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Logistic regression



Logistic regression: binary classification
• Given a set of training data , with 

 and , we aim to find a linear 
classifier   with parameter  in the form of  

 
• The choice of binary label is arbitrary, for any 

classifier outputs , we can convert it to the output of 

{0,1}, and vice versa: , 

and  
• We usually use homogeneous coordinates to eliminate 

the constant , , and we work 
with , and we can check  

(x1, y1), ⋯, (xn, yn)
xi ∈ ℛd yi ∈ {−1, + 1}

(w, b)
̂y = sign(w⊤x + b)

±1
y + 1

2
: {−1, + 1} ↦ {0,1}

2y − 1 : {0,1} ↦ {−1, + 1}

x ↦ (x,1)⊤ w ↦ (w, b)⊤

̂y = sign(w⊤x) yw⊤x



Training logistic regression
• Logistic loss function:  

• Individual loss function  
• : predicted label and ground truth have the 

same sign,  
• : predicted label and ground truth have 

different sign,  
• Logistic function 

minw ∑n
i=1 log(1 + e−yiwT xi)

ℓ(x, y; w) = log(1 + e−ywT x)
yw⊤x > 0

ℓ(x, y; w) ≤ log 2
yw⊤x < 0

ℓ(x, y; w) ≥ log 2
h(z) = log(1 + e−z)



Optimization 
• ,  

• ,  function decreasing  
• Define sigmoid function  

• therefore, , and also 
, so this function is 

a convex function

h(z) = log(1 + e−z)
h′ (z) = − e−z(1 + e−z)−1 < 0

σ(z) = (1 + e−z)−1

h′ (z) = σ(z) − 1
h′ ′ (z) = σ′ (z) = (1 − σ(z))σ(z) > 0



Gradient & Hessian matrix
• Objective function  

•  

•

 

• Hessian matrix is positive definite, so the objective 
function is convex and affords a global optimum 

• Optimization procedure 
• Gradient descent  
• Newton’s method 

 

•  is properly chosen step size (back-tracking)

L(w) = ∑n
i=1 h(yiwT xi)

∇L(w) = ∑n
i=1 h′ (yiwT xi)yixi = ∑n

i=1 (σ(yiwT xi) − 1)yixi

∇2L(w) = ∑n
i=1 h′ ′ (yiwT xi)y2

i xix⊤
i = ∑n

i=1 h′ ′ (yiwT xi)xix⊤
i

∇2L(w) = ∑n
i=1 σ(yiwT xi)(1 − σ(yiwT xi))xix⊤

i

w(t+1) ← w(t) − ηt ∇L(w(t))

w(t+1) ← w(t) − ηt(∇2L(w(t)))−1 ∇L(w(t))
ηt



Interpretation 
• , i.e., probability of output label 

is +1 if input is x and , i.e., 
probability of output label is -1 if input is x  

• Cross-entropy loss

Pr(y = 1 |x) = σ(ywT x)
Pr(y = − 1 |x) = 1 − σ(ywT x)

−∑
i

( 1 + yi

2
log Pr(yi = 1 |xi) +

1 − yi

2
log Pr(yi = − 1 |xi))



Stochastic gradient method
• Gradient descent method  

• Compute gradient  

• Update  

•  is properly chosen step size (back-tracking) 
• Stochastic gradient method: update one data point a time

 
• It applies under the following situations 

• Dataset is too large to hold in memory 
• Streaming data, samples come one at a time

∇L(w) = ∑n
i=1 h′ (yiwT xi)yixi

w(t+1) ← w(t) − ηt

n

∑
i=1

h′ (yiw(t)T xi)yixi

ηt

w(t+1) ← w(t) − ηth′ (yiw(t)T xi)yixi



Stochastic gradient method
• Standard model is to assume data sample is selected 

randomly 
• SG is not a descent method,  

• convergence is guaranteed under convex objective 
function, convergence is very slow 

• Extremely robust
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Motivation for Hybrid Methods for Smooth Problems

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost
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Stochastic Gradient Method

Stochastic gradient method uses the iteration

x+ = x � ↵d ,

where d is an unbiased estimator of rf (x), so E[d ] = rf (x).
(often using averaging over x or d)

As in subgradient method, we require ↵ ! 0.
(but better in practice with constant step size)

Stochastic vs. deterministic methods

• Minimizing g(✓) =
1

n

nX

i=1

fi(✓) with fi(✓) = `
�
yi, ✓��(xi)

�
+ µ�(✓)

• Batch gradient descent: ✓t = ✓t�1��tg
�(✓t�1) = ✓t�1�

�t

n

nX
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f �
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• Stochastic gradient descent: ✓t = ✓t�1 � �tf �
i(t)(✓t�1)


