CSI 436/536
 Introduction to Machine Learning

Regression and LLSE

Professor Siwei Lyu
Computer Science
University at Albany, State University of New York

Regression problem

- Use input to estimate a target variable that takes continuous values
- It is an example of supervised machine learning problem: in training, the target variables together with the inputs are given
- In testing, we only have input and need to estimate the target

Regression problem

- robotic control/automatic driving
- input: internal parameters of robotic arm (force at angle)
- output: end effector location
- treat input-output as going through a black box transform
- use training data to figure out best control function

Regression problem

- High-frequency stock trading (algorithmic trading)
- input: historic stock prices \& trading records
- output: new trading action
- treat input-output as going through a black box transform

- use training data to figure out best control function

Notations

- Data matrix can include processed data, i.e., g is a function on raw x

$$
X=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
g\left(x_{1}\right) & g\left(x_{2}\right) & \cdots & g\left(x_{N}\right) \\
\mid & \mid & & \mid
\end{array}\right)
$$

- Mean and centering
- introduce N -dim all one vectors 1_{N}, the (arithmetic) $\frac{1}{N} X 1_{N}$
- The (column) centering operation is expressed as

$$
\tilde{X}=X-m 1_{N}^{T}=X-\frac{1}{N} X 1_{N} 1_{N}^{T}=X\left(I-\frac{1}{N} 1_{N} 1_{N}^{T}\right)
$$

the final matrix is the column centering operation

- Correlation and covariance matrices are defined as $X X^{T}$ and $\tilde{X} \tilde{X}^{T}$, respectively

Kernel matrix

- Definition: $G=X^{T} X \geq 0, G_{i j}=x_{i}^{T} x_{j}$, element is the pairwise inner product of two points
- This matrix is known as the inner product matrix, the Gram matrix, or the kernel matrix
- It is in a sense the dual of the correlation matrix $X X^{T}$, when X is full ranked, then at least one of them is invertible
- Kernel matrix plays a central role in the subsequent nonlinear extension of linear machine learning algorithms

General regression

- Training
- Training data matrix data points are column vectors

$$
\begin{array}{r}
X=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
x_{1} & x_{2} & \cdots & x_{N} \\
\mid & \mid & & \mid
\end{array}\right) \\
y=\left(y_{1}, y_{2}, \cdots, y_{N}\right)^{T}
\end{array}
$$

- Training targets, assuming scalar
- parametric function $f_{w}(\cdot): R^{d} \mapsto R$
- loss function $L\left(y-f_{w}(x)\right) \geq 0$
- Numerical procedure to find optimal w to minimize the learning objective $\sum_{i=1}^{n} L\left(y_{i}-f_{w}\left(x_{i}\right)\right)$
- In testing, for input x and generate prediction $\mathrm{f}_{\mathrm{w}}(\mathrm{x})$
- metric function $m\left(y-f_{w}(x)\right) \geq 0$ on a validation dataset, may be different from the loss

Linear least squares regression

- Training
- Training data matrix data points are column vectors

$$
\begin{array}{r}
X=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
x_{1} & x_{2} & \cdots & x_{N} \\
\mid & \mid & & \mid
\end{array}\right) \\
y=\left(y_{1}, y_{2}, \cdots, y_{N}\right)^{T}
\end{array}
$$

- Training targets, assuming scalar
- Linear function $f_{w}(x)=w^{T} \phi(x)$
- Least squares loss function $L\left(y, f_{w}(x)\right)=\left\|y-f_{w}(x)\right\|^{2}$
- Optimal solution to the learning objective $\sum_{i=1}^{n} L\left(y_{i}-f_{w}\left(x_{i}\right)\right)$ satisfies the normal equation
- Testing
- Metric function is also the least squares loss

LLSE: the Swiss army knife in ML

- Learning tasks
- Supervised learning
- Regression: basic LLSE and weighted LLSE
- Classification: discriminative LLSE
- Unsupervised learning
- Clustering: multi-modal LLSE
- Dimension reduction: total LLSE
- Learning paradigms
- Batch learning: all other LLSE methods
- Online learning: recursive LLSE
- Dynamic programming: segmented LLSE
- Control of overfitting
- Model selection: model selection LLSE
- cross-validation: LOO LLSE
- Regularization: ridge LLSE \& LASSO

LLSE - linear function

- finding linear relation between input/output

$$
f(x)=a x+b
$$

- solving an optimization problem

$$
\min _{w=(a, b)^{T}} \sum_{i=1}^{N}\left(y_{i}-a x_{i}-b\right)^{2}
$$

LLSE - quadratic function

- finding quadratic relation between input/output

$$
f(x)=a x^{2}+b x+c
$$

- solving an optimization problem

$$
\min _{w=(a, b, c)^{T}} \sum_{i=1}^{N}\left(y_{i}-a x_{i}^{2}-b x_{i}^{2}-c\right)^{2}
$$

LLSE - polynomial function

- find d-degree polynomial

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}
$$

as

$$
\min _{w=\left(a_{0}, \cdots, a_{d}\right)^{T}} \sum_{i=1}^{N}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

