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Dimension reduction for classification

- In classification problems, we usually do not map raw

data x to class labels y, instead, we use transforms of the
raw data @(x) : B¢ — R to build classifiers, this is
called (classification) features

- Features are very important for effective classification
systems and there are two types of get features

- Lean features (m < d): reduce the dimensionality of
raw data to smaller number of features

- Reduce the dimension of input data, keeping
important information for classification

- Rich features (m > d): increase the dimensionality of
input data

- Data are more likely to separate 1n higher dim space



Is PCA always useful for classification?

PCA removes the
irrelevant dimension
that does not affect
classification

Feature 2

Feature 1

PCA removes “good”
dimension that 1s important
for classification



Dimension reduction for classification

PCA 1s designed for signal representation but there 1s no
class difference in the definition of PCA

PCA feature may not be relevant for classification: those
discarded PCs may contain important information for
classification, even though they have little overall
information contributed to represent all the data

- We itroduce a new method: linear discriminant analysis
(LDA), also known as Fisher linear discriminant analysis

- find low dimensional features for class specific dataset

- dimensionality 1s determined by the number of classes

- LDA 1s solved as a generalized eigenvalue problem]|




LDA for binary classification

- we assume data are in two classes with class labels as
{-1,+1} and use data matrices X = [X, X_], and

N=N,+N_

- LDA finds a projection direction v : v!v = 1, such that
the projection of data of two classes, v X . and vIX_,

- The distance between the means of the two classes
(between class scattering) projections 1s large

- The spread of each class x] )
(within class scattering)
is small ASH

better projection direction than the
blue vector

* eg., the red vector in the figure is a /




Notations

+

_mean of positive data u, = Z = X 1,
1 ;’f
mean of negative data y_ = — Z = —X 1,
n :
1 n n
mean of all data y = — le- = —+,u+ +—u_
n n n

l

e covariance matrix of positive data

1 1 T .
S, =— Z -t —p ) =— Z xFxt’ — p,picovariance
n+ i n+ i
matrix of negative data

S_ —Z(x — UG )" = —Zxx —upl

Covarlance of all data

1 1
S=— X; — X — T:— x.x.T— r
nzi:(l (X — p) nz” pip

I



LDA for binary classification

* Between class scattering: squared difference of means on the
projection V(VT(M+ _ /4—))2 — VT(:“+ _ /’t—)(ﬂ+ — ﬂ—)TV

» Within class scattering: variance of the projection of each

class; — Z [VT()C:r u +)]2 + — Z [VT(xl_ — M—)]2
n+ =1 n_ i=1

This axis yields better class separability —» {, e o R e

._..><

This axis has a larger distance between means



Scattering matrices

. Within class scattering matrix

n_
Sw=75 +—S = Z ——ﬂ+ﬂ+——ﬂ u!

 within class scattering of projected data vTSWv

. between class scattering matrix:
n i . . .
S, = +° (pyp — p)(py — u_ )it is a rank one matrix]
n?

« Between class scattering of projected data vTSbv

» We want to find v that maximize v’S,v but minimize v’ S, v
while respect the constraint v : viv =1

» Multi-objective optimization problem



LDA objective

Fisher’s solution: use the Rayleigh’s quotient

) vIS LV
max J(v) =
V vIS, v

- Not using its inverse because between class scattering
matrix has rank 1, so v!'S,v can be zero

- It becomes an unconstrained optimization problem
since any scaling factor in v cancels out

, vTSbv VvaSbv vTSbv .
. Solution V, — =— — 5 Y,V O,V
viS, v viS, v viS,,v)
2 2vTSbv 2 vTSbv
= A WV = Vv — S,V ) =S8v—-JW)S,v
vIS, v (VTS v)? vIS, v vIS, v



maximizing Rayleigh’s quotient
- S,y = J(v)S,,v: solution given by equation ASwv = Spv,
known as the generalized eigenvalue problem
- A is the generalized eigenvalue for pair (Sw,Sp)
- v 1s the corresponding generalized eigenvector
- A 1s the optimal value for J(v)

» solve ASwv = Spv: when Sy 1s Invertible, v 1s eigenvector
of the top eigenvalue for matrix Syw!Sp, with A being the
corresponding eigenvalue

