

CSI 436/536 Introduction to Machine Learning

Logistic regression

Professor Siwei Lyu Computer Science University at Albany, State University of New York

Logistic regression: binary classification

- Given a set of training data $(x_1, y_1), \dots, (x_n, y_n)$, with $x_i \in \mathscr{R}^d$ and $y_i \in \{-1, +1\}$, we aim to find a *linear* classifier with parameter (w, b) in the form of $\hat{y} = \operatorname{sign}(w^{\mathsf{T}}x + b)$
 - The choice of binary label is arbitrary, for any classifier outputs ± 1 , we can convert it to the output of $\{0,1\}$, and vice versa: $\frac{y+1}{2}: \{-1,+1\} \mapsto \{0,1\}$, and $2y-1: \{0,1\} \mapsto \{-1,+1\}$
 - We usually use homogeneous coordinates to eliminate the constant $x \mapsto (x,1)^T$, $w \mapsto (w,b)^T$, and we work with $\hat{y} = \operatorname{sign}(w^T x)$, and we can check $yw^T x$

Training logistic regression

- Logistic loss function: $\min_{w} \sum_{i=1}^{n} \log(1 + e^{-y_i w^T x_i})$
 - Individual loss function $\ell(x, y; w) = \log(1 + e^{-yw^T x})$
 - $yw^{\top}x > 0$: predicted label and ground truth have the same sign, $\ell(x, y; w) \le \log 2$
 - $yw^{\top}x < 0$: predicted label and ground truth have different sign, $\ell(x, y; w) \ge \log 2$
 - Logistic function $h(z) = \log(1 + e^{-z})$

Optimization

• $h(z) = \log(1 + e^{-z}),$

- $h'(z) = -e^{-z}(1 + e^{-z})^{-1} < 0$, function decreasing
- Define sigmoid function $\sigma(z) = (1 + e^{-z})^{-1}$

• therefore, $h'(z) = \sigma(z) - 1$, and also $h''(z) = \sigma'(z) = (1 - \sigma(z))\sigma(z) > 0$, so this function is a convex function

Gradient & Hessian matrix

- Objective function $L(w) = \sum_{i=1}^{n} h(y_i w^T x_i)$
 - $\nabla L(w) = \sum_{i=1}^{n} h'(y_i w^T x_i) y_i x_i = \sum_{i=1}^{n} (\sigma(y_i w^T x_i) 1) y_i x_i$
 - $\nabla^2 L(w) = \sum_{i=1}^n h''(y_i w^T x_i) y_i^2 x_i x_i^\top = \sum_{i=1}^n h''(y_i w^T x_i) x_i x_i^\top$ $\nabla^2 L(w) = \sum_{i=1}^n \sigma(y_i w^T x_i) (1 - \sigma(y_i w^T x_i)) x_i x_i^\top$
 - Hessian matrix is positive definite, so the objective function is convex and affords a global optimum
- Optimization procedure
 - Gradient descent $w^{(t+1)} \leftarrow w^{(t)} \eta_t \nabla L(w^{(t)})$
 - Newton's method $w^{(t+1)} \leftarrow w^{(t)} - \eta_t (\nabla^2 L(w^{(t)}))^{-1} \nabla L(w^{(t)})$
 - η_t is properly chosen step size (back-tracking)

Interpretation

- $\Pr(y = 1 | x) = \sigma(yw^T x)$, i.e., probability of output label is +1 if input is x and $\Pr(y = -1 | x) = 1 - \sigma(yw^T x)$, i.e., probability of output label is -1 if input is x
- Cross-entropy loss $-\sum_{i} \left(\frac{1+y_i}{2} \log \Pr(y_i = 1 \mid x_i) + \frac{1-y_i}{2} \log \Pr(y_i = -1 \mid x_i) \right)$

Stochastic gradient method

- Gradient descent method
 - Compute gradient $\nabla L(w) = \sum_{i=1}^{n} h'(y_i w^T x_i) y_i x_i$

Update
$$w^{(t+1)} \leftarrow w^{(t)} - \eta_t \sum_{i=1}^n h'(y_i w^{(t)T} x_i) y_i x_i$$

- η_t is properly chosen step size (back-tracking)
- Stochastic gradient method: update one data point a time $w^{(t+1)} \leftarrow w^{(t)} - \eta_t h'(y_i w^{(t)^T} x_i) y_i x_i$
 - It applies under the following situations
 - Dataset is too large to hold in memory
 - Streaming data, samples come one at a time

Stochastic gradient method

- Standard model is to assume data sample is selected randomly
- SG is not a descent method.
 - convergence is guaranteed under convex objective function, convergence is very slow
 - Extremely robust