LLSE - arbitrary basis functions

- find linear combinations of basis functions
$f(x)=a_{0}+a_{1} g_{1}(x)+a_{2} g_{2}(x)+\cdots+a_{d} g_{d}(x)$ to $\quad \min _{w=\left(a_{0}, \cdots, a_{d}\right)^{T}} \sum_{i=1}^{N}\left(y_{i}-f\left(x_{i}\right)\right)^{2}$
- monomials: $g_{i}(x)=x^{i}$ (polynomial fitting)
- Chebychev (orthogonal) polynomials
- Hermite polynomials: $g_{i}(x)=e^{x^{2}} \frac{d^{i} e^{-x^{2}}}{d x^{i}}$
- complex exponentials (Fourier transform):

$$
g_{i}(x)=e^{-l i x}
$$

- radial basis functions (RBFs): $g_{i}(x)=e^{-a_{i}\left(x-b_{i}\right)^{2}}$

LLSE - general case

- Define the general problem as fitting $\sum_{i=1}^{m} a_{i} g_{i}\left(x_{j}\right)$ to target y by minimizing $\sum_{j=1}^{n}\left(y_{j}-\sum_{i=1}^{m} a_{i} g_{i}\left(x_{j}\right)\right)^{2}$
- Rewrite using linear algebra notations
$y=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \cdots \\ y_{N}\end{array}\right), w=\left(\begin{array}{c}a_{1} \\ a_{2} \\ \ldots \\ a_{m}\end{array}\right)$, objective is $\min _{w}\left\|y-X^{T} w\right\|^{2}$ data
matrix $X=\left(\begin{array}{cccc}g_{1}\left(x_{1}\right) & g_{1}\left(x_{2}\right) & \cdots & g_{1}\left(x_{N}\right) \\ g_{2}\left(x_{1}\right) & g_{2}\left(x_{2}\right) & \cdots & g_{2}\left(x_{N}\right) \\ \vdots & \vdots & \ddots & \vdots \\ g_{m}\left(x_{1}\right) & g_{m}\left(x_{2}\right) & \cdots & g_{m}\left(x_{N}\right)\end{array}\right)$

Solving LLSE

- Expand the terms

$$
\left\|y-X^{T} w\right\|^{2}=y^{T} y-2 y^{T} X^{T} w+w^{T} X X^{T} w
$$

- Taking derivative on both sides w.r.t. w

$$
\nabla_{w}\left\|y-X^{T} w\right\|^{2}=2\left(X X^{T} w-X y\right)=0
$$

- The solution is given by $X X^{T} w=X y$, which is known as the normal equation
- Check Hessian matrix $\nabla \nabla_{w}^{T}\left\|y-X^{T} w\right\|^{2}=2 X X^{T} \succeq 0$ (why?)
so the solution is a minimum
- We will assume the data matrix is full ranked (no linearly dependent rows or columns)

Weighted LLSE

- Introducing a weight matrix W , usually diagonal with $W_{i i} \geq 0$, and to solve

$$
\min _{w}\left(y-X^{T} w\right)^{T} W\left(y-X^{T} w\right)
$$

- This is known as weighted LLSE
- When W = I, WLLSE reduces to LLSE

$$
\left(y-X^{T} w\right)^{T} W\left(y-X^{T} w\right)=\sum_{i=1}^{n} W_{i i}\left(y_{i}-\sum_{j=1}^{m} a_{j} g_{j}\left(x_{i}\right)\right)^{2}
$$

- Solution

$$
\begin{aligned}
& \nabla_{w}\left(y-X^{T} w\right)^{T} W\left(y-X^{T} w\right)=2\left(X W X^{T} w-X W y\right)=0 \\
& \text { so } X W X^{T} w=X W y \Rightarrow w=\left(X W X^{T}\right)^{-1} X W y
\end{aligned}
$$

Weighted LLSE

- How to determine the weight
- Larger weight $=>$ error has to be small
- Smaller weight $=>$ more relaxed error
- Relation with the variance of the error
. $W_{i i}=\frac{1}{\sigma_{i}^{2}}$, where σ_{i}^{2} is the variance of the error in the corresponding component
- Larger variance $=>$ less reliable estimation $=>$ smaller weight $=>$ more relaxed error
- smaller variance $=>$ more reliable estimation $=>$ larger weight $=>$ error has to be small

Solving normal equation

- case 1: complete problem
$\mathrm{N}=\mathrm{m}$, i.e., \# of data = \# of parameters
\Rightarrow matrix X is square
\Rightarrow correlation matrix $\mathrm{XX}^{\mathrm{T}}, \mathrm{X}$ and X^{T} are all invertible
- case 2: over-complete problem
$\mathrm{N}>\mathrm{m}$, i.e., \# of data $>$ \# of parameters
\Rightarrow matrix X is short \& fat
\Rightarrow correlation matrix XX^{T} is Nx N and invertible
- case 3: under-complete problem
$\mathrm{N}<\mathrm{m}$, i.e., \# of data $<$ \# of parameters
\Rightarrow matrix X is tall \& thin
\Rightarrow correlation matrix XX^{T} is m x m and not invertible, but the Gram matrix $\mathrm{X}^{\mathrm{T}} \mathrm{X}$ is invertible

