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Matrices 
• 2D tabular of numbers 
• rank-2 tensor 
• collection of column vectors, and their space 

• collection of row vectors, and their space 
• A linear transform

Matrices

We denote the jth column of X by xj :
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A , col(X ) = span(x1, x2, · · · , xn).

We denote the ith row of X by x̃T
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A , row(X ) = span(x̃T
1 , · · · , x̃T

m).



linear transforms and basis
• T(v) = T(a1e1 + … +anen )  

        = a1T(e1) + … +anT(en ) 
        = Ta 

• Ta is matrix-vector product 
• T is a matrix each column corresponding to T(ei)  
• a is a vector containing all the values of ai 

• so any linear transform is equivalent to a matrix and vice 
versa



linear transforms
• definition: T is a mapping between vector spaces, and satisfy: aT(x) + bT(y) 

= T(ax + by) 
• two equivalent effects 

• move all the points (active transform) 
• move the basis (inactive transform) 
• translation T(x) = x+c is not linear (but can be made so) 

• basic “linear transforms 
• rotation 
• scaling 

• isometric scaling 
• anisotropic scaling 

• rotation + scaling = shear transform 
• rotation + isometric scaling = conformal transform 
• rotation + translation = rigid transform 
• rotation + scaling + translation = affine transform



eigenvalue and eigenvector
• An eigenvector of a square matrix T (equivalently a linear 

transform) is a non-zero complex vector v which T sends to 
a complex multiple (the eigenvalue) of itself: Tv = λv 

• for an n x n matrix there are exactly n eigenvalues (counting 
zero and complex numbers) 
• determinant is a polynomial of n-degree (Caley-Hamilton 

theorem) 



how to solve eigenvalue problem
• solve: Tv = λv 

• equivalently, we write (T - λI)v = 0  
• so that if (λ,v) are eigenvalue-eigenvector of T, matrix 

(T - λI) is singular 
• or we solve det(T - λI) = 0 

• this is known as the characteristic polynomial of 
matrix T



an application of eigenvalues

Compute eigenvalue/eigenvector

Solve equation det(A � �I) = 0
(known as characteristic polynomial of matrix A).
Fibonacci number is defined as follows:

F1 = 1,F2 = 1,Fn+1 = Fn + Fn�1, n = 3, · · ·

How to compute Fn?



Matrix trace & determinant 
• trace = sum of eigenvalues 

• Trace is a linear function of matrix 
• property: tr(AB) = tr(BAT) 

• determinant = product of eigenvalues 

• det(aA) = andet(A), det(AB) = det(A)det(B), det(A-1) = 
det(A)-1, det(eA) = etr(A) 

• If A is not invertible, then det(A) = 0, and vice versa



spectral theorem 
• a real symmetric matrix can be decomposed as 

• x1, x2,…xn are eigenvectors that can be chosen as 
real vectors 

• λ1, λ2,…λn are real eigenvalues 
• Real symmetric matrix is diagonalizable with 

orthonormal matrices as A = UΛUT



Some notes 
• not every square matrix can be diagonalized, but every 

square matrix has a Jordan standard form 
• Example: rank-1 matrix uvT when uTv = 0 

• All normal matrices A*A = AA* can be diagonalized 
• symmetric matrices 
• Hermitian matrices 
• Orthogonal matrices 

• Every real rectangular matrix can be diagonalized using 
the singular value decomposition (SVD) as , 
where U and V are orthonormal matrices,  is a 
rectangular diagonal matrix with positive diagonals (the 
singular values)

A = UΛVT

Λ



positive (semi) definite matrices
• vTAv is the quadratic form of vector v 

• A is p.d. if for any non-zero v, vTAv > 0 
• A has all positive eigenvalues 

• A is p.s.d. if for any non-zero v,  
• A has all nonnegative eigenvalues

vT Av ≥ 0



equivalence of PD
• a real symmetric matrix is p.d. iff all eigenvalues are 

positive 

• ⟹: pick any eigenvalue, eigenvector 

• ⟸: use spectral theorem



two important p.s.d. matrices
• for data matrix X (column vectors as data) 

• Gram (inner product) matrix: G = XTX 
• correlation (covariance, outer product) matrix: C = XXT 

• G and C are both positive definite matrices 
• G and C share the same non-zero eigenvalues 

• if λ and v are eigenvalue and the corresponding 
eigenvector of XTX, we have XTXv = λv 

• then we have XXTXv = λXv, or XXTu= λXu, 
where  
u = Xv 

• G and C’s eigenvectors are related by X 
• They are dual to each other


