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Neural networks



Perceptron
• A single artificial neuron with step-function as activation 

function is known as perceptron 
•  
• Same as linear classification 

function for LDA, logistic  
regression, and linear SVM 

• online training algorithm 
• first developed by McClum & Pitts in the 1950s 
• An instance of online stochastic  

gradient descent algorithm 
• convergence is theoretically  

guaranteed

f(x; w, b) = sign(w⊤x + b)



Perceptron algorithm 

Fix error when occurs



Perceptron algorithm
• A very important algorithm for many reasons 

• Online stochastic gradient algorithm  
• Consistent with "Hebbian learning”, fixing error by 

compensating in the same direction 
• Problems 

• (Minsky & Pappert 1962) linear  
classifier cannot separate XOR  
type of data (non-separable)



Multi-layer perceptron
• Adding multiple layers 
• Introduce smooth activation  

functions

McCulloch–Pitts “unit”

Output is a “squashed” linear function of the inputs:

ai← g(ini) = g
(

ΣjWj,iaj

)

Output

Σ
Input 
Links

Activation 
Function

Input 
Function

Output 
Links

a0 = −1 ai = g(ini)

ai

giniWj,i

W0,i

Bias Weight

aj

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

Chapter 20, Section 5 4

• Sigmoid function  
σ(x) =(1+e-x)-1  

• hyperbolic tangent function:  
tanh(x) = 2σ(x) - 1 

• rectified linear unit function:  
relu(x) = max(x,0)

15 Rectified linear as a better activation function

One of the recent advances in neural networks is to use the rectified linear units (a.k.a. ReLUs, g(z) =
max(0, z)) as an activation function in place of the traditional sigmoid function [13]:

The change from sigmoid to ReLUs as an activation function in a hidden layer is possible because the
hidden neurons need not to have bounded values. It has been observed empirically that this activation
function allows for better approximation quality: the objective function is lower on the training set. It is
therefore recommended to use rectified linear units instead of sigmoid function in your neural networks.

The reason for why rectified linear units work better than sigmoid is still an open question for research,
but maybe the following argument can give an intuition.

First, notice that in the backpropagation algorithm to compute the gradient for the parameters in one
layer, we typically multiply the gradient from the layer above with the partial derivative of the sigmoid
function:
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The issue is that the derivative of the sigmoid function has very small values (near zero) everywhere except
for when the input has values of 0, as the figure below suggests:

which means that the lower layers will likely to have smaller gradients in terms of magnitude, compared
to the higher layers. This is because g0(.) is always less than 1, with most values being 0. This imbalance
in gradient magnitude makes it di�cult to change the parameters of the neural networks with stochastic
gradient descent. A large learning rate is suitable for lower layers but not suitable for higher layers, and
causes great fluctuations in the objective function. A small learning rate is suitable for lower layers but
not suitable for higher layers, and causes small changes in the parameters in higher layers.
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Back propagation
• Training method for multi-layer perceptrons, or feed-

forward neural networks  
• developed by Rumelhart, Hinto and Williams in 1980s 

• treat NN as a parametric function input to output  
• use training data (input-output pairs) to perform 

supervise training 
• minimize training error (measured by a loss 

function) with regards to the NN 
• dynamic programming computation of the gradient 

to the parameter



• feed-forward network = a parameterized family of 
nonlinear functions 

• adjusting weights changes the function: this is how NN is 
trained

feedforward neural network

Feed-forward example
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Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Adjusting weights changes the function: do learning this way!

