CSI 436/536

Introduction to Machine Learning

Dimension reduction: MDS \& ISOMAP

Professor Siwei Lyu
Computer Science
University at Albany, State University of New York

Dimension reduction

- For an input high dimensional data source $x \in \mathscr{R}^{d}$, find a low dimensional representation $\tilde{x} \in \mathscr{R}^{m}$ with $m \ll d$ that "best" approximate the original data
- Determine a pair of transforms $\phi: \mathscr{R}^{d} \mapsto \mathscr{R}^{m}$ (encoder) and $\psi: \mathscr{R}^{m} \mapsto \mathscr{R}^{d}$ (decoder) such that $\tilde{x}=\phi(x)$, and $L(x-\psi(\tilde{x}))=L(x-\psi(\phi(x)))$ is minimized, where L is a loss function
- Dimension reduction is an example of unsupervised learning problem (self-supervised learning)
- The dimensionality constraint is served as an information bottleneck, filtering out less relevant information as discarded dimension

Nonlinear dimension reduction

- When we choose the encoder and decoder as nonlinear functions, it is nonlinear dimension reduction
- All data in the d-dimensional space is fully represented by points in an m-dimensional space non-linearly embedded in the d-dimensional space
- A low dimensional subspace nonlinearly embedded in the high dimensional space can be modeled as a manifold, nonlinear dimension reduction aims to recover the m dimensional subspace

Examples of nonlinear manifolds

- Consider all images of number 4
- Each image is treated as a point in a high-dimensional space as vectorized pixel values
- All images of number 4 with
 different rotation angles are related by a smooth path, corresponding to different angles
- If we recover this intrinsic low dimensional manifold, it helps to understand the structure in this dataset
- Synthesis: generate data of given configuration
- denoising/projection: find closest examples on the manifold close to an input

Manifold

- A mathematical (differential geometric) entity that is locally described with linear space (tangent space)
- Manifold is smooth (differentiable)
- At the adjacency of any point on the manifold, it can be closely approximated by a linear space (tangent space)
- Globally it has a nonlinear structure

Manifold

- The curve corresponding to the shortest distance between any two points on a manifold is known as the geodesic curve
- In a linear space, the geodesic is a straight line
- In curved manifold, the geodesic is usually nonlinear and different from a straight-line in the ambient space
- ex. The great arc on the surface of the earth
- If we can recover the correct geodesic distance between any pair of points, we can recover the nonlinear manifold
- The algorithm is known as ISOMAP [Tenebaum et.al., 2005]

ISOMAP

- ISOMAP assume a set of high dimensional data points are determined by a low dimensional nonlinear manifold
- The basic idea of ISOMAP is to estimate the geodesic distance from a finite dataset
- Then from all pair geodesic distance we can obtain the Gram matrix, and further recover the low dimensional data representation

Estimating geodesic distances

- Construct a graph using the top k-nearest neighbors of every data point in the set [k is a hyper-parameter]
- The weight of each edge is the Euclidean distance between the two points
- Instead of using their direct Euclidean distance, we measure the distance between any two points using the shortest path between them
- This gives an approximation to the geodesic distance of the two points on the surface of the manifold

Floyd algorithm

- The Floyd algorithm finds the shortest paths between any pair of nodes in a weighted undirected graph with a running time of $\mathrm{O}\left(\mathrm{n}^{3}\right)$, for n being the total number of nodes in a graph
- a dynamic programming algorithm

Initialize
for $\mathrm{k}=1$ to n
for $\mathrm{i}=1$ to n for $\mathrm{j}=1$ to n
if Dist[i,j] > Dist[i,k] + Dist[k,j]
 then $\operatorname{Dist}[i, j] \leftarrow \operatorname{Dist}[i, k]+\operatorname{Dist}[k, j]$

- The result is an n-by-n matrix containing pairwise distances for the nodes on the graph
- This matrix is known as the distance matrix