Complete case

- We can solve directly by matrix inversion $X X^{T} w=X y \Rightarrow X^{T} w=y \Rightarrow w=X^{-T} y$
- Prediction error is zero: $y-X^{T} w=y-X^{T} X^{-T} y=0$
- Direct matrix inversion is usually not a good option
- Solving $\mathrm{Xp}=\mathrm{y}$ becomes $\operatorname{LDUp}=\mathrm{y}$, then two steps Lx $=y$ (forward elimination), $D U p=x$ (backward elimination)
- This is known as Gaussian elimination
- Solution time is $O\left(\mathrm{n}^{2}\right)$, and numerically it is very stable (caveat: if the pivots are chosen right)
- It is numerically stable (only divide by pivot)

over-complete problem

- Correlation matrix XX^{T} is invertible and positive definite so LLSE objective function has unique global optimal solution, as $X X^{T} w=X y \Rightarrow w=\left(X X^{T}\right)^{-1} X y$
- interpretation: projection of y in row space of X
- Prediction is $X^{T} w=X^{T}\left(X X^{T}\right)^{-1} X y$
- Prediction error is

$$
y-X^{T} w=y-X^{T}\left(X X^{T}\right)^{-1} X y=\left(I_{N}-X^{T}\left(X X^{T}\right)^{-1} X\right) y
$$

- $\left(X X^{T}\right)^{-1} X$ is known as the left Penrose-Moore pseudo inverse of general matrix X^{T}, as $\left(X X^{T}\right)^{-1} X X^{T}=I_{N}$

under-complete problem

- X is not invertible, $\mathrm{X}^{\mathrm{T} X}$ is invertible and p.d.
- Define the right Penrose-Moore pseudo inverse of general matrix $\mathrm{X}, \mathrm{X}^{\mathrm{T}}\left(\mathrm{XX}^{\mathrm{T}}\right)^{-1}$, then $\mathrm{w}=\mathrm{X}^{\mathrm{T}}\left(\mathrm{XX}^{\mathrm{T}}\right)^{-1} \mathrm{y}$ is a solution to the normal equation
- solution is not unique
- for any vector in the null space of $X, X \mathbf{h}=0, \mathbf{p}+\mathbf{h}$ is also a solution
- \mathbf{p} is a solution, we have $\mathrm{X}(\mathbf{p}+\mathbf{h})=\mathrm{Xp}=\mathbf{y}$
- there are infinite number of solutions that lead to zero least squares error (ill-posed problem)

under-complete problem

- Correlation matrix XX^{T} is not invertible, but Gram matrix $\mathrm{X}^{\mathrm{T}} \mathrm{X}$ is invertible and p.d.
- Define the right Penrose-Moore pseudo inverse of general matrix $\mathrm{X}, \mathrm{X}\left(\mathrm{X}^{\mathrm{T}} \mathrm{X}\right)^{-1}$, then $\mathrm{w}=\mathrm{X}\left(\mathrm{X}^{\mathrm{T}} \mathrm{X}\right)^{-1} \mathrm{y}$ is a solution to the normal equation
- solution is not unique
- for any vector in the row null space of $\mathrm{X}, \mathrm{X}^{\mathrm{T}} \mathbf{h}=0$, $\mathbf{w}+\mathbf{h}$ is also a solution
- \mathbf{w} is a solution, we have $\mathrm{X}^{\mathrm{T}}\left(\mathbf{w}^{+} \mathbf{h}\right)=\mathrm{X}^{\mathrm{T}} \mathrm{w}=\mathrm{y}$
- there are infinite number of solutions that lead to zero least squares error (ill-posed problem)

Solving normal equation

- case 1: complete problem
$\mathrm{N}=\mathrm{m}$, i.e., \# of data $=\#$ of parameters
\Rightarrow matrix X is square
\Rightarrow unique solution with zero prediction error
- case 2: over-complete problem
$\mathrm{N}>\mathrm{m}$, i.e., \# of data $>$ \# of parameters
\Rightarrow matrix X is short \& fat
\Rightarrow unique solution with non-zero prediction error
- case 3: under-complete problem
$\mathrm{N}<\mathrm{m}$, i.e., \# of data $<$ \# of parameters
\Rightarrow matrix X is tall \& thin
\Rightarrow non-unique solution with zero prediction error

LLSE - general procedure

- Obtain training data X
- Decide number of base functions to use
- Choose a proper weight matrix W
- Form LSE objective function, and solve the normal equation for optimal solution

Issues

- Squared L2 loss is sensitive to outliers in training data
- Using L1 loss is more robust to outliers in training data
- Data points may not come at the same time, we need to handle the data in an online manner
- Using a high degree of polynomial may overfit the data, how do we control that from occurring
- The number of base functions (degree of polynomials) is a

Underfitting

Overfitting hyper-parameter, how do we select it

