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Regression problem
• Use input to estimate a target variable that takes 

continuous values 
• It is an example of supervised machine learning 

problem: in training, the target variables together with 
the inputs are given  
• In testing, we only have input and need to estimate the 

target



Regression problem
• robotic control/automatic driving 

• input: internal parameters of 
robotic arm (force at angle) 

• output: end effector location 
• treat input-output as going through 

a black box transform 
• use training data to figure out best control function 
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Regression problem
• High-frequency stock trading (algorithmic trading) 

• input: historic stock prices & 
trading records 

• output: new trading action 
• treat input-output as going  

through a black box transform 
• use training data to figure out best control function 
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Notations 
• Data matrix can include  

processed data, i.e.,  
g is a function on raw x 

• Mean and centering 
• introduce N-dim all one vectors , the (arithmetic) 

mean of data is computed as 
• The (column) centering operation is expressed as 

 
 
the final matrix is the column centering operation 

• Correlation and covariance matrices are defined as  
and , respectively
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Kernel matrix
• Definition: , ,  

element is the pairwise inner product of two points 
• This matrix is known as the inner product matrix, the 

Gram matrix, or the kernel matrix 
• It is in a sense the dual of the correlation matrix , 

when X is full ranked, then at least one of them is 
invertible 

• Kernel matrix plays a central role in the subsequent 
nonlinear extension of linear machine learning 
algorithms

G = XT X ⪰ 0 Gij = xT
i xj

XXT



General regression
• Training 

• Training data matrix  
data points are column vectors 

• Training targets, assuming scalar 
• parametric function  

• loss function  
• Numerical procedure to find optimal w to minimize 

the learning objective  

• In testing, for input x and generate prediction fw(x) 
• metric function  on a validation 

dataset, may be different from the loss

fw( ⋅ ) : Rd ↦ R

L(y − fw(x)) ≥ 0

∑n
i=1 L(yi − fw(xi))

m(y − fw(x)) ≥ 0

X =
| | |
x1 x2 ⋯ xN

| | |

y = (y1, y2, ⋯, yN)T



Linear least squares regression
• Training 

• Training data matrix  
data points are column vectors 

• Training targets, assuming scalar 
• Linear function  
• Least squares loss function 

 
• Optimal solution to the learning objective

 satisfies the normal equation 

• Testing 
• Metric function is also the least squares loss

fw(x) = wTϕ(x)

L(y, fw(x)) = ∥y − fw(x)∥2

∑n
i=1 L(yi − fw(xi))

X =
| | |
x1 x2 ⋯ xN

| | |

y = (y1, y2, ⋯, yN)T



LLSE: the Swiss army knife in ML
• Learning tasks 

• Supervised learning 
• Regression: basic LLSE and weighted LLSE 
• Classification: discriminative LLSE 

• Unsupervised learning 
• Clustering: multi-modal LLSE 
• Dimension reduction: total LLSE 

• Learning paradigms 
• Batch learning: all other LLSE methods 
• Online learning: recursive LLSE 
• Dynamic programming: segmented LLSE 

• Control of overfitting 
• Model selection: model selection LLSE  
• cross-validation: LOO LLSE 
• Regularization: ridge LLSE & LASSO



LLSE — linear function
• finding linear relation between input/output 

             
• solving an optimization problem 

            

f(x) = ax + b

minw=(a,b)T ∑N
i=1 (yi − axi − b)2



LLSE — quadratic function
• finding quadratic relation between input/output 

              
• solving an optimization problem 

       

f(x) = ax2 + bx + c

minw=(a,b,c)T ∑N
i=1 (yi − ax2

i − bx2
i − c)2



LLSE — polynomial function
• find d-degree polynomial 

              
as 
              

f(x) = a0 + a1x + a2x2 + ⋯ + adxd

minw=(a0,⋯,ad)T ∑N
i=1 (yi − f(xi))2



LLSE — arbitrary basis functions
• find linear combinations of basis functions   

 
to         

• monomials:  (polynomial fitting) 
• Chebychev (orthogonal) polynomials  

• Hermite polynomials:  

• complex exponentials (Fourier transform): 
 

• radial basis functions (RBFs): 

f(x) = a0 + a1g1(x) + a2g2(x) + ⋯ + adgd(x)
minw=(a0,⋯,ad)T ∑N

i=1 (yi − f(xi))2

gi(x) = xi

gi(x) = ex2 die−x2

dxi

gi(x) = e−ıix

gi(x) = e−ai(x−bi)2



LLSE — general case
• Define the general problem as fitting  to 

target  by minimizing  

• Rewrite using linear algebra notations 

, , objective is data 

matrix 

∑m
i=1 aigi(xj)

y ∑n
j=1 (yj − ∑m

i=1 aigi(xj))2

y =

y1
y2
⋯
yN

w =

a1
a2
⋯
am

minw ∥y − XTw∥2

X =

g1(x1) g1(x2) ⋯ g1(xN)
g2(x1) g2(x2) ⋯ g2(xN)

⋮ ⋮ ⋱ ⋮
gm(x1) gm(x2) ⋯ gm(xN)



Solving LLSE 
• Expand the terms 

 
• Taking derivative on both sides w.r.t. w 

 