» There 1s only one non-zero generalized eigenvalue 1n
this case, because Sp 1S a rank one matrix



numerical example

- compute LDA projection for

2D data set
- X+=1{(4,1),2,4),(2,3),(3,6),(4,4)}
- X-=1{(9,10),(6,8),(9,5),(8,7),(10,8)} 10
- class statistics X
+ means
- ut=(3.00, 3.60), u- =(8.40, 7.60) :
- covariances & 4 o
-« S+=(4.00 -2.00), S-=(9.20 -0.20), -
(-2.00 13.00), =(-0.2013.20) >
- within and between class scattering matrices 0! -

. Sb=(29.16 21.60), Sw = (13.20 -2.20)
(21.60 16.00),  ( -2.20 26.40)

- solving LDA (generalized eigenvalue problem)

11.89-A 8.81
5.08 3.76-A

[VJ (0.911

SiSev=Av=>[S{S; ~A[=0=> ‘ l =0=>A=15.65

‘11.89 8'81['[\/1]1:15.65(\/’]1:
508 3.76 Vv, v,

vzl_] - _0.395

10



choice of optimal threshold in LDA

LDA only provides a 1D projection direction for the two
classes of data, classifier 1s found as a threshold: pick a
threshold on the projection line classification based on
which side a datum 1s on

- the cross-over point to the CDFs of the two classes




Fisher faces

- Peter N. Belhumeur, Joao P. Hespanha, and David J.

Kriegman, Eigenfaces vs. Fisherfaces: Recognition
Using Class Specific Linear Projection, IEEE TPAMI

(1997)

- use LDA to obtain faces with glasses and without glasses




limitations of LDA

- LDA produces at most C-1 feature projections: 1f the classification
error estimates establish that more features are needed, other
method must be employed to provide those additional features

- 1mplicit structure of data distributions

- fail when the discriminatory information is not in the mean but
rather 1n the variance of the data

- LDA does not construct a classifier directly, instead, it finds a
projection where classification is easier

a method directly minimizes classification errors may work
better when data are not linearly separable

SN




Generalization to multi-class

- We need to extend the problem formulation to multi-class
classification problem (class number = K >2)

» Two important relation

o Sy = (uy — Wy — )" + (u_ — ) — )", when we
have multiple classes of data, we can extend this to

K
Sy =2 (= mp;= )"
j=1

- § =35, + 3, total data scattering 1s the sum of within-
class scattering and between class scattering

+  We can solve the same problem, and the solution 1s given by
Sy =A5,,v =AS = S))v = Sy = P 1Sv = S,y = A9y,

solution given by generalized eigenvalue problem




Proof

- Need to show that
n n n.n

+ _ —_
—ppi +—ppl = ———(uy = p )y —p )" = pp’
n n n

- Reformulate the between class scattering matrix

pyp—pH=py ——p,——p_=—y —p)
n n n
n, n_ n,
po—p=p_——p, ——p_=—p_—pu)
n n n

2
(uy — W)y — )’ = %(/u —u )y — )"
2
(u_— - — ' = %(/u — )y — )"
2

1
—(py = Wy — )" =y — )y — )"
n, n’n,
2
=

1 T
—(p_—u)(pu_—pu) = >
n_ n<mn_

n r, T T
n—(ﬂ+ — Wy — )" + n—(ﬂ_ — - — ) =y —pu )y —pu) =S,
+ —_

(py — p )y — )’



multi-class LDA

- In multi-class case, the between-class scattering matrix
K
S, = Z (; — ) (p; — 1) has rank K-1
j=1

- The K vectors are linearly dependent with rank K-1
K

Y - =0
n

j=1




Relation with LLSE
» Solution given by A5, v = §,v, as S, = S — §,, we can
have equivalently ASv = (4 + 1)S,v

- Bringing back the definition of Sy, we have
n,n
A8V = ——=(4+ D(py — p )y = u)"v

12
. Clearing up all constants, we have v o S~ (u L= M),

this 1s exactly the same solution we get from the LLSE
solution to binary classification

 The 1inverse covariance matrix modulated difference of
class mean 1s the optimal direction for 1D linear
classification from two different point of views



Comparison with PCA (TLSE)

- If we re-formulate LDA objective function

v,y vI(§—S,)v v! Sy
max = max = max — 1, s0
v vIS v y vIS v v VIS v

, o pISy
equivalently we can solve rewrite 1t as max
v vIS v

- We can also reformulate PCA (Total LSE)
T

. Original formulation: max v/ Sv st viv =1, itis

v

, vISy
equivalent to max
v o vly

- Compare the two formulations, we see that PCA

denominator has no class specific information, while
LDA does