Chapter 20, Section 5 8
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• Computing graph (DAG) 
• input layer 

• input weights 
• hidden layers 

• activation 

• hidden weights 

• output layer



Compute gradient
• Network structure x: input data, y: target variable,  

for i=2,…m 
     hi: i-th layer output  
     wi: network weight of i-th layer (matrix) 

• loss function : L2 loss, log likelihood, cross-
entropy, etc 

• Learning objective: with training data 

hi(x) = g(wT
i hi−1(x))

L(y, hn(x))

minw1,⋯,wn
L(w1, ⋯, wn) = ∑n

k=1 L(yk, hn(xk))

Deep Representations

I A deep representation is a composition of many functions

x // h1 // ... // hn // y // l

w1

OO

... wn

OO

I Its gradient can be backpropagated by the chain rule
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Optimization by gradient
• The learning objective is  

            

• We perform stochastic gradient optimization 
• Initializing W(0) 
• Iterate until convergence 

     W(t) = W(t-1)  - ηt∇L(W(t-1)) 

• ∇L(W(t-1)) is the gradient of loss 
function w.r.t network parameter 

•   is the step size  

• the key to compute ∇L(W(t-1)) is the  
chain rule in calculus

minW L(W) = ∑n
k=1 L(yk, hn(xk))

ηt =
η0

t + 1

Training Neural Networks by Stochastic Gradient Descent

I Sample gradient of expected loss L(w) = E [l ]
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Computation graph
• computation graph: a directed acyclic graph 

• node: variables (inputs and outputs of neurons) 
• edge: dependencies of variables 
• (y1,…yn) are children of xChain Rule in Flow Graph

…

…

…

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

= successors of 
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Chain Rule in Flow Graph

…

…

…

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

= successors of 
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Chain rule
• Chain rule:  

• Multiplication along one route   
• Addition for different branch 

• This is a type of algebra rules that 
can be automated 

• Modern ML/NN packages provide 
automatic gradient derivations 
• Theano, PyTorch, TensorFlow

Simple Chain Rule

62

Multiple Paths Chain Rule
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Multiple Paths Chain Rule - General

…
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BP algorithm
• BP = gradient descent update, so we need to compute 

gradient of weights of each layer 
• gradient of loss function w.r.t. wi using chain rule 

 

• recursion  

 

and  

 

• Dynamic programming 
to reduce computation
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BP algorithm
• BP algorithm compute ∂L/∂hn [this shows one step in the 

iteration over all data and until convergence] 
for i = n:-1:1 (back propagation) 

     gradient computation:   

        update current value of wi with  

     error propagation 
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Compute gradient
• Each layer  

• , 

hi(x) = g(wT
i hi−1(x))

∂hi

∂hi−1
= g′ (wT

i hi−1(x))wi
∂hi

∂wi
= g′ (wT

i hi−1(x))hi−1(x)

Forward direction

Backward direction



drawbacks of BP-trained MLP
• Vanishing gradient  

 

• The gradient will vanish after several layers of BP 
• Squashing nonlinearity like sigmoid or tanh reduce the 

range of the values 
• Multiplying smaller values eventually reduce the 

update to zero (below numerical precision) 
• No NN can be effectively trained up to 3 layers — so not 

very deep model can be used 
• This is one reason NN lost favor in ML in late 1990s, 

which paved the way to SVM  
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gradient check
• NN code is difficult to debug 
• gradient check is a simple trick to make sure no bug in 

the implementation 
• implement gradient  
• implement a finite difference computation by looping 

through the parameters of your network, adding and 
subtracting a small epsilon (∼10-4) and estimate 
derivatives  
 

• compare the two and make sure they are almost the 
same 

Gradient Checks are Awesome!

• Allow you to know that there are no bugs in your neural 
network implementation!

• Steps:
1. Implement your gradient
2. Implement a finite difference computation by looping 

through the parameters of your network, adding and 
subtracting a small epsilon (∼10^-4) and estimate 
derivatives

3. Compare the two and make sure they are almost the same196

,



Deriving gradient check
• Taylor expansion 

  f(x+ε) = f(x) + ε∇f(x) + 0.5εT∇2f(x)ε + O(ε3) 
  f(x-ε) = f(x) - ε∇f(x) + 0.5εT∇2f(x)ε + O(ε3) 

• So if we use (f(x+ε) -f(x))/ε we have second order error, 
while if we use (f(x+ε) -f(x-ε))/2ε we only have third 
order error


