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Regression problem

- Use 1nput to estimate a target variable that takes

continuous values

It 1s an example of supervised machine learning
problem: 1n training, the target variables together with

the 1mputs are given

- In testing, we only have input and need to estimate the

target
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Regression problem

» robotic control/automatic driving

* 1nput: internal parameters of
robotic arm (force at angle)

- output: end effector location

- treat mnput-output as going through
a black box transform




Regression problem

High-frequency stock trading (algorithmic trading)

* 1nput: historic stock prices &
trading records

- output: new trading action

- treat mput-output as going
through a black box transform

- use training data to figure out best control function




Notations

. Data matrix can include (] | | )

processed data, 1.e., X=|glx) gx) - glxy)

g 1s a function on raw X u | |

)
* Mean and centering

- introduce N-dim all one vectors] y;, the (arithm’%tig) 1 X1
mean of data 1s computed as NN

» The (column) centering operation 1s expressed as

Y T 1 T 1 T
X=X—m1N=X—NX1N1N=X I_NlNlN
the final matrix 1s the column centertng operatio

and matrices are defined as XX/
and XX, respectively



Kernel matrix

. Definition: G = X' X > 0, G = X; xj,

element 1s the pairwise mnner product of two points

+ This matrix 1s known as the inner product matrix, the

Gram matrix, or the matrix

- It 1s 1n a sense the of the correlation matrix XX,
when X 1s full ranked, then at least one of them 1s
invertible

-+ Kernel matrix plays a central role in the subsequent
nonlinear extension of linear machine learning
algorithms



General regression

» Training | |
Training data matrix X=[* X = Ay
data points are column vectors | |
e . ¢ t . 1 _ T
Iraining targets, assuming scalar Y=V 5 V)

- parametric function f,( - ) : RY— R
- loss function L(y — f,(x)) > 0

Numerical procedure to find optimal w to minimize
the learning objective » . L(y; — f,(x))
- In testing, for input x and generate prediction fy(X)

- metric function m(y — f,(x)) > 0 on a validation
dataset, may be different from the loss



Linear least squares regression

» Training |
Training data matrix X=1% X
data points are column vectors |
Training targets, assuming scalar y = V1, Y9

function f, (x) = wlg(x)

L(y, £,x) = lly = £,

+  Optimal solution to the learning objective
Z?zl L(y; — f,,(x;)) satisfies the normal equation

- Testing

+ Metric function is also the least squares loss



LLSE: the Swiss army knife in ML

- Learning tasks
- Supervised learning
- Regression: basic LLSE and weighted LLSE
- Classification: discriminative LLSE
- Unsupervised learning
» Clustering: multi-modal LLSE
- Dimension reduction: total LLSE
- Learning paradigms
- Batch learning: all other LLSE methods
 Online learning: recursive LLSE

+ Dynamic programming: segmented LLSE

N

- Control of overfitting
- Model selection: model selection LLSE
- cross-validation: LOO LLSE
- Regularization: ridge LLSE & LASSO




LLLSE — linear function

- finding linear relation between input/output
fxX)=ax+>b

* solving an optimization problem
. N 9)
mlnwz(a,b)T Zi=1 (yi —ax; — b)

Datapoints . N
Regression




LLSE — quadratic function

- finding quadratic relation between input/output
f(x) = ax* + bx +c
* solving an optimization problem
: N
min,,_, , o Zi=1 (y; — axi2 — b iz —c)?




LLSE — polynomial function

- find d-degree polynomial
f(x) = ay + a;x + ax* + - + ax°
as
. N 9)
My, — g0 ..o q )T Zi=1 (yi _f(xi))
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LLSE — arbitrary basis functions

- find linear combinations of basis functions
fx) =ay+ a;g(x) + azjgz(x) + - 4+ a,8,4(x)
to minw=(ao,...,a T zizl v, —f (xi))z

. monomials: g,(x) = x' (polynomial fitting)

 Chebychev (orthogonal) polynomials

2 d ie %
dx’

* complex exponentials (Fourier transtorm):
gi(x) = e

. Hermite polynomials: g;(x) = e*

- radial basis functions (RBFs): g.(x) = ¢



LLSE — general case

. Define the general problem as fitting Z:’il a;8,(x;) to
target y by minimizing Z;lzl ;i — X, aigi(x)

- Rewrite using linear algebra notations

Y1 a;
y = y2 LW = a2. , objective is min,, ||y — X’ w]||*data
YN Ay
g1(x)  &gilx) - gilxy)
matrix X = gz(.xl) gz(.xz) gz(.XN)

gn(x)  g,(%) - g.(xy)



Solving LLSE

- Expand the terms
ly = X"wll* = yTy = 2y X"w + wT XXTw
- Taking derivative on both sides w.r.t. w
V,lly = XTw|* = 2(XX"'w — Xy) = 0

