

CSI 436/536

Introduction to Machine Learning

Regression and LLSE

Professor Siwei Lyu
Computer Science

University at Albany, State University of New York

Regression problem

- Use input to estimate a target variable that takes continuous values
- It is an example of **supervised machine learning** problem: in training, the target variables together with the inputs are given
 - In testing, we only have input and need to estimate the target

Regression problem

- robotic control/automatic driving
 - input: internal parameters of robotic arm (force at angle)
 - output: end effector location
 - treat input-output as going through a black box transform
 - use training data to figure out best control function

Regression problem

- High-frequency stock trading (algorithmic trading)
 - input: historic stock prices & trading records
 - output: new trading action
 - treat input-output as going through a black box transform
 - use training data to figure out best control function

Notations

- Data matrix can include processed data, i.e., g is a function on raw x

$$X = \begin{pmatrix} | & | & & | \\ g(x_1) & g(x_2) & \cdots & g(x_N) \\ | & | & & | \end{pmatrix}$$

- Mean and centering
 - introduce N -dim all one vectors 1_N , the (arithmetic) mean of data is computed as $m = \frac{1}{N} X 1_N$
 - The (column) centering operation is expressed as
$$\tilde{X} = X - m 1_N^T = X - \frac{1}{N} X 1_N 1_N^T = X \left(I - \frac{1}{N} 1_N 1_N^T \right)$$
the final matrix is the column centering operation
- **Correlation** and **covariance** matrices are defined as XX^T and $\tilde{X}\tilde{X}^T$, respectively

Kernel matrix

- Definition: $G = X^T X \succeq 0$, $G_{ij} = x_i^T x_j$,
element is the pairwise inner product of two points
 - This matrix is known as the inner product matrix, the Gram matrix, or the *kernel* matrix
 - It is in a sense the *dual* of the correlation matrix XX^T , when X is full ranked, then at least one of them is invertible
 - Kernel matrix plays a central role in the subsequent nonlinear extension of linear machine learning algorithms

General regression

- Training
 - Training data matrix
data points are column vectors
 - Training targets, assuming scalar
 - parametric function $f_w(\cdot) : R^d \mapsto R$
 - **loss function** $L(y - f_w(x)) \geq 0$
 - Numerical procedure to find optimal w to minimize the learning objective $\sum_{i=1}^n L(y_i - f_w(x_i))$
- In testing, for input x and generate prediction $f_w(x)$
 - **metric function** $m(y - f_w(x)) \geq 0$ on a validation dataset, may be different from the loss

$$X = \begin{pmatrix} | & | & & | \\ x_1 & x_2 & \cdots & x_N \\ | & | & & | \end{pmatrix}$$

$$y = (y_1, y_2, \dots, y_N)^T$$

Linear least squares regression

- Training
 - Training data matrix
data points are column vectors
 - Training targets, assuming scalar
 - **Linear** function $f_w(x) = w^T \phi(x)$
 - **Least squares loss function**
$$L(y, f_w(x)) = \|y - f_w(x)\|^2$$
 - Optimal solution to the learning objective
$$\sum_{i=1}^n L(y_i - f_w(x_i))$$
 satisfies the normal equation
- Testing
 - Metric function is also the least squares loss

$$X = \begin{pmatrix} | & | & \cdots & | \\ x_1 & x_2 & \cdots & x_N \\ | & | & \cdots & | \end{pmatrix}$$
$$y = (y_1, y_2, \dots, y_N)^T$$

LLSE: the Swiss army knife in ML

- Learning tasks
 - Supervised learning
 - Regression: basic LLSE and weighted LLSE
 - Classification: discriminative LLSE
 - Unsupervised learning
 - Clustering: multi-modal LLSE
 - Dimension reduction: total LLSE
- Learning paradigms
 - Batch learning: all other LLSE methods
 - Online learning: recursive LLSE
 - Dynamic programming: segmented LLSE
- Control of overfitting
 - Model selection: model selection LLSE
 - cross-validation: LOO LLSE
 - Regularization: ridge LLSE & LASSO

