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Dimension reduction for classification 
• In classification problems, we usually do not map raw 

data x to class labels y, instead, we use transforms of the 
raw data  to build classifiers, this is 
called (classification) features 

• Features are very important for effective classification 
systems and there are two types of get features 
• Lean features ( ): reduce the dimensionality of 

raw data to smaller number of features  
• Reduce the dimension of input data, keeping 

important information for classification  
• Rich features ( ): increase the dimensionality of 

input data  
• Data are more likely to separate in higher dim space

ϕ(x) : ℛd ↦ ℛm

m ≪ d

m ≫ d



Is PCA always useful for classification?

PCA removes the 
irrelevant dimension 
that does not affect 
classification

PCA removes “good” 
dimension that is important 
for classification



Dimension reduction for classification 
• PCA is designed for signal representation but there is no 

class difference in the definition of PCA 
• PCA feature may not be relevant for classification: those 

discarded PCs may contain important information for 
classification, even though they have little overall 
information contributed to represent all the data 

• We introduce a new method: linear discriminant analysis 
(LDA), also known as Fisher linear discriminant analysis  
• find low dimensional features for class specific dataset 
• dimensionality is determined by the number of classes 
• LDA is solved as a generalized eigenvalue problem



LDA for binary classification
• we assume data are in two classes with class labels as 

{-1,+1} and use data matrices , and 
 

• LDA finds a projection direction , such that 
the projection of data of two classes,  and , 
• The distance between the means of the two classes 

(between class scattering) projections is large 
• The spread of each class  

(within class scattering)  
is small 

• eg., the red vector in the figure is a  
better projection direction than the 
blue vector

X = [X+ X−]
N = N+ + N−

v : vTv = 1
vT X+ vT X−



Notations

• mean of positive data      

mean of negative data  ,  

mean of all data  

• covariance matrix of positive data

covariance 

matrix of negative data 

 

Covariance of all data  
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LDA for binary classification
• Between class scattering: squared difference of means on the 

projection v  

• Within class scattering: variance of the projection of each 

class:   

• Why we need to consider both types of scatterings

(vT(μ+ − μ−))2 = vT(μ+ − μ−)(μ+ − μ−)Tv
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Scattering matrices
• within class scattering matrix: 

  

• within class scattering of projected data  

• between class scattering matrix: 
[it is a rank one matrix] 

• Between class scattering of projected data  

• We want to find v that maximize  but minimize  
while respect the constraint   

• Multi-objective optimization problem
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LDA objective
• Fisher’s solution: use the Rayleigh’s quotient 

 

• Not using its inverse because between class scattering 
matrix has rank 1, so  can be zero 

• It becomes an unconstrained optimization problem 
since any scaling factor in v cancels out 

• Solution
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maximizing Rayleigh’s quotient
• : solution given by equation λSwv = Sbv, 

known as the generalized eigenvalue problem 
• λ is the generalized eigenvalue for pair (Sw,Sb) 
• v is the corresponding generalized eigenvector 

• λ is the optimal value for J(v) 
• solve λSwv = Sbv: when Sw is invertible, v is eigenvector 

of the top eigenvalue for matrix Sw-1Sb, with λ being the 
corresponding eigenvalue 
• There is only one non-zero generalized eigenvalue in 

this case, because Sb is a rank one matrix

Sbv = J(v)Swv



numerical example
• compute LDA projection for  

2D data set 
• X+ = {(4,1),(2,4),(2,3),(3,6),(4,4)} 
• X- = {(9,10),(6,8),(9,5),(8,7),(10,8)} 

• class statistics 
• means 

• µ+ = (3.00, 3.60), µ- = (8.40, 7.60) 
• covariances 

• S+ = ( 4.00   -2.00), S- = (9.20   -0.20), 
        (-2.00  13.00),     = (-0.20 13.20) 

• within and between class scattering matrices 
• Sb = (29.16 21.60), Sw = (13.20  -2.20) 

        (21.60 16.00),         ( -2.20 26.40) 
• solving LDA (generalized eigenvalue problem) 

 
 
 



choice of optimal threshold in LDA
• LDA only provides a 1D projection direction for the two 

classes of data, classifier is found as a threshold: pick a 
threshold on the projection line classification based on 
which side a datum is on 

• the cross-over point to the CDFs of the two classes 



Fisher faces
• Peter N. Belhumeur, Joao P. Hespanha, and David J. 

Kriegman, Eigenfaces vs. Fisherfaces: Recognition 
Using Class Specific Linear Projection, IEEE TPAMI 
(1997) 

• use LDA to obtain faces with glasses and without glasses 



limitations of LDA
• LDA produces at most C-1 feature projections: if the classification 

error estimates establish that more features are needed, other 
method must be employed to provide those additional features 

• implicit structure of data distributions 
• fail when the discriminatory information is not in the mean but 

rather in the variance of the data 
• LDA does not construct a classifier directly, instead, it finds a 

projection where classification is easier 
• a method directly minimizes classification errors may work 

better when data are not linearly separable 
 
 
 
 
 



Generalization to multi-class 
• We need to extend the problem formulation to multi-class 

classification problem (class number = K >2) 
• Two important relation  

• , when we 
have multiple classes of data, we can extend this to

  

• : total data scattering is the sum of within-
class scattering and between class scattering 

• We can solve the same problem, and the solution is given by 

, 

solution given by generalized eigenvalue problem
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Proof 
• Need to show that 

 

• Reformulate the between class scattering matrix 
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Mapping from d-dimensional space to c-dimensional space 

d=3, c=3

multi-class LDA
• In multi-class case, the between-class scattering matrix 

 has rank K-1 

• The K vectors are linearly dependent with rank K-1 
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Relation with LLSE
• Solution given by , as , we can 

have equivalently  
• Bringing back the definition of Sb, we have

 

• Clearing up all constants, we have  , 
this is exactly the same solution we get from the LLSE 
solution to binary classification  
• The inverse covariance matrix modulated difference of 

class mean is the optimal direction for 1D linear 
classification from two different point of views

λSwv = Sbv Sw = S − Sb
λSv = (λ + 1)Sbv
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Comparison with PCA (TLSE)
• If we re-formulate LDA objective function 

, so 

equivalently we can solve rewrite it as  

• We can also reformulate PCA (Total LSE) 

• Original formulation: , it is 

equivalent to  

• Compare the two formulations, we see that PCA 
denominator has no class specific information, while 
LDA does
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