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the up and downs of NN
• first high wave 1960s: simple one layer perceptron 
• first down wave 1970s: show of limitations of one layer 

perception 
• second high wave 1980s: development of BP and many 

uses (and abuses) 
• second down wave late 1990s to 2006: overfitting 

problem and vanishing gradient

CHAPTER 1. INTRODUCTION
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Figure 1.7: The figure shows two of the three historical waves of artificial neural nets
research, as measured by the frequency of the phrases “cybernetics” and “connectionism” or
“neural networks” according to Google Books (the third wave is too recent to appear). The
first wave started with cybernetics in the 1940s–1960s, with the development of theories
of biological learning (McCulloch and Pitts, 1943; Hebb, 1949) and implementations of
the first models such as the perceptron (Rosenblatt, 1958) allowing the training of a single
neuron. The second wave started with the connectionist approach of the 1980–1995 period,
with back-propagation (Rumelhart et al., 1986a) to train a neural network with one or two
hidden layers. The current and third wave, deep learning, started around 2006 (Hinton
et al., 2006; Bengio et al., 2007; Ranzato et al., 2007a), and is just now appearing in book
form as of 2016. The other two waves similarly appeared in book form much later than
the corresponding scientific activity occurred.
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the up and downs of NN
• first high wave 1960s: simple one layer perceptron 
• first NN winter 1970s: show of limitations of one layer 

perception 
• second high wave 1980s: development of BP and many 

uses (and abuses) 
• second NN winter late 1990s to 2006: overfitting 

problem and vanishing gradient 
• third high wave 2006 — now: deep learning (learning 

with deep neural networks) 
• third NN winter?



object recognition on ILSVC
before DL after DL

2012: convolutional NN (Alex Net)  
 2014: ensemble MLP 
 2015: res-net



Deep learning players



many successes of DL

2014

2016
2016 2017



Turing award 2019
• Joshua Bengio, Geoff Hinton & Yann LeCun for their 

contributions in deep learning



deep learning
• DL refers to an ensemble of learning methods, including 

deep neural networks and other hierarchical models 
• it has many layers of basic computing units 

• Known as artificial neurons  
• how deep is deep? 

• recent work by Microsoft Research uses 150 layer 
neural network for image recognition 

• the handwritten digit recognition based on NN in the 
1980s had only 3 layers

Milestones: a deep crop detection model

ResNet-50

Center prediction

crop  no crop
Binary classificationCrop samples



deep vs. shallow
• example of deep learning models:  

• deep NN, stack RBM, stack AE, RNN, LSTM RNN, 
etc… 

• examples of shallow learning models: 
• logistic regression, SVM, RBF network, MRF, etc…

12 Deep vs. shallow networks

When the problem does exhibit nonlinear properties, deep networks seem computationally more attractive
than shallow networks. For example, it has been observed empirically that in order to get to the same
level of performances of a deep network, one has to use a shallow network with many more connections
(e.g., 10x number of connections in speech recognition [1, 8]). It is thus much more expensive to compute
the decision function for these shallow networks than the deep network equivalences because for every
connection we need to perform a floating-point operation (multiplication or addition).

An intuition of why this is the case is as follows. A deep network can be thought of as a program
in which the functions computed by the lower-layered neurons can be thought of as subroutines. These
subroutines are re-used many times in the computation of the final program. For example in the following
figure, the function computed by the red neuron in the first layer is re-used three times in the computation
of the final function h. In contrast, in the shallow network, the function computed by the red neuron is
only used once:

(Bolded edges mean computation paths that need the red neuron to produce the final output.)
Therefore, using a shallow network is similar to writing a program without the ability of calling subrou-

tines. Without this ability, at any place we could otherwise call the subroutine, we need to explicitly write
the code for the subroutine. In terms of the number of lines of code, the program for a shallow network is
therefore longer than a deep network. Worse, the execution time is also longer because the computation
of subroutines is not properly re-used.

A more formal argument of why deep networks are more “compact” than shallow counterparts can be
found in Chapter 2 of [2].

13 Deep networks vs. Kernel methods

Another interesting comparison is deep networks vs. kernel methods [4, 18]. A kernel machine can be
thought of as a shallow network having a huge hidden layer. The advantage of having a huge number of
neurons is that the collection of neurons can act as a database and therefore can represent highly nonlinear
functions. The beauty of kernel methods lies in the fact that even though the hidden layer can be huge,
its computation can be avoided by the kernel trick. To make use of the kernel trick, an algorithm designer
would rewrite the optimization algorithm (such as stochastic gradient descent) in such a way that the hidden
layer always appears in a dot product with the hidden layer of another example: < �(x),�(x0) >. The
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why deep learning
• they are more efficient than “shallow networks” 

• get the same level of performance a shallow network 
will need many more parameters 

• intuition: deep network has many reusable components 
• example: red neuron below used by many more other 

neurons in deep network 
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Why deep learning
CHAPTER 1. INTRODUCTION

Visible layer
(input pixels)

1st hidden layer
(edges)

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL Output
(object identity)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).