+ The solution is given by XX’w = Xy, which is
known as the normal equation

- Check Hessian matrix VVI||ly — XTw||* = 2XXT > 0
(Why?)
so the solution 1s a minimum

- We will assume the data matrix is full ranked (no linearly
dependent rows or columns)



Weighted LLSE

» Introducing a weight matrix W, usually diagonal with
W.. > 0, and to solve
min, (y — X 'WYIW(y — XTw)
» This 1s known as weighted LLSE
- When W =1, WLLSE reduces to LLSE

2
(y — X'w)W(y — XTw) = Z?z | W (yl- — Z]nil ajgj(xl-)>

+  Solution
V., = X"W)IW(y — XTw) = 2(XWXTw — XWy) =0
so XWXTw = XWy = w = XWX~ 1XWy



Weighted LLSE

How to determine the weight
- Larger weight => error has to be small
- Smaller weight => more relaxed error

- Relation with the variance of the error

W.. = — where al.z 1s the variance of the error 1n the

ll
O;

corresponding component

- Larger variance => less reliable estimation => smaller
weight => more relaxed error

- smaller variance => more reliable estimation => larger
weight => error has to be small




Solving normal equation

- case 1: complete problem
N =m, 1.e., # of data = # of parameters
= matrix X 1S square

=> correlation matrix XXT, X and XT are all invertible

» case 2: over-complete problem
N >m, 1.e., # of data > # of parameters
= matrix X 1s short & fat

= correlation matrix XXT 1s N x N and invertible

» case 3: under-complete problem
N <m, 1.e., # of data <# of parameters
= matrix X 1s tall & thin
=> correlation matrix XXT 1s m x m and invertible,

but the Gram matrix XTX i1s invertible



Complete case

- We can solve directly by matrix inversion
XXTw=Xy=>XTw=y=>W=X_Ty

+ Prediction erroris zero: y — X'w=y-X'X"1y =0
» Direct matrix imnversion 1s usually not a good option

 Solving Xp =y becomes LDUp =y, then two steps Lx
=y (forward elimination), DUp = x (backward
climination)

« This 1s known as Gaussian elimination

* Solution time 1s O(n?), and numerically 1t 1s very stable
(caveat: 1f the pivots are chosen right)

- It 1s numerically stable (only divide by pivot)



over-complete problem

+ Correlation matrix XXT is invertible and positive definite

so LLSE objective function has unique global optimal
solution, as XX'w = Xy = w = (XX~ Xy

- Interpretation: projection of y in row space of X
+ Prediction is X'w = XT(XX")~1Xy
 Prediction error 1s
y—X'w =y - XI'(xXxH)"1xy = (1, - X' (XX~ X)y

. (XX")~1X is known as the left Penrose-Moore pseudo
inverse of general matrix X', as (XX7)7'XX' = Iy



under-complete problem

- X 1s not invertible, XTX is invertible and p.d.

* Define the right Penrose-Moore pseudo inverse of
general matrix X, XT(XXT)-1, then w = XT(XXT)ly1s a
solution to the normal equation

» solution 1s not unique

- for any vector 1n the null space of X, Xh =0, p+h 1s
also a solution

* p 1s a solution, we have X(pth)=Xp =y

- there are infinite number of solutions that lead to zero
least squares error (ill-posed problem)



under-complete problem

+ Correlation matrix XXT 1s not invertible, but Gram
matrix XTX 1is invertible and p.d.

» Define the right Penrose-Moore pseudo inverse of
general matrix X, X(XTX)1, then w = X(XTX)ly1s a
solution to the normal equation

» solution 1s not unique

- for any vector in the row null space of X, XTh =0,
w+h 1s also a solution

- w 1s a solution, we have XT(w+h) = XTw =y

- there are infinite number of solutions that lead to zero
least squares error (ill-posed problem)



Solving normal equation

- case 1: complete problem
N =m, 1.e., # of data = # of parameters
= matrix X 1S square

=> unique solution with zero prediction error

» case 2: over-complete problem
N >m, 1.e., # of data > # of parameters
= matrix X is short & fat

=> unique solution with non-zero prediction error

» case 3: under-complete problem
N <m, 1.e., # of data <# of parameters
= matrix X 1s tall & thin

= non-unique solution with zero prediction error



LLSE — general procedure

Obtain training data X
- Decide number of base functions to use
Choose a proper weight matrix W

- Form LSE objective function, and solve the normal
equation for optimal solution

0.2 Polyromial fits to noisy data
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Issues

Squared L2 loss 1s sensitive to ‘ y
outliers 1n training data ot

*
«® ®
- -® a*®

- Using L1 loss 1s more robust | «*
to outliers in training data

- Data points may not come at the same time, we need to
handle the data in an online manner

- Using a high degree of polynomial may overfit the data,
how do we control
that from occurring

* The number of base
functions (degree of
polynomials) is a Overfitting
hyper-parameter, how do we select it




