
CSI 436/536
Introduction to Machine Learning

Professor Siwei Lyu
Computer Science

University at Albany, State University of New York

Basic Neural Networks

Neural networks

Perceptron
• A single artificial neuron with step-function as activation

function is known as perceptron
•
• Same as linear classification

function for LDA, logistic
regression, and linear SVM

• online training algorithm
• first developed by McClum & Pitts in the 1950s
• An instance of online stochastic

gradient descent algorithm
• convergence is theoretically

guaranteed

f(x; w, b) = sign(w⊤x + b)

Perceptron algorithm

Fix error when occurs

Perceptron algorithm
• A very important algorithm for many reasons

• Online stochastic gradient algorithm
• Consistent with "Hebbian learning”, fixing error by

compensating in the same direction
• Problems

• (Minsky & Pappert 1962) linear
classifier cannot separate XOR
type of data (non-separable)

Multi-layer perceptron
• Adding multiple layers
• Introduce smooth activation

functions

McCulloch–Pitts “unit”

Output is a “squashed” linear function of the inputs:

ai← g(ini) = g
(

ΣjWj,iaj

)

Output

Σ
Input
Links

Activation
Function

Input
Function

Output
Links

a0 = −1 ai = g(ini)

ai

giniWj,i

W0,i

Bias Weight

aj

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

Chapter 20, Section 5 4

• Sigmoid function
σ(x) =(1+e-x)-1

• hyperbolic tangent function:
tanh(x) = 2σ(x) - 1

• rectified linear unit function:
relu(x) = max(x,0)

15 Rectified linear as a better activation function

One of the recent advances in neural networks is to use the rectified linear units (a.k.a. ReLUs, g(z) =
max(0, z)) as an activation function in place of the traditional sigmoid function [13]:

The change from sigmoid to ReLUs as an activation function in a hidden layer is possible because the
hidden neurons need not to have bounded values. It has been observed empirically that this activation
function allows for better approximation quality: the objective function is lower on the training set. It is
therefore recommended to use rectified linear units instead of sigmoid function in your neural networks.

The reason for why rectified linear units work better than sigmoid is still an open question for research,
but maybe the following argument can give an intuition.

First, notice that in the backpropagation algorithm to compute the gradient for the parameters in one
layer, we typically multiply the gradient from the layer above with the partial derivative of the sigmoid
function:

�(l) =

✓�
✓(l)

�T
�(l+1)

◆
� g0

✓�
✓(l�1)

�T
h(l�1) + b(l�1)

◆

The issue is that the derivative of the sigmoid function has very small values (near zero) everywhere except
for when the input has values of 0, as the figure below suggests:

which means that the lower layers will likely to have smaller gradients in terms of magnitude, compared
to the higher layers. This is because g0(.) is always less than 1, with most values being 0. This imbalance
in gradient magnitude makes it di�cult to change the parameters of the neural networks with stochastic
gradient descent. A large learning rate is suitable for lower layers but not suitable for higher layers, and
causes great fluctuations in the objective function. A small learning rate is suitable for lower layers but
not suitable for higher layers, and causes small changes in the parameters in higher layers.

15

15 Rectified linear as a better activation function

One of the recent advances in neural networks is to use the rectified linear units (a.k.a. ReLUs, g(z) =
max(0, z)) as an activation function in place of the traditional sigmoid function [13]:

The change from sigmoid to ReLUs as an activation function in a hidden layer is possible because the
hidden neurons need not to have bounded values. It has been observed empirically that this activation
function allows for better approximation quality: the objective function is lower on the training set. It is
therefore recommended to use rectified linear units instead of sigmoid function in your neural networks.

The reason for why rectified linear units work better than sigmoid is still an open question for research,
but maybe the following argument can give an intuition.

First, notice that in the backpropagation algorithm to compute the gradient for the parameters in one
layer, we typically multiply the gradient from the layer above with the partial derivative of the sigmoid
function:

�(l) =

✓�
✓(l)

�T
�(l+1)

◆
� g0

✓�
✓(l�1)

�T
h(l�1) + b(l�1)

◆

The issue is that the derivative of the sigmoid function has very small values (near zero) everywhere except
for when the input has values of 0, as the figure below suggests:

which means that the lower layers will likely to have smaller gradients in terms of magnitude, compared
to the higher layers. This is because g0(.) is always less than 1, with most values being 0. This imbalance
in gradient magnitude makes it di�cult to change the parameters of the neural networks with stochastic
gradient descent. A large learning rate is suitable for lower layers but not suitable for higher layers, and
causes great fluctuations in the objective function. A small learning rate is suitable for lower layers but
not suitable for higher layers, and causes small changes in the parameters in higher layers.

