CSI436/536
Introduction to Machine Learning

Deep Learning

Professor Siwei Lyu
Computer Science
University at Albany, State University of New York



the up and downs of NN

- first high wave 1960s: sitmple one layer perceptron

- first down wave 1970s: show of limitations of one layer
perception

- second high wave 1980s: development of BP and many
uses (and abuses)

- second down wave late 1990s to 2006: overfitting
problem and vanishing gradient

9 0.000250 | | | | | !
g —— cybernetics ;
A 0000200 _ . e i

connectionism + neural networks) ~ v
o .
: (connectioniom + newral networle) = s I'LL BE BACK
T 0.000150 -~ O P S S S _ . o
2 L -
B 0.000100 |- -v-vrerr e S i : — 7
> . . . . . . " '
O . . . . .
& . . . . . .
S 0.000050 |- ----- T N . ST S
U‘ ' ' ' ' ' g
g ; ; ; ; ;

-

= 0.000000 = = b = = = = | |

1940 1950 1960 1970 1980 1990 2000

Year




the up and downs of NN

- first high wave 1960s: sitmple one layer perceptron

- first NN winter 1970s: show of limitations of one layer
perception

- second high wave 1980s: development of BP and many
uses (and abuses)

- second NN winter late 1990s to 2006: overfitting
problem and vanishing gradient

» third high wave 2006 — now: deep learning (learning
with deep neural networks)

« third NN winter?



object recognition on ILSVC

before DL after DL
NEC UIUC
.\, XRCE
0.25
0.20
o)
;&' SuperVision
6 015
Lo
Clarifai
0.10
o5, — |\ T T T T T T T T T T T T wthgawn _
Trimps-Soushen

20M 2012 2013 2014 2015 2016 2017

2012: convolutional NN (Alex Net)
2014: ensemble MLP
2015: res-net



Deep learning players

&5 Race To Acquire Top Al Startups Heats Up

Date of acquisition (only includes 1st exits of companies)

2070 2011 2012 2013 2014 2015 2016 2017 2018

Dark Blue Labs -
DNNresearch Vision Factory Apial  AlMatter

. Jetpac | Granata Moodstocks )
Cleversense DeepMind "¢~ r B eful Halli Labs |g,-ior

Emotient SensoMotoric Regaind

Siri . . - Perceplio | tuplejump Lattice | |\ 4i
Novauris Tlechnolg|es Vocal IOJ Turi ’RealFaceJ Pbp Up Archive
Iy L 4

Masquerade Technologies
Face.com  Mobile Technologies q 9

Wit.ai ZurichEye  0zlo
| | R
) . Harvest.ai
Evi Technologies Orbeus AngeIAail STrI

© B & @

Nervana Systems

Indisys Saffron Technology ltseez | Movidius

SwiftKey Maluuba

Netbreeze Equivio | Genee |
|
=. * l s J Y
OculusAl Encore Alert Cosmify
Wrapidi
< 1 J rapllny \fqgo
Meltwater . Ji it
Outside Insight

Madbits Whetlab

l Te"ApaTJ Magic Pony

Tempo Al PredictionlO
{MinHash ‘ TetaMind

S

Source: chinsights.com *approximate dates of acquisition &2 CBINSIGHTS




many successes of DL

vis
S

oy [ S N N e e

" $24,000 0 77,147 " $21,600

] p 4 0 L RO N L) ’ 5

| . - .
T .




Turing award 2019

- Joshua Bengio, Geoff Hinton & Yann LeCun for their
contributions in deep learning




deep learning

- DL refers to an ensemble of learning methods, including
deep neural networks and other hierarchical models

» 1t has many layers of basic computing units
- Known as artificial neurons
- how deep 1s deep?

- recent work by Microsoft Research uses 150 layer
neural network for image recognition

» the handwritten digit recognition based on NN in the
1980s had only 3 layers




deep vs. shallow

- example of deep learning models:

- deep NN, stack RBM, stack AE, RNN, LSTM RNN,
etc...

- examples of shallow learning models:

- logistic regression, SVM, RBF network, MREF, etc...

Deep Network Shallow Network



why deep learning

- they are more efficient than “shallow networks”

- get the same level of performance a shallow network
will need many more parameters

- 1ntuition: deep network has many reusable components

- example: red neuron below used by many more other
neurons in deep network

m* ﬁ(ﬁ’ X)

Deep Network Shallow Network




Why deep learning

»+ Deep learning finds better data representations
automatically

Output
(object identity)

3rd hidden layer High-level
linguistic representations

object parts
(object p

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer .

(input pixels)




deep learning: why now?

