CSI 436/536
 Introduction to Machine Learning

Logistic regression

Professor Siwei Lyu
Computer Science
University at Albany, State University of New York

Logistic regression: binary classification

- Given a set of training data $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$, with $x_{i} \in \mathscr{R}^{d}$ and $y_{i} \in\{-1,+1\}$, we aim to find a linear classifier with parameter (w, b) in the form of $\hat{y}=\operatorname{sign}\left(w^{\top} x+b\right)$
- The choice of binary label is arbitrary, for any classifier outputs ± 1, we can convert it to the output of $\{0,1\}$, and vice versa: $\frac{y+1}{2}:\{-1,+1\} \mapsto\{0,1\}$, and $2 y-1:\{0,1\} \mapsto\{-1,+1\}$
- We usually use homogeneous coordinates to eliminate the constant $x \mapsto(x, 1)^{\top}, w \mapsto(w, b)^{\top}$, and we work with $\hat{y}=\operatorname{sign}\left(w^{\top} x\right)$, and we can check $y w^{\top} x$

Training logistic regression

- Logistic loss function: $\min _{w} \sum_{i=1}^{n} \log \left(1+e^{-y_{i} w^{T} x_{i}}\right)$
- Individual loss function $\ell(x, y ; w)=\log \left(1+e^{-y w^{T} x}\right)$
- $y w^{\top} x>0$: predicted label and ground truth have the same sign, $\ell(x, y ; w) \leq \log 2$
- $y w^{\top} x<0$: predicted label and ground truth have different sign, $\ell(x, y ; w) \geq \log 2$
- Logistic function $h(z)=\log \left(1+e^{-z}\right)$

Optimization

- $h(z)=\log \left(1+e^{-z}\right)$,
- $h^{\prime}(z)=-e^{-z}\left(1+e^{-z}\right)^{-1}<0$, function decreasing
- Define sigmoid function $\sigma(z)=\left(1+e^{-z}\right)^{-1}$

- therefore, $h^{\prime}(z)=\sigma(z)-1$, and also $h^{\prime \prime}(z)=\sigma^{\prime}(z)=(1-\sigma(z)) \sigma(z)>0$, so this function is a convex function

Gradient \& Hessian matrix

- Objective function $L(w)=\sum_{i=1}^{n} h\left(y_{i} w^{T} x_{i}\right)$
- $\nabla L(w)=\sum_{i=1}^{n} h^{\prime}\left(y_{i} w^{T} x_{i}\right) y_{i} x_{i}=\sum_{i=1}^{n}\left(\sigma\left(y_{i} w^{T} x_{i}\right)-1\right) y_{i} x_{i}$
- $\nabla^{2} L(w)=\sum_{i=1}^{n} h^{\prime \prime}\left(y_{i} w^{T} x_{i}\right) y_{i}^{2} x_{i} x_{i}^{\top}=\sum_{i=1}^{n} h^{\prime \prime}\left(y_{i} w^{T} x_{i}\right) x_{i} x_{i}^{\top}$ $\nabla^{2} L(w)=\sum_{i=1}^{n} \sigma\left(y_{i} w^{T} x_{i}\right)\left(1-\sigma\left(y_{i} w^{T} x_{i}\right)\right) x_{i} x_{i}^{\top}$
- Hessian matrix is positive definite, so the objective function is convex and affords a global optimum
- Optimization procedure
- Gradient descent $w^{(t+1)} \leftarrow w^{(t)}-\eta_{t} \nabla L\left(w^{(t)}\right)$
- Newton's method

$$
w^{(t+1)} \leftarrow w^{(t)}-\eta_{t}\left(\nabla^{2} L\left(w^{(t)}\right)\right)^{-1} \nabla L\left(w^{(t)}\right)
$$

- η_{t} is properly chosen step size (back-tracking)

Interpretation

- $\operatorname{Pr}(y=1 \mid x)=\sigma\left(y w^{T} x\right)$, i.e., probability of output label is +1 if input is x and $\operatorname{Pr}(y=-1 \mid x)=1-\sigma\left(y w^{T} x\right)$, i.e., probability of output label is -1 if input is x
- Cross-entropy loss
$-\sum_{i}\left(\frac{1+y_{i}}{2} \log \operatorname{Pr}\left(y_{i}=1 \mid x_{i}\right)+\frac{1-y_{i}}{2} \log \operatorname{Pr}\left(y_{i}=-1 \mid x_{i}\right)\right)$

Stochastic gradient method

- Gradient descent method
- Compute gradient $\nabla L(w)=\sum_{i=1}^{n} h^{\prime}\left(y_{i} w^{T} x_{i}\right) y_{i} x_{i}$
. Update $w^{(t+1)} \leftarrow w^{(t)}-\eta_{t} \sum_{i=1}^{n} h^{\prime}\left(y_{i} w^{(t)^{T}} x_{i}\right) y_{i} x_{i}$
- η_{t} is properly chosen step size (back-tracking)
- Stochastic gradient method: update one data point a time $w^{(t+1)} \leftarrow w^{(t)}-\eta_{t} h^{\prime}\left(y_{i} w^{(t)^{T}} x_{i}\right) y_{i} x_{i}$
- It applies under the following situations
- Dataset is too large to hold in memory
- Streaming data, samples come one at a time

Stochastic gradient method

- Standard model is to assume data sample is selected randomly
- SG is not a descent method,
- convergence is guaranteed under convex objective function, convergence is very slow
- Extremely robust

time