MDS

- The geodesic distance between two points on the manifold corresponds to the Euclidean distance between the two points on the "flattened" manifold
- We can recover the coordinates of the points on the manifold using such pairwise distances if we assume data on the flattened manifold is centered
- $\mathrm{X} 1=0$, so $\mathrm{G} 1=\mathrm{X}^{\mathrm{T}} \mathrm{X} 1=0$
- we use the squared distance matrix to obtain low dimensional representation, this process is known as the multi-dimensional scaling (MDS) algorithm

From distance matrix to Gram matrix

- Distance matrix: $\mathrm{D}_{\mathrm{ij}}=$ squared Euclidean distance between two vectors \mathbf{x}_{i} and \mathbf{x}_{j}
- Gram matrix: $\mathrm{G}=\mathrm{X}^{\mathrm{T}} \mathrm{X}$, or $\mathrm{G}_{\mathrm{ij}}=\mathbf{x}_{\mathrm{i}}{ }^{\mathrm{T}} \mathbf{x}_{\mathrm{j}}$, inner products between two vectors \mathbf{x}_{i} and \mathbf{x}_{j}
- Relation between distance matrix and Gram matrix

$$
D=\operatorname{diag}(G) 1^{T}+1 \operatorname{diag}(G)^{T}-2 G
$$

- Then we can obtain

$$
G=-\frac{1}{2}\left(I-\frac{1}{n} 11^{T}\right) D\left(I-\frac{1}{n} 11^{T}\right)
$$

- this procedure is called double centering, i.e., it centers a matrix across both rows and columns

Derivations

- First, $D_{i j}=\left(x_{i}-x_{j}\right)^{T}\left(x_{i}-x_{j}\right)=x_{i}^{T} x_{i}-2 x_{i}^{T} x_{j}+x_{j}^{T} x_{j}$, or $D_{i j}=G_{i i}-2 G_{i j}+G_{j j}$, put in the form of matrices, we get $D=\operatorname{diag}(G) 1^{T}+1 \operatorname{diag}(G)^{T}-2 G$ \qquad
- Multiply both sides by vector 1 and assume G1 = 0 (centered data), we have $D 1=\operatorname{diag}(G) 1^{T} 1+1 \operatorname{diag}(G)^{T} 1=\operatorname{ndiag}(G)+\operatorname{diag}(G)^{T} 11$
- Multiply by vector 1 on the left $1^{T} D 1=2 n 1^{T} \operatorname{diag}(G)$
- Put this back
$D 1=\operatorname{diag}(G) 1^{T} 1+1 \operatorname{diag}(G)^{T} 1=\operatorname{ndiag}(G)+\frac{1}{2 n} 1^{T} D 11$
- Now we have $\operatorname{diag}(G)=\frac{1}{n} D 1-\frac{1}{2 n^{2}} 1^{T} D 11$ and putting this back to $\left(^{*}\right)$ and with some algebraic manipulation shows the result

Obtaining low dimensional representation

- With the Gram matrix, we aim to further recover the low dimensional representation
- $\mathrm{G}=\mathrm{X}^{\mathrm{T}} \mathrm{X}$ is a symmetric and PSD matrix, so according to the spectral theorem, it can be decomposed as $\mathrm{G}=\mathrm{U} \Gamma \mathrm{U}^{\mathrm{T}}$, where U is an orthonormal matrix, Γ is a diagonal matrix containing nonnegative eigenvalues of G
- We can then recover data representation X by decomposing G as $\mathrm{G}=\mathrm{U} \Gamma^{1 / 2} \Gamma^{1 / 2} \mathrm{U}^{\mathrm{T}}$, so setting $\mathrm{X}=\Gamma^{1 / 2} \mathrm{U}^{\mathrm{T}}$, we get data low dimensional representation
- It is not unique, there are many similar decompositions
- We obtain a low dimensional representation of the data
- New data points can be projected on the manifold by interpolation

ISOMAP summary

- advantage: theoretical guarantee of performance
- drawback: sensitivity to hyper-parameter choices (degree of neighbors)