- Powerful hardware

* GPU-based parallel computing NVIDIA

* Cloud data/computing service
- Availability of large datasets

- ImageNet, MS COCO, etc
- Powerful software frameworks

- TF, PyTorch, CAFFE, Theano

» Improved algorithms:

TITAN X

- resNet, highway network, U-net for better BP

- dropout, ReLLU activation, regularization to reduce
overfitting



Deep learning & big data

- We get bigger and bigger datasets

Dataset size (number examples)




Deep learning & big data

Deep learning

Traditional feature
—»  extraction +
machine learning

Performance

>

Amount of Data

Who’s afraid of overfitting?



Deep learning frameworks
- CAFFE/CAFFE2: written in C++

. good for CNN for GPU - Deep Leirnmg Iifauneonks.

e )L CNTK ¢ torch
- http://caffe.cs.berkeley.edu Tensor CNTK

==8 theano Gocgle

» TensorFlow: python
- http://openAl.google.com/tensorflow
- supported by Google & OpenAl, C-based
- Google TPU (tensor processing unit)

- Torch: written in LUA
- http://torch.org

+ Theano (Python CPU/GPU)
- http://deeplearning.net/software/theano

- can do automatic, symbolic differentiation



deep learning: why now

Better network structure

- Residual network (ResNet)

"

weight layer

H(x)

relu
Y

weight layer

- Better activation function

f(x) =0

y relu

f(x)

fix) =x

weight layer
Flx) l relu
weight laye

Flx) +x

f(x)

X
identity

f(x) =x

f(x) = a*x




Activation Function

Sigmoid | Leaky RelLU )
1 max(0.1x, x)
O'(CC)  14e® | |

tanh V Maxout

tanh(x) 4 ° max(wi x + by, w3 T + be)

RelU “ ELU
max(0,2) ey 2




Major DNN models

» Supervised learning;:

» Convolutional neural networks (CNN)
* Sequence learning

- Recurrent neural networks (RNN)
* Unsupervised learning

+ Generative adversary networks (GAN)
-+ Reinforcement learning

» Deep reinforcement learning (DRL)



CNN

- Convolutional neural networks
- Popular NN architecture pioneered by Y. LeCun

- Using weight sharing (convolution) to reduce the

number of parameters

-+ #1 choice for computer vision applications

convolution +
nonlinearity

max pooling

convolution + pooling layers

vec

0O00O00COO0OCOO0CO

coo0oo0o000d886bb8

sunset

Bl pbird

>

psunset

- pdog

- D

cat

—

fully connected layers

Nx binary classification



Convolutional Neural Networks

Neural Network

Convolutional Neural Network

£ ]
4
A

AN

‘\4

N\
o0
;‘;

)
s
)

OC
®

. output layer

input layer
hidden layer 1 hidden layer 2
LeNet
Image Maps
Input
Convolutions \ | | Fully Connected

Subsampling

Bustration of LeCun et al. 1998 from CS231n 2017 Lecture 1



Convolution Details

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter




Convolution Details

A closer look at spatial dimensions:

/

/X7 input (spatially)
assume 3x3 filter




Convolution Details

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter




Convolution Details

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter




Convolution Details

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

=> 5x35 output




Convolution Details

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 2




Convolution Details

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 2




Convolution Details

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!




Convolution Details

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?




Convolution Details

A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.



Convolution Details

Output size:

(N - F) / stride + 1

eg.N=7,F=3:

stride 1 =>(7-3)/1+1=

stride 2=>(7-3)12+1=

(
stride 3 => (7 -3)/3+1=2.33 3\




Padding in Convolution

In practice: Common to zero pad the border

0

0

0

0

0

0
0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F)/ stride + 1



Padding in Convolution

In practice: Common to zero pad the border

0

0

0

0

0

0
0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!



Padding in Convolution

In practice: Common to zero pad the border

0

0

0

0

0

0
0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F =5 => zero pad with 2

F =7 => zero pad with 3



CNN for classification

VGG 16 for image classification

@ convolution4+ReLU

r_;‘[ max pooling
| fully connected+ReLU

| softmax

Input image Model

x 1
2
% 1% 1x 4096 _1x1x 1000 <

/Dog: 3%
Cat: 1%
Bus: 15%
TxTx512
14 x 14 x 51

Tree: 2%

prediction



Optimizer

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

4 4 Loss _
loss Learning rate decay!

low learning rate

high learning rate

good learning rate

Epoch



Combating vanishing gradient

- Non-saturating activation function (sparsity)

sigmoid " RelLU

1

O'(Z) :1 +e "

R(z) =maxz(0, z)
8 |

f(v)=ay

- Highway connection reduce the exact depth

AL
S~——




regularization

early stopping: use parameters with best validation error

- segment a part of training data as validation set (not
used 1n training)

