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Dimension reduction

- For an input high dimensional data source x € %<, find a
low dimensional representation X € £ with m < d that
“best” approximate the original data

- Determine a pair of transforms ¢ : B¢ > R
(encoder) and v : B — R (decoder) such that

X = ¢(x), and L(x — w(X)) = L(x — w(¢(x))) 18
minimized, where L 1s a loss function

- Dimension reduction 1s an example of unsupervised
learning problem (self-supervised learning)

+ The dimensionality constraint 1s served as an
information bottleneck, filtering out less relevant
information as discarded dimension



Nonlinear dimension reduction

When we choose the encoder and decoder as nonlinear
functions, 1t 1s nonlinear dimension reduction

All data 1n the d-dimensional space 1s fully represented
by points in an m-dimensional space non-linearly
embedded in the d-dimensional space

A low dimensional subspace nonlinearly embedded in the
high dimensional space can be modeled as a manifold,
nonlinear dimension reduction aims to recover the m-
dimensional subspace




Examples of nonlinear manifolds

Consider all images of number 4

q

- Each image 1s treated as a
point 1n a high-dimensional
space as vectorized pixel
values

- All images of number 4 with
different rotation angles are related by a smooth path,
corresponding to different angles

-+ If we recover this intrinsic low dimensional manifold, it
helps to understand the structure in this dataset

- Synthesis: generate data of given configuration

- denoising/projection: find closest examples on the
manifold close to an input



Manifold

- A mathematical (differential geometric) entity that 1s
locally described with linear space (tangent space)

- Manifold 1s smooth (differentiable)

- At the adjacency of any point on the manifold, i1t can

be closely approximated by a linear space (tangent
space)

+ Globally 1t has a nonlinear structure




Manifold

The curve corresponding to the shortest distance between
any two points on a manifold 1s known as the geodesic
curve

- In a linear space, the geodesic 1s a straight line

» In curved manifold, the geodesic 1s usually nonlinear
and different from a straight-line 1n the ambient space

ex. The great arc on the surface of the earth

If we can recover the correct et
gepdesw c.hstance between any AT S\
pair of points, we can recover N )

the nonlinear manifold

» The algorithm 1s known as

ISOMAP [Tenebaum et.al., 2005] - o




ISOMAP

- ISOMAP assume a set of high dimensional data points
are determined by a low dimensional nonlinear manifold

» The basic 1dea of ISOMAP 1s to estimate the geodesic
distance from a finite dataset

I

» Then from all pair geodesic distance we can obtain the
Gram matrix, and further recover the low dimensional
data representation




Estimating geodesic distances

Construct a graph using the top k-nearest neighbors of
every data point 1n the set [k 1s a hyper-parameter]

- The weight of each edge 1s the Euclidean distance
between the two points

Instead of using their direct Euclidean distance, we
measure the distance between any two points using the
shortest path between them

- This gives an approximation to
the geodesic distance of the
two points on the surface of the
manifold




Floyd algorithm

The Floyd algorithm finds the shortest paths between any
pair of nodes 1n a weighted undirected graph with a
running time of O(n3), for n being the total number of

nodes in a graph
 a dynamic programming algorithm

Initialize
for k=1 ton
fori=1ton
for j=1ton
if Dist[i,j] > Dist[i, k] + Dist[k,j]
then Dist[i,j] < Dist[i,k] + Dist[k,]]

The result 1s an n-by-n matrix containing pairwise
distances for the nodes on the graph

- This matrix 1s known as the distance matrix



MDS

The geodesic distance between two points on the
manifold corresponds to the Euclidean distance between
the two points on the “flattened” manifold

- We can recover the coordinates of the points on the
manifold using such pairwise distances i1f we assume data
on the flattened manifold is centered

« X1=0,5s0G]l =XTX1=0

- we use the squared distance matrix to obtain low
dimensional representation, this process 1s known as the
multi-dimensional scaling (MDS) algorithm



From distance matrix to Gram matrix

- Distance matrix: Dj; = squared Euclidean distance
between two vectors X; and x;

»  Gram matrix: G = XTX, or Gj; = x;TXj, inner products
between two vectors xi and x;

« Relation between distance matrix and Gram matrix

D = diag(G)1" + 1diag(G)! — 2G

« Then we can obtain

1 1 1
G=—— <I——11T>D (1——11T>
2 n n

« this procedure 1s called double centering, 1.¢., 1t centers a
matrix across both rows and columns



Derivations

- — (v — V(v — v — Ty 9T T
- First, Dy = (x5, — X)) (5 — X)) = x; x; — 2x; x; + X/ x;, or

D, = G; —2G;; + G, put in the form of matrices, we get

D = diag(G)1! + 1diag(G)! — 2G (*)

- Multiply both sides by vector 1 and assume G1 =0
(centered data), we have

D1 = diag(G)1'1 + 1diag(G)"'1 = ndiag(G) + diag(G)'11
- Multiply by vector 1 on the left 17 D1 = 2n1’diag(G)
- Put this back

1
D1 = diag(G)1'1 + 1diag(G)'1 = ndiag(G) + 2—1TD11
n

1 1
. Now we have diag(G) = —D1 — FITDII and putting
n n

this back to (*) and with some algebraic manipulation shows
the result



Obtaining low dimensional representation

+  With the Gram matrix, we aim to further recover the low
dimensional representation

- G = XTX 1s a symmetric and PSD matrix, so according to
the spectral theorem, 1t can be decomposed as G = UI'UT,
where U 1s an orthonormal matrix, I'1s a diagonal matrix
containing nonnegative eigenvalues of G

- We can then recover data representation X by
decomposing G as G= UI'21 2UT, so setting X = I"/4UT,
we get data low dimensional representation

- It 1s not unique, there are many similar decompositions
- We obtain a low dimensional representation of the data

- New data points can be projected on the manifold by
interpolation



ISOMAP summary

- advantage: theoretical guarantee of performance

- drawback: sensitivity to hyper-parameter choices (degree
of neighbors)