LLSE — linear function

- finding linear relation between input/output

$$f(x) = ax + b$$

- solving an optimization problem

$$\min_{w=(a,b)^T} \sum_{i=1}^N (y_i - ax_i - b)^2$$

LLSE — quadratic function

- finding quadratic relation between input/output

$$f(x) = ax^2 + bx + c$$

- solving an optimization problem

$$\min_{w=(a,b,c)^T} \sum_{i=1}^N (y_i - ax_i^2 - bx_i^2 - c)^2$$

LLSE — polynomial function

- find d-degree polynomial

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_dx^d$$

as

$$\min_{w=(a_0, \dots, a_d)^T} \sum_{i=1}^N (y_i - f(x_i))^2$$

LLSE — arbitrary basis functions

- find linear combinations of basis functions

$$f(x) = a_0 + a_1 g_1(x) + a_2 g_2(x) + \cdots + a_d g_d(x)$$

to $\min_{w=(a_0, \dots, a_d)^T} \sum_{i=1}^N (y_i - f(x_i))^2$

- monomials: $g_i(x) = x^i$ (polynomial fitting)
- Chebychev (orthogonal) polynomials

- Hermite polynomials: $g_i(x) = e^{x^2} \frac{d^i e^{-x^2}}{dx^i}$

- complex exponentials (Fourier transform):
 $g_i(x) = e^{-i\omega x}$

- radial basis functions (RBFs): $g_i(x) = e^{-a_i(x-b_i)^2}$

LLSE — general case

- Define the general problem as fitting $\sum_{i=1}^m a_i g_i(x_j)$ to target y by minimizing $\sum_{j=1}^n (y_j - \sum_{i=1}^m a_i g_i(x_j))^2$
- Rewrite using linear algebra notations

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_N \end{pmatrix}, w = \begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_m \end{pmatrix}, \text{ objective is } \min_w \|y - X^T w\|^2 \text{ data}$$
$$\text{matrix } X = \begin{pmatrix} g_1(x_1) & g_1(x_2) & \dots & g_1(x_N) \\ g_2(x_1) & g_2(x_2) & \dots & g_2(x_N) \\ \vdots & \vdots & \ddots & \vdots \\ g_m(x_1) & g_m(x_2) & \dots & g_m(x_N) \end{pmatrix}$$

Solving LLSE

- Expand the terms

$$\|y - X^T w\|^2 = y^T y - 2y^T X^T w + w^T X X^T w$$

- Taking derivative on both sides w.r.t. w

$$\nabla_w \|y - X^T w\|^2 = 2(X X^T w - X y) = 0$$

- The solution is given by $X X^T w = X y$, which is known as the **normal equation**

- Check Hessian matrix $\nabla \nabla_w^T \|y - X^T w\|^2 = 2 X X^T \succeq 0$ (why?)

so the solution is a minimum

- We will assume the data matrix is full ranked (no linearly dependent rows or columns)

Weighted LLSE

- Introducing a weight matrix W , usually diagonal with $W_{ii} \geq 0$, and to solve

$$\min_w (y - X^T w)^T W (y - X^T w)$$

- This is known as weighted LLSE
 - When $W = I$, WLLSE reduces to LLSE

$$(y - X^T w)^T W (y - X^T w) = \sum_{i=1}^n W_{ii} \left(y_i - \sum_{j=1}^m a_j g_j(x_i) \right)^2$$

- Solution

$$\nabla_w (y - X^T w)^T W (y - X^T w) = 2(XW X^T w - XW y) = 0$$

so $XW X^T w = XW y \Rightarrow w = (XW X^T)^{-1} XW y$

Weighted LLSE

- How to determine the weight
 - Larger weight => error has to be small
 - Smaller weight => more relaxed error
- Relation with the variance of the error
 - $W_{ii} = \frac{1}{\sigma_i^2}$, where σ_i^2 is the variance of the error in the corresponding component
 - Larger variance => less reliable estimation => smaller weight => more relaxed error
 - smaller variance => more reliable estimation => larger weight => error has to be small