* during training, monitor error on the validation set
- keep the lowest validation error

- stop training 1f validation error not improve after a
fixed number of 1terations

standard L1 or L2 regularization on weights
sparsity constraints on hidden activations

- weight sharing to reduce number of free parameters



parameter 1nitialization

- 1itialize hidden layer biases to 0 and output (or
reconstruction) biases to optimal value 1f weights were 0
(e.g., mean target or inverse sigmoid of mean target)

- 1nitialize weights ~ Uniform(—r, r),
r = (6/(fan-1n + fan-out))!/2
for tanh units, and
r = 4*(6/(fan-in + fan-out))!/2
for sigmoid units [ Xavier initialization]

« pre-training to set initial weight values
* using auto-encoder
- using RBM

- 1mprove network stability



setting learning rate

- simple recipe: keep 1t fixed and use the same for all
parameters

» better results obtained by allowing learning rates to
decrease, typically in O(1/t) because of theoretical
convergence guarantees

* no learning rate setting if use L-BFGS or AdaGrad

- AdaGrad: scale gradient by the square root of sum of
past gradient magnitudes



adaptive learning rate

- changing learning rates using previous gradient values
- AdaGrad, RMSprop, ADAM

J(w,b)

NE=—

1

J(w,b)



stochastic gradient update

» (sub) gradient method uses total gradient over all
examples per update, stochastic gradient updates after
only 1 or few examples

aL('Zta 9)
00

- L =loss function, z; = current example, 0 = parameter
vector, and & = learning rate

Al pli=1) _ ¢,

- ordinary gradient method as a batch method is very slow,
should never be used

« On smaller datasets use 2nd order batch method such
as L-BFGS or conjugate gradients

 On large datasets, SGD usually wins over all batch
methods



training schemes

 mini-batches in SGD
- balance between efficiency & variance
* bigger batch -> small variance
- smaller batch -> faster algorithm

- typical SGD convergence graph (vibrating)



dropout training

- training time: at each instance of evaluation (in online
SGD- training), randomly set 50% of the inputs to each
neuron to 0

- test time: halve the model weights (now twice as many)
- prevents feature co-adaptation:

- a feature cannot only be useful in the presence of
particular other features

as a form of model averaging as a strong regularizer



Data Augmentation

Input data augmentation, normalization

% Flipping Colour Jittering

Rotating Edge Enhancement

éﬂ- Cropping Fancy PCA

Followed by normalize image by dividing each pixel by 255.



RNN

- Recurrent neural networks
« NN with feedback links

» Unrolling in time leads to a network with
(conceptually) infinite number of layers

- Applications: sequential data analysis
text, speech, DNA, video, etc

®
LA

1
b LI

>

() W,
0o
b ©

Image from https://colah.github.io/posts/2015-08-Understanding-L.STMs/




RNN

Model structure

- Sequential link of RNN cells

W b ®
~ T\ ~ : - T\
A —> A —>
\I J J j v
© © &

Image from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

+ Input from previous time step carries “historic”
information from all previous input

* h1s known as the “latent” or ‘“hidden” state

- From hidden state output can be generated



Training RNN
BPTT (back propagation through time) with fixed window

All weights are tied together
Ey ) Fy Es Ey

Jalelu e )
S O OO QR

TTT71 ]

X0 X1 o) X3 X4

Vanishing gradient as in feedforward NN
“Future” loss has small effect on “present” cell

Squashing nonlinearity of hidden state 1s one problem

Image from https://colah.github.io/posts/2015-08-Understanding-L.STMs/




LSTM (Hochreiter & Schmidhuber ’94)

» Stands for long short-term memory cell

& W, <ET9

A

s N O R

—— > -

Canh>

A P A
o g

—»> > >

&) ) &)
- LSTM-RNN cell has

+ A short term “public” memory channel (bottom)

- along term “private” memory channel (top)

» Private channel 1s used to carry long term history
through the use of “gates”™

Image from https://colah.github.io/posts/2015-08-Understanding-L.STMs/




Why LSTM

» The public hidden state in vanilla RNN cell “forgets™ too
fast

® ® ® ®,0 ©
|

1 ETT Y
A

Ar— Alf"— A— A A

- The memory channel carries information that is strongly
affected by current iput

+ There are too many blocks in the way

Image from https://colah.github.io/posts/2015-08-Understanding-L.STMs/




How LSTM solves this

» Providing a more persistent information channel

Ct— 1 N\ ~\ Ct
® @ >

only simple multiplication and addition on the way

+ Modulate this channel with gates: sigmoid function
followed by point-wise multiplication

_®_




How LSTM solves this

- LSTM-RNN 1s “stateful” while CNN and RNN are
stateless

 Think about the long-term memory as a global variable
in a function

© ® ©

4 N\ N\ T\
A Letgtll A

\l J_> J >\| )_’