• The solution is given by , which is 
known as the normal equation 

• Check Hessian matrix  
(why?) 
so the solution is a minimum 

• We will assume the data matrix is full ranked (no linearly 
dependent rows or columns)

∥y − XTw∥2 = yTy − 2yT XTw + wT XXTw

∇w∥y − XTw∥2 = 2(XXTw − Xy) = 0
XXTw = Xy

∇∇T
w∥y − XTw∥2 = 2XXT ⪰ 0



Weighted LLSE
• Introducing a weight matrix W, usually diagonal with 

, and to solve 
                  

• This is known as weighted LLSE 
• When W = I, WLLSE reduces to LLSE 

 

• Solution 
  

so 

Wii ≥ 0
minw(y − XTw)TW(y − XTw)

(y − XTw)TW(y − XTw) = ∑n
i=1 Wii (yi − ∑m

j=1 ajgj(xi))
2

∇w(y − XTw)TW(y − XTw) = 2(XWXTw − XWy) = 0
XWXTw = XWy ⇒ w = (XWXT)−1XWy



Weighted LLSE
• How to determine the weight 

• Larger weight => error has to be small 
• Smaller weight => more relaxed error 

• Relation with the variance of the error 

• , where  is the variance of the error in the 

corresponding component 
• Larger variance => less reliable estimation => smaller 

weight => more relaxed error 
• smaller variance => more reliable estimation => larger 

weight => error has to be small

Wii =
1
σ2

i
σ2

i



Solving normal equation
• case 1: complete problem  

N = m, i.e., # of data = # of parameters 
⇒ matrix X is square  
⇒ correlation matrix XXT, X and XT are all invertible 

• case 2: over-complete problem 
 N > m, i.e., # of data > # of parameters  
⇒ matrix X is short & fat 
⇒ correlation matrix XXT is N x N and invertible 

• case 3: under-complete problem 
N < m, i.e., # of data < # of parameters  
⇒ matrix X is tall & thin 
⇒ correlation matrix XXT is m x m and not invertible, 
but the Gram matrix XTX is invertible 



Complete case
• We can solve directly by matrix inversion 

 
• Prediction error is zero:  

• Direct matrix inversion is usually not a good option 
• Solving Xp = y becomes LDUp = y, then two steps Lx 

= y (forward elimination), DUp = x (backward 
elimination)  
• This is known as Gaussian elimination  

• Solution time is O(n2), and numerically it is very stable 
(caveat: if the pivots are chosen right) 

• It is numerically stable (only divide by pivot)

XXTw = Xy ⇒ XTw = y ⇒ w = X−Ty
y − XTw = y − XT X−Ty = 0



over-complete problem
• Correlation matrix XXT is invertible and positive definite 

so LLSE objective function has unique global optimal 
solution, as  
• interpretation: projection of y in row space of X 
• Prediction is  
• Prediction error is 

 
•  is known as the left Penrose-Moore pseudo 

inverse of general matrix 

XXTw = Xy ⇒ w = (XXT)−1Xy

XTw = XT(XXT)−1Xy

y − XTw = y − XT(XXT)−1Xy = (IN − XT(XXT)−1X)y
(XXT)−1X

XT, as (XXT)−1XXT = IN



under-complete problem
• X is not invertible, XTX is invertible and p.d. 
• Define the right Penrose-Moore pseudo inverse of 

general matrix X, XT(XXT)-1, then w = XT(XXT)-1y is a 
solution to the normal equation 

• solution is not unique  
• for any vector in the null space of X, Xh = 0, p+h is 

also a solution 
• p is a solution, we have X(p+h) = Xp = y 

• there are infinite number of solutions that lead to zero 
least squares error (ill-posed problem)



under-complete problem
• Correlation matrix XXT is not invertible, but Gram 

matrix XTX is invertible and p.d. 
• Define the right Penrose-Moore pseudo inverse of 

general matrix X, X(XTX)-1, then w = X(XTX)-1y is a 
solution to the normal equation 

• solution is not unique  
• for any vector in the row null space of X, XTh = 0, 

w+h is also a solution 
• w is a solution, we have XT(w+h) = XTw = y 

• there are infinite number of solutions that lead to zero 
least squares error (ill-posed problem)



Solving normal equation
• case 1: complete problem  

N = m, i.e., # of data = # of parameters 
⇒ matrix X is square  
⇒ unique solution with zero prediction error 

• case 2: over-complete problem 
N > m, i.e., # of data > # of parameters  
⇒ matrix X is short & fat 
⇒ unique solution with non-zero prediction error 

• case 3: under-complete problem 
N < m, i.e., # of data < # of parameters  
⇒ matrix X is tall & thin 
⇒ non-unique solution with zero prediction error



LLSE — general procedure
• Obtain training data X 
• Decide number of base functions to use 
• Choose a proper weight matrix W 
• Form LSE objective function, and solve the normal 

equation for optimal solution



Issues
• Squared L2 loss is sensitive to 

outliers in training data 
• Using L1 loss is more robust 

to outliers in training data  
• Data points may not come at the same time, we need to 

handle the data in an online manner 
• Using a high degree of polynomial may overfit the data, 

how do we control  
that from occurring  

• The number of base 
 functions (degree of 
 polynomials) is a  
 hyper-parameter, how do we select it 