Solving normal equation

- case 1: complete problem
 $N = m$, i.e., # of data = # of parameters
 \Rightarrow matrix X is square
 \Rightarrow correlation matrix XX^T , X and X^T are all invertible
- case 2: over-complete problem
 $N > m$, i.e., # of data > # of parameters
 \Rightarrow matrix X is short & fat
 \Rightarrow correlation matrix XX^T is $N \times N$ and invertible
- case 3: under-complete problem
 $N < m$, i.e., # of data < # of parameters
 \Rightarrow matrix X is tall & thin
 \Rightarrow correlation matrix XX^T is $m \times m$ and **not** invertible,
but the Gram matrix $X^T X$ is invertible

Complete case

- We can solve directly by matrix inversion

$$XX^T w = Xy \Rightarrow X^T w = y \Rightarrow w = X^{-T} y$$

- Prediction error is zero: $y - X^T w = y - X^T X^{-T} y = 0$
 - Direct matrix inversion is usually not a good option
 - Solving $Xp = y$ becomes $LDU p = y$, then two steps $Lx = y$ (forward elimination), $DUp = x$ (backward elimination)
 - This is known as Gaussian elimination
 - Solution time is $O(n^2)$, and numerically it is very stable (caveat: if the pivots are chosen right)
 - It is numerically stable (only divide by pivot)

over-complete problem

- Correlation matrix XX^T is invertible and positive definite so LLSE objective function has unique global optimal solution, as $XX^T w = Xy \Rightarrow w = (XX^T)^{-1}Xy$
 - interpretation: projection of y in row space of X
 - Prediction is $X^T w = X^T(XX^T)^{-1}Xy$
 - Prediction error is
$$y - X^T w = y - X^T(XX^T)^{-1}Xy = (I_N - X^T(XX^T)^{-1}X)y$$
- $(XX^T)^{-1}X$ is known as the **left Penrose-Moore** pseudo inverse of general matrix X^T , as $(XX^T)^{-1}XX^T = I_N$

under-complete problem

- X is not invertible, $X^T X$ is invertible and p.d.
- Define the right Penrose-Moore pseudo inverse of general matrix X , $X^T (X X^T)^{-1}$, then $w = X^T (X X^T)^{-1} y$ is a solution to the normal equation
- solution is not unique
 - for any vector in the null space of X , $Xh = 0$, $p+h$ is also a solution
 - p is a solution, we have $X(p+h) = Xp = y$
- there are infinite number of solutions that lead to zero least squares error (**ill-posed problem**)

under-complete problem

- Correlation matrix XX^T is not invertible, but Gram matrix X^TX is invertible and p.d.
- Define the right Penrose-Moore pseudo inverse of general matrix X , $X(X^TX)^{-1}$, then $w = X(X^TX)^{-1}y$ is a solution to the normal equation
- solution is not unique
 - for any vector in the row null space of X , $X^T\mathbf{h} = 0$, $w+\mathbf{h}$ is also a solution
 - w is a solution, we have $X^T(w+\mathbf{h}) = X^Tw = y$
- there are infinite number of solutions that lead to zero least squares error (**ill-posed problem**)

Solving normal equation

- case 1: complete problem
 $N = m$, i.e., # of data = # of parameters
 \Rightarrow matrix X is square
 \Rightarrow **unique** solution with **zero prediction error**
- case 2: over-complete problem
 $N > m$, i.e., # of data > # of parameters
 \Rightarrow matrix X is short & fat
 \Rightarrow **unique** solution with **non-zero prediction error**
- case 3: under-complete problem
 $N < m$, i.e., # of data < # of parameters
 \Rightarrow matrix X is tall & thin
 \Rightarrow **non-unique** solution with **zero prediction error**

LLSE — general procedure

- Obtain training data X
- Decide number of base functions to use
- Choose a proper weight matrix W
- Form LSE objective function, and solve the normal equation for optimal solution

Issues

- Squared L2 loss is sensitive to **outliers** in training data
 - Using L1 loss is more **robust** to outliers in training data
- Data points may not come at the same time, we need to handle the data in an **online** manner
- Using a high degree of polynomial may **overfit** the data, how do we control that from occurring
- The number of base functions (degree of polynomials) is a **hyper-parameter**, how do we select it