6

#4 Learning multiple levels of 
representation

Successive model layers learn deeper intermediate representations

Layer 1

Layer 2

Layer 3
High-level

linguistic representations

[Lee et al. ICML 2009; Lee et al. NIPS 2009]
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• Deep learning finds better data representations 
automatically



deep learning: why now?
• Powerful hardware 

• GPU-based parallel computing 
• Cloud data/computing service 

• Availability of large datasets 
• ImageNet, MS COCO, etc 

• Powerful software frameworks 
• TF, PyTorch, CAFFE, Theano 

• Improved algorithms:  
• resNet, highway network, U-net for better BP 
• dropout, ReLU activation, regularization to reduce 

overfitting



Deep learning & big data
• We get bigger and bigger datasets

CHAPTER 1. INTRODUCTION
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Figure 1.8: Dataset sizes have increased greatly over time. In the early 1900s, statisticians
studied datasets using hundreds or thousands of manually compiled measurements (Garson,
1900; Gosset, 1908; Anderson, 1935; Fisher, 1936). In the 1950s through 1980s, the pioneers
of biologically inspired machine learning often worked with small, synthetic datasets, such
as low-resolution bitmaps of letters, that were designed to incur low computational cost and
demonstrate that neural networks were able to learn specific kinds of functions (Widrow
and Hoff, 1960; Rumelhart et al., 1986b). In the 1980s and 1990s, machine learning
became more statistical in nature and began to leverage larger datasets containing tens
of thousands of examples such as the MNIST dataset (shown in figure 1.9) of scans
of handwritten numbers (LeCun et al., 1998b). In the first decade of the 2000s, more
sophisticated datasets of this same size, such as the CIFAR-10 dataset (Krizhevsky and
Hinton, 2009) continued to be produced. Toward the end of that decade and throughout
the first half of the 2010s, significantly larger datasets, containing hundreds of thousands
to tens of millions of examples, completely changed what was possible with deep learning.
These datasets included the public Street View House Numbers dataset (Netzer et al.,
2011), various versions of the ImageNet dataset (Deng et al., 2009, 2010a; Russakovsky
et al., 2014a), and the Sports-1M dataset (Karpathy et al., 2014). At the top of the
graph, we see that datasets of translated sentences, such as IBM’s dataset constructed
from the Canadian Hansard (Brown et al., 1990) and the WMT 2014 English to French
dataset (Schwenk, 2014) are typically far ahead of other dataset sizes.
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Deep learning & big data

Who’s afraid of overfitting?



Deep learning frameworks
• CAFFE/CAFFE2: written in C++ 

• good for CNN for GPU 
• http://caffe.cs.berkeley.edu 

• TensorFlow: python 
• http://openAI.google.com/tensorflow 
• supported by Google & OpenAI, C-based 
• Google TPU (tensor processing unit) 

• Torch: written in LUA 
• http://torch.org 

• Theano (Python CPU/GPU) 
• http://deeplearning.net/software/theano  
• can do automatic, symbolic differentiation  



deep learning: why now
• Better network structure  

• Residual network (ResNet) 

• Better activation function



Activation Function



Major DNN models
• Supervised learning: 

• Convolutional neural networks (CNN) 
• Sequence learning 

• Recurrent neural networks (RNN) 
• Unsupervised learning 

• Generative adversary networks (GAN) 
• Reinforcement learning 

• Deep reinforcement learning (DRL)



CNN
• Convolutional neural networks 

• Popular NN architecture pioneered by Y. LeCun 
• Using weight sharing (convolution) to reduce the 

number of parameters 
• #1 choice for computer vision applications



Convolutional Neural Networks

Neural Network Convolutional Neural Network

LeNet



Convolution Details



Convolution Details



Convolution Details



Convolution Details



Convolution Details
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Convolution Details



Padding in Convolution



Padding in Convolution



Padding in Convolution



CNN for classification

VGG 16 for image classification

Input image Model prediction

Dog: 3% 

Cat: 1% 

Bus: 15% 

Tree: 2%

...