15

Back propagation
• Training method for multi-layer perceptrons, or feed-

forward neural networks
• developed by Rumelhart, Hinto and Williams in 1980s

• treat NN as a parametric function input to output
• use training data (input-output pairs) to perform

supervise training
• minimize training error (measured by a loss

function) with regards to the NN
• dynamic programming computation of the gradient

to the parameter

• feed-forward network = a parameterized family of
nonlinear functions

• adjusting weights changes the function: this is how NN is
trained

feedforward neural network

Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Adjusting weights changes the function: do learning this way!

Chapter 20, Section 5 8

Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Adjusting weights changes the function: do learning this way!

Chapter 20, Section 5 8

• Computing graph (DAG)
• input layer

• input weights
• hidden layers

• activation

• hidden weights

• output layer

Compute gradient
• Network structure x: input data, y: target variable,

for i=2,…m
 hi: i-th layer output
 wi: network weight of i-th layer (matrix)

• loss function : L2 loss, log likelihood, cross-
entropy, etc

• Learning objective: with training data

hi(x) = g(wT
i hi−1(x))

L(y, hn(x))

minw1,⋯,wn
L(w1, ⋯, wn) = ∑n

k=1 L(yk, hn(xk))

Deep Representations

I A deep representation is a composition of many functions

x // h1 // ... // hn // y // l

w1

OO

... wn

OO

I Its gradient can be backpropagated by the chain rule

@l
@x

@l
@h1

@h1
@x
oo

@h1
@w1
✏✏

...

@h2
@h1
oo

@l
@hn

@hn
@hn�1
oo

@hn
@wn
✏✏

@l
@y

@y
@hn
oo

@l
@w1

... @l
@wn

y

Optimization by gradient
• The learning objective is

• We perform stochastic gradient optimization
• Initializing W(0)
• Iterate until convergence

 W(t) = W(t-1) - ηt∇L(W(t-1))

• ∇L(W(t-1)) is the gradient of loss
function w.r.t network parameter

• is the step size

• the key to compute ∇L(W(t-1)) is the
chain rule in calculus

minW L(W) = ∑n
k=1 L(yk, hn(xk))

ηt =
η0

t + 1

Training Neural Networks by Stochastic Gradient Descent

I Sample gradient of expected loss L(w) = E [l]

@l

@w
⇠ E


@l

@w

�
=

@L(w)

@w

I Adjust w down the sampled gradient

�w / @l

@w

!"#$%"&'(%")*+,#'-'!"#$%%" (%")*+,#'.+/0+,#

� !"#$%&'('%$&#()&*+$,*$#&&-&$$$$."'%"$
'*$%-/0'*,('-*$.'("$("#$1)*%('-*$
,22&-3'/,(-& %,*$0#$)+#4$(-$
%&#,(#$,*$#&&-&$1)*%('-*$$$$$$$$$$$$$

� !"#$2,&(',5$4'11#&#*(',5-1("'+$#&&-&$
1)*%('-*$$$$$$$$$$$$$$$$6$("#$7&,4'#*($
%,*$*-.$0#$)+#4$(-$)24,(#$("#$
'*(#&*,5$8,&',05#+$'*$("#$1)*%('-*$
,22&-3'/,(-& 9,*4$%&'('%:;$$$$$$

<&,4'#*($4#+%#*($=>?

Computation graph
• computation graph: a directed acyclic graph

• node: variables (inputs and outputs of neurons)
• edge: dependencies of variables
• (y1,…yn) are children of xChain Rule in Flow Graph

…

…

…

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

= successors of

65

Chain Rule in Flow Graph

…

…

…

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

= successors of

65

Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Adjusting weights changes the function: do learning this way!

Chapter 20, Section 5 8

Feed-forward example

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(W3,5 · a3 + W4,5 · a4)

= g(W3,5 · g(W1,3 · a1 + W2,3 · a2) + W4,5 · g(W1,4 · a1 + W2,4 · a2))

Adjusting weights changes the function: do learning this way!

