus (2)

Professor Siwei Lyu
Computer Science
University at Albany, State University of New York

Matrices

- 2D tabular of numbers
- rank-2 tensor
- collection of column vectors, and their space

$$
x=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n} \\
\mid & \mid & \cdots & 1
\end{array}\right), \operatorname{col}(x)=\operatorname{span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{n}\right) .
$$

- collection of row vectors, and their space
- A linear transform

linear transforms and basis

- $\mathrm{T}(\mathbf{v})=\mathrm{T}\left(\mathrm{a}_{1} \mathbf{e}_{1}+\ldots+\mathrm{a}_{\mathrm{n}} \mathbf{e}_{\mathrm{n}}\right)$

$$
=\mathrm{a}_{1} \mathrm{~T}\left(\mathbf{e}_{1}\right)+\ldots+\mathrm{a}_{\mathrm{n}} \mathrm{~T}\left(\mathbf{e}_{\mathrm{n}}\right)
$$

$$
=T \mathbf{a}
$$

- Ta is matrix-vector product
- T is a matrix each column corresponding to $T\left(\mathbf{e}_{\mathrm{i}}\right)$
- a is a vector containing all the values of a_{i}
- so any linear transform is equivalent to a matrix and vice versa

linear transforms

- definition: T is a mapping between vector spaces, and satisfy: $\mathrm{aT}(\mathrm{x})+\mathrm{bT}(\mathrm{y})$ $=\mathrm{T}(\mathrm{ax}+\mathrm{by})$
- two equivalent effects
- move all the points (active transform)
- move the basis (inactive transform)
- translation $T(x)=x+c$ is not linear (but can be made so)
- basic "linear transforms
- rotation
- scaling
- isometric scaling
- anisotropic scaling
- rotation + scaling $=$ shear transform
- rotation + isometric scaling $=$ conformal transform

- rotation + translation $=$ rigid transform
- rotation + scaling + translation $=$ affine transform

eigenvalue and eigenvector

- An eigenvector of a square matrix \mathbf{T} (equivalently a linear transform) is a non-zero complex vector \mathbf{v} which \mathbf{T} sends to a complex multiple (the eigenvalue) of itself: $\mathbf{T v}=\lambda \mathbf{v}$
- for an nx n matri
 zero and complex numbers)
- determinant is a polynomial of n-degree (Caley-Hamilton theorem)

how to solve eigenvalue problem

- solve: $\mathbf{T v}=\lambda \mathbf{v}$
- equivalently, we write $(\mathbf{T}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0}$
- so that if (λ, \mathbf{v}) are eigenvalue-eigenvector of \mathbf{T}, matrix ($\mathbf{T}-\lambda \mathbf{I}$) is singular
- or we solve $\operatorname{det}(\mathbf{T}-\lambda \mathbf{I})=0$
- this is known as the characteristic polynomial of matrix T

$$
\begin{aligned}
& |\mathbf{A}-\lambda \cdot \mathbf{I}|=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]-\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right]=0 \\
& \left.\left\lvert\, \begin{array}{cc}
-\lambda & 1 \\
-2 & -3-\lambda
\end{array}\right.\right] \mid=\lambda^{2}+3 \lambda+2=0
\end{aligned}
$$

an application of eigenvalues

Fibonacci number is defined as follows:

$$
\begin{aligned}
& F_{1}=1, F_{2}=1, F_{n+1}=F_{n}+F_{n-1}, n=3, \cdots \\
& f_{k+2}=f_{k+1}+f_{k} \\
& v_{k}=\left[\begin{array}{c}
f_{k+1} \\
f_{k}
\end{array}\right] \\
& v_{k+1}=\left[\begin{array}{c}
f_{k+2} \\
f_{k+1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] v_{k} \\
& A=\left[\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right] \\
& |A-\lambda I|=\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right| \\
& \lambda_{1}=\frac{1+\sqrt{5}}{2} \\
& \lambda_{1}=\frac{1-\sqrt{5}}{2} \\
& v_{100}=A^{100} v_{0} \\
& A^{100}=S \Lambda^{100} S^{-1}
\end{aligned}
$$

