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Dimension reduction 
• For an input high dimensional data source , find a 

low dimensional representation  with  that 
“best” approximate the original data  
• Determine a pair of transforms  

(encoder) and  (decoder) such that 
, and  is 

minimized, where L is a loss function 
• Dimension reduction is an example of unsupervised 

learning problem (self-supervised learning) 
• The dimensionality constraint is served as an 

information bottleneck, filtering out less relevant 
information as discarded dimension

x ∈ ℛd

x̃ ∈ ℛm m ≪ d

ϕ : ℛd ↦ ℛm

ψ : ℛm ↦ ℛd

x̃ = ϕ(x) L(x − ψ(x̃)) = L(x − ψ(ϕ(x)))



Nonlinear dimension reduction
• When we choose the encoder and decoder as nonlinear 

functions, it is nonlinear dimension reduction 
• All data in the d-dimensional space is fully represented 

by points in an m-dimensional space non-linearly 
embedded in the d-dimensional space 

• A low dimensional subspace nonlinearly embedded in the 
high dimensional space can be modeled as a manifold, 
nonlinear dimension reduction aims to recover the m-
dimensional subspace 



Examples of nonlinear manifolds 
• Consider all images of number 4 

• Each image is treated as a  
point in a high-dimensional 
space as vectorized pixel 
values 

• All images of number 4 with 
different rotation angles are related by a smooth path, 
corresponding to different angles  

• If we recover this intrinsic low dimensional manifold, it 
helps to understand the structure in this dataset 
• Synthesis: generate data of given configuration 
• denoising/projection: find closest examples on the 

manifold close to an input



Manifold
• A mathematical (differential geometric) entity that is 

locally described with linear space (tangent space) 
• Manifold is smooth (differentiable) 
• At the adjacency of any point on the manifold, it can 

be closely approximated by a linear space (tangent 
space) 

• Globally it has a nonlinear structure



Manifold
• The curve corresponding to the shortest distance between 

any two points on a manifold is known as the geodesic 
curve 
• In a linear space, the geodesic is a straight line 
• In curved manifold, the geodesic is usually nonlinear 

and different from a straight-line in the ambient space 
• ex. The great arc on the surface of the earth 

• If we can recover the correct  
geodesic distance between any 
pair of points, we can recover  
the nonlinear manifold 
• The algorithm is known as  

ISOMAP [Tenebaum et.al., 2005]



ISOMAP
• ISOMAP assume a set of high dimensional data points 

are determined by a low dimensional nonlinear manifold 
• The basic idea of ISOMAP is to estimate the geodesic 

distance from a finite dataset 
• Then from all pair geodesic distance we can obtain the 

Gram matrix, and further recover the low dimensional 
data representation 



Estimating geodesic distances
• Construct a graph using the top k-nearest neighbors of 

every data point in the set [k is a hyper-parameter] 
• The weight of each edge is the Euclidean distance 

between the two points 
• Instead of using their direct Euclidean distance, we 

measure the distance between any two points using the 
shortest path between them 
• This gives an approximation to  

the geodesic distance of the  
two points on the surface of the 
manifold 



Floyd algorithm
• The Floyd algorithm finds the shortest paths between any 

pair of nodes in a weighted undirected graph with a 
running time of O(n3), for n being the total number of 
nodes in a graph 
• a dynamic programming algorithm 

• The result is an n-by-n matrix containing pairwise 
distances for the nodes on the graph 
• This matrix is known as the distance matrix



MDS
• The geodesic distance between two points on the 

manifold corresponds to the Euclidean distance between 
the two points on the “flattened” manifold 

• We can recover the coordinates of the points on the 
manifold using such pairwise distances if we assume data 
on the flattened manifold is centered  
• X1 = 0, so G1 = XTX1 = 0 

• we use the squared distance matrix to obtain low 
dimensional representation, this process is known as the 
multi-dimensional scaling (MDS) algorithm



From distance matrix to Gram matrix
• Distance matrix: Dij = squared Euclidean distance 

between two vectors xi and xj 
• Gram matrix: G = XTX, or Gij = xiTxj, inner products 

between two vectors xi and xj 
• Relation between distance matrix and Gram matrix 

• Then we can obtain 

• this procedure is called double centering, i.e., it centers a 
matrix across both rows and columns

D = diag(G)1T + 1diag(G)T − 2G

G = −
1
2 (I −

1
n

11T) D (I −
1
n

11T)



Derivations 
• First, , or 

, put in the form of matrices, we get 
   ————(*) 

• Multiply both sides by vector 1 and assume G1 = 0 
(centered data), we have 

 
• Multiply by vector 1 on the left  
• Put this back 

 

• Now we have  and putting 

this back to (*) and with some algebraic manipulation shows 
the result

Dij = (xi − xj)T(xi − xj) = xT
i xi − 2xT

i xj + xT
j xj

Dij = Gii − 2Gij + Gjj
D = diag(G)1T + 1diag(G)T − 2G

D1 = diag(G)1T1 + 1diag(G)T1 = ndiag(G) + diag(G)T11
1TD1 = 2n1Tdiag(G)

D1 = diag(G)1T1 + 1diag(G)T1 = ndiag(G) +
1
2n

1TD11

diag(G) =
1
n

D1 −
1

2n2
1TD11



Obtaining low dimensional representation
• With the Gram matrix, we aim to further recover the low 

dimensional representation 
• G = XTX is a symmetric and PSD matrix, so according to 

the spectral theorem, it can be decomposed as G = UΓUT, 
where U is an orthonormal matrix,  Γ is a diagonal matrix 
containing nonnegative eigenvalues of G 

• We can then recover data representation X by 
decomposing G as G= UΓ½Γ½UT, so setting X = Γ½UT, 
we get data low dimensional representation  
• It is not unique, there are many similar decompositions 

• We obtain a low dimensional representation of the data 
• New data points can be projected on the manifold by 

interpolation



ISOMAP summary
• advantage: theoretical guarantee of performance 
• drawback: sensitivity to hyper-parameter choices (degree 

of neighbors)