&) ) &)

- Three gates: forget gate, input gate, output gate

Image from https://colah.github.io/posts/2015-08-Understanding-L.STMs/




Summary

- RNN solves sequential learning problem through
recursion

* One problem with RNN 1s the fast fading of history,
which also leads to vanishing gradients in BPTT

* One solution to this problem 1s to introduce long term
memory as in LSTM or GRU

» Training of LSTM-RNN is much complex and slow so
recent trend 1s to replace RNN completely with CNN of
many layers and skip connections



Seq2seq

- Sequence to sequence learning

- Unlike CNN, we need to map one sequence to another
sequence directly

+ Unlike RNN, 1t is hard to put symbols in order and
handle different # of symbols

- Example machine translation

Economic growth has slowed down in recent vyears

I~ T

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .
Economic growth has slowed down in recent vyears

70D

La croissance économique s' est ralentie ces dernieres années .



Seq2seq

- Applications

« Neural machine translation

English~ \!/ ‘D Plang Chinese (Traditional) >
How are you? {R4F0 2

Ni hao ma?

e Google

- Neural speech recognition

+ Video dubbing and captioning

T Y T i

N T % ( £/

QULL{ AN ) W\ (728 W\ { —

AR SN\ N A\ 2 7 .
S 2 - 8 =

S2VT: A herd of zebras are walkihg in a field.

0 o



Encoder-decoder model [Suskever eval 2014]

Consider a simple machine translation task

"The weather 1is nice" "[START]Il fait beau"

' : '
o ol
| |

Internal LSTM
states (h, c)

"TL fait beau[STOP]"
- The model has two modules

- Encoder: an LSTM-RNN convert input into states
(private & public)

- Decoder: an LSTM-RNN generate output taking
encoder’s states

https://blog keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html




Encoder-decoder 1n seg2seq

+ Many variants about how to transfer LSTM-RNN states
from encoder to decoder

- Last state or the average of all states

-+ Encoder and decoder can be trained individually

Y1 ) )

Encoder




Attention 1n seq2seq

+ “No symbols are created equal”, so using only the
summary state 1s too crude

Je suis étudiant </s>

attention g N W
vector
context ‘

vector

attention -

weights * 05 :03: i0.1: :0.1:

53 g v, “
e Tae
LTI LT "
“ g ey, .,
- - LLET PP T
- - CCxiungy

’
‘e,

I am a student <s> |Je suis étudiant



Summary

+ Seq2seq learning uses RNN as building blocks but
handles locally out of sequential order and different
length of input and output

- Two new aspects in seq2seq become independently
important in ML

- Attention mechanism

- Encoder-decoder architecture



(GANs

 Generative Adversary Network (GAN)
« Goodfellow et.al., 2015

» Discriminative training of generative models

Goal: produce
<z @ e
L N counterfeit money that
Discriminator = = . o
m 1S as similar as real
\/ @ money

2

Goal: distinguish
between real and
counterfeit money

Generator




GAN

+ The goal of GAN 1s to learn a generative model for data
but using a discriminative NN as helper

/ D real data , i
o 1 sigmoi
€T~ Ddatall

1 g Pdata() \function

o g | Discriminator 1
Network .
z ~ p.(z) | Generator D(x) 0
® Network |~ B8
prior generated
data




Issues with DL

- DL systems are good tools, but have not lead to
knowledge and insights

- DL cannot take advantage of prior knowledge effectively,
and put too heavy reliance on data

- DL are only suitable for certain type of problems, but are
not flexible and adaptive to general decision making

process

- DL systems are brittle and can be broken with adversarial
examples

- DL systems are potentially biased, and difficult to
interpret and explain for the final results



Adversarial perturbations

» Deep neural network models are brittle to adversarial
perturbations

- We can use gradient information of DNN based model to
change classification results arbitrarily

Pig Airplane




Adversarial perturbations

b o
he

Before perturbation Noise added After perturbation



Bias 1n deep learning model

- A DL algorithm 1s as good as the data we feed to 1t for
training

- Data can be contaminated or biased and can be
manipulated (a procedure known as data poisoning)

(b) Three samples in non-criminal ID photo set S,



Explainability of DL models

- DL models are not explainable — how the conclusion 1s
made, based on what?

* So the trustworthiness of these algorithms are

questionable
(notional)
Neural Nets A
Graphical 5\ »O
Models ©
Deep e con b S »yO
Learning L -nsembie 8 »O
Bayesian Methods e »O
Belief Nets - ‘ c
Random 2 »O
Forests %
Statistical AOGs O
Models Markov 0

SVMs Models - Explainability