Matrix trace \& determinant

- trace $=$ sum of eigenvalues
- Trace is a linear function of matrix
- property: $\operatorname{tr}(\mathrm{AB})=\operatorname{tr}\left(\mathrm{BA}^{\mathrm{T}}\right)$

- determinant $=$ product of eigenvalues

$$
\operatorname{det} A=\left(a_{1} b_{2} c_{3}+b_{1} c_{2} a_{3}+c_{1} a_{2} b_{3}\right)-\left(a_{3} b_{2} c_{1} c_{1}+b_{3} c_{2} a_{1}+c_{3} a_{2} b_{1}\right)
$$

- $\operatorname{det}(a A)=a^{n} \operatorname{det}(A), \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B), \operatorname{det}\left(\mathrm{A}^{-1}\right)=$ $\operatorname{det}(\mathrm{A})^{-1}, \operatorname{det}\left(\mathrm{e}^{\mathrm{A}}\right)=\mathrm{e}^{\operatorname{tr}(\mathrm{A})}$
- If A is not invertible, then $\operatorname{det}(A)=0$, and vice versa

spectral theorem

- a real symmetric matrix can be decomposed as
$A=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]\left[\begin{array}{ccc}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right]\left[\begin{array}{c}x_{1}{ }^{T} \\ \vdots \\ x_{n}{ }^{T}\end{array}\right]=\lambda_{1} x_{1} x_{1}{ }^{T}+\cdots+\lambda_{n} x_{n} x_{n}{ }^{T}$
- $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}$ are eigenvectors that can be chosen as real vectors
- $\lambda_{1}, \lambda_{2}, \ldots \lambda_{\mathrm{n}}$ are real eigenvalues
- Real symmetric matrix is diagonalizable with orthonormal matrices as $A=U \Lambda U^{T}$

Some notes

- not every square matrix can be diagonalized, but every square matrix has a Jordan standard form
- Example: rank-1 matrix $u v^{\mathrm{T}}$ when $\mathrm{u}^{\mathrm{T}} \mathrm{V}=0$
- All normal matrices $\mathrm{A}^{*} \mathrm{~A}=\mathrm{AA}^{*}$ can be diagonalized
- symmetric matrices
- Hermitian matrices
- Orthogonal matrices
- Every real rectangular matrix can be diagonalized using the singular value decomposition (SVD) as $A=U \Lambda V^{T}$, where U and V are orthonormal matrices, Λ is a rectangular diagonal matrix with positive diagonals (the singular values)

positive (semi) definite matrices

- $\mathrm{v}^{\mathrm{T}} \mathrm{Av}$ is the quadratic form of vector v
- A is p.d. if for any non-zero $\mathrm{v}, \mathrm{v}^{\mathrm{T}} \mathrm{Av}>0$
- A has all positive eigenvalues
- A is p.s.d. if for any non-zero $\mathrm{v}, v^{T} A v \geq 0$
- A has all nonnegative eigenvalues

equivalence of PD

- a real symmetric matrix is p.d. iff all eigenvalues are positive
- \Longrightarrow : pick any eigenvalue, eigenvector
- \Longleftarrow : use spectral theorem

two important p.s.d. matrices

- for data matrix X (column vectors as data)
- Gram (inner product) matrix: $\mathrm{G}=\mathrm{X}^{\mathrm{T}} \mathrm{X}$
- correlation (covariance, outer product) matrix: $\mathrm{C}=\mathrm{XX}^{\mathrm{T}}$
- G and C are both positive definite matrices
- G and C share the same non-zero eigenvalues
- if λ and v are eigenvalue and the corresponding eigenvector of $X^{\mathrm{T}} \mathrm{X}$, we have $\mathrm{X}^{\mathrm{T}} \mathrm{Xv}=\lambda \mathrm{v}$
- then we have $X X X^{T} X v=\lambda X v$, or $X X^{\top} u=\lambda X u$, where

$$
u=X v
$$

- G and C's eigenvectors are related by X
- They are dual to each other