Chapter 20, Section 5 8

Chain rule
• Chain rule:

• Multiplication along one route
• Addition for different branch

• This is a type of algebra rules that
can be automated

• Modern ML/NN packages provide
automatic gradient derivations
• Theano, PyTorch, TensorFlow

Simple Chain Rule

62

Multiple Paths Chain Rule

63

Multiple Paths Chain Rule - General

…

64

BP algorithm
• BP = gradient descent update, so we need to compute

gradient of weights of each layer
• gradient of loss function w.r.t. wi using chain rule

• recursion

and

• Dynamic programming
to reduce computation

∂L
∂wi

=
∂L
∂hn

∂hn

∂hn−1
⋯

∂hi+1

∂hi

∂hi

∂wi

∂L
∂hi−1

=
∂L
∂hi

∂hi

∂hi−1

∂L
∂wi

=
∂L
∂hi

∂hi

∂wi

Deep Representations

I A deep representation is a composition of many functions

x // h1 // ... // hn // y // l

w1

OO

... wn

OO

I Its gradient can be backpropagated by the chain rule

@l
@x

@l
@h1

@h1
@x
oo

@h1
@w1
✏✏

...

@h2
@h1
oo

@l
@hn

@hn
@hn�1
oo

@hn
@wn
✏✏

@l
@y

@y
@hn
oo

@l
@w1

... @l
@wn

Deep Representations

I A deep representation is a composition of many functions

x // h1 // ... // hn // y // l

w1

OO

... wn

OO

I Its gradient can be backpropagated by the chain rule

@l
@x

@l
@h1

@h1
@x
oo

@h1
@w1
✏✏

...

@h2
@h1
oo

@l
@hn

@hn
@hn�1
oo

@hn
@wn
✏✏

@l
@y

@y
@hn
oo

@l
@w1

... @l
@wn

BP algorithm
• BP algorithm compute ∂L/∂hn [this shows one step in the

iteration over all data and until convergence]
for i = n:-1:1 (back propagation)

 gradient computation:

 update current value of wi with

 error propagation

∂L
∂wi

=
∂L
∂hi

∂hi

∂wi

−ηt
∂L
∂wi

∂L
∂hi−1

=
∂L
∂hi

∂hi

∂hi−1

Deep Representations

I A deep representation is a composition of many functions

x // h1 // ... // hn // y // l

w1

OO

... wn

OO

I Its gradient can be backpropagated by the chain rule

@l
@x

@l
@h1

@h1
@x
oo

@h1
@w1
✏✏

...

@h2
@h1
oo

@l
@hn

@hn
@hn�1
oo

@hn
@wn
✏✏

@l
@y

@y
@hn
oo

@l
@w1

... @l
@wn

Compute gradient
• Each layer

• ,

hi(x) = g(wT
i hi−1(x))

∂hi

∂hi−1
= g′ (wT

i hi−1(x))wi
∂hi

∂wi
= g′ (wT

i hi−1(x))hi−1(x)

Forward direction

Backward direction

drawbacks of BP-trained MLP
• Vanishing gradient

• The gradient will vanish after several layers of BP
• Squashing nonlinearity like sigmoid or tanh reduce the

range of the values
• Multiplying smaller values eventually reduce the

update to zero (below numerical precision)
• No NN can be effectively trained up to 3 layers — so not

very deep model can be used
• This is one reason NN lost favor in ML in late 1990s,

which paved the way to SVM

∂L
∂wi

=
∂L
∂hn

∂hn

∂hn−1
⋯

∂hi+1

∂hi

∂hi

∂wi

gradient check
• NN code is difficult to debug
• gradient check is a simple trick to make sure no bug in

the implementation
• implement gradient
• implement a finite difference computation by looping

through the parameters of your network, adding and
subtracting a small epsilon (∼10-4) and estimate
derivatives

• compare the two and make sure they are almost the
same

Gradient Checks are Awesome!

• Allow you to know that there are no bugs in your neural
network implementation!

• Steps:
1. Implement your gradient
2. Implement a finite difference computation by looping

through the parameters of your network, adding and
subtracting a small epsilon (∼10^-4) and estimate
derivatives

3. Compare the two and make sure they are almost the same196

,

Deriving gradient check
• Taylor expansion

 f(x+ε) = f(x) + ε∇f(x) + 0.5εT∇2f(x)ε + O(ε3)
 f(x-ε) = f(x) - ε∇f(x) + 0.5εT∇2f(x)ε + O(ε3)

• So if we use (f(x+ε) -f(x))/ε we have second order error,
while if we use (f(x+ε) -f(x-ε))/2ε we only have third
order error