Optimizer



Combating vanishing gradient
• Non-saturating activation function (sparsity) 

• Highway connection reduce the exact depth



regularization
• early stopping: use parameters with best validation error 

• segment a part of training data as validation set (not 
used in training) 

• during training, monitor error on the validation set 
• keep the lowest validation error  

• stop training if validation error not improve after a 
fixed number of iterations  

• standard L1 or L2 regularization on weights  
• sparsity constraints on hidden activations 
• weight sharing to reduce number of free parameters



parameter initialization 
• initialize hidden layer biases to 0 and output (or 

reconstruction) biases to optimal value if weights were 0 
(e.g., mean target or inverse sigmoid of mean target) 
• initialize weights ∼ Uniform(−r, r), 

           r = (6/(fan-in + fan-out))1/2 
for tanh units, and  
           r = 4*(6/(fan-in + fan-out))1/2 
for sigmoid units [Xavier initialization] 

• pre-training to set initial weight values 
• using auto-encoder 
• using RBM 

• improve network stability



setting learning rate
• simple recipe:  keep it fixed and use the same for all 

parameters 
• better results obtained by allowing learning rates to 

decrease, typically in O(1/t) because of theoretical 
convergence guarantees 

• no learning rate setting if use L-BFGS or AdaGrad 
• AdaGrad: scale gradient by the square root of sum of 

past gradient magnitudes 



adaptive learning rate
• changing learning rates using previous gradient values 

• AdaGrad, RMSprop, ADAM

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

decay slowly enough that consecutive steps have approximately the same learning
rate. A step size that is appropriate for a relatively linear part of the landscape is
often inappropriate and causes uphill motion if we enter a more curved part of the
landscape on the next step.
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Figure 10.17: Example of the effect of gradient clipping in a recurrent network with
two parameters w and b. Gradient clipping can make gradient descent perform more
reasonably in the vicinity of extremely steep cliffs. These steep cliffs commonly occur
in recurrent networks near where a recurrent network behaves approximately linearly.
The cliff is exponentially steep in the number of time steps because the weight matrix
is multiplied by itself once for each time step. (Left)Gradient descent without gradient
clipping overshoots the bottom of this small ravine, then receives a very large gradient
from the cliff face. The large gradient catastrophically propels the parameters outside the
axes of the plot. (Right)Gradient descent with gradient clipping has a more moderate
reaction to the cliff. While it does ascend the cliff face, the step size is restricted so that
it cannot be propelled away from steep region near the solution. Figure adapted with
permission from Pascanu et al. (2013).

A simple type of solution has been in use by practitioners for many years:
clipping the gradient. There are different instances of this idea (Mikolov, 2012;
Pascanu et al., 2013). One option is to clip the parameter gradient from a minibatch
element-wise (Mikolov, 2012) just before the parameter update. Another is to clip
the norm ||g|| of the gradient g (Pascanu et al., 2013) just before the parameter
update:

if ||g|| > v (10.48)

g  
gv

||g||
(10.49)
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stochastic gradient update
• (sub) gradient method uses total gradient over all 

examples per update, stochastic gradient updates after 
only 1 or few examples 

• L = loss function, zt = current example, θ = parameter 
vector, and εt = learning rate 

• ordinary gradient method as a batch method is very slow, 
should never be used  
• On smaller datasets use 2nd order batch method such 

as L-BFGS or conjugate gradients 
• On large datasets, SGD usually wins over all batch 

methods

• Gradient descent uses total gradient over all examples per 
update, SGD updates after only 1 or few examples:

• L = loss function, zt = current example, θ = parameter vector, and 
εt = learning rate.

• Ordinary gradient descent as a batch method is very slow, should 
never be used. Use 2nd order batch method such as L-BFGS. On 
large datasets, SGD usually wins over all batch methods. On 
smaller datasets L-BFGS or Conjugate Gradients win. Large-batch 
L-BFGS extends the reach of L-BFGS [Le et al. ICML 2011].

Stochastic Gradient Descent (SGD)

199



training schemes
• mini-batches in SGD 

• balance between efficiency & variance 
• bigger batch -> small variance  
• smaller batch -> faster algorithm 

• typical SGD convergence graph (vibrating)



dropout training
• training time: at each instance of evaluation (in online 

SGD- training), randomly set 50% of the inputs to each 
neuron to 0  

• test time: halve the model weights (now twice as many)  
• prevents feature co-adaptation:  

• a feature cannot only be useful in the presence of 
particular other features  

• as a form of model averaging as a strong regularizer 



Input data augmentation, normalization

Followed by normalize image by dividing each pixel by 255.

Data Augmentation



RNN
• Recurrent neural networks 

• NN with feedback links 
• Unrolling in time leads to a network with 

(conceptually) infinite number of layers 
• Applications: sequential data analysis  

text, speech, DNA, video, etc

Image from https://colah.github.io/posts/2015-08-Understanding-LSTMs/



RNN
• Model structure 

• Sequential link of RNN cells  

• Input from previous time step carries “historic” 
information from all previous input 
• h is known as the “latent” or “hidden” state  
• From hidden state output can be generated

Image from https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Training RNN
• BPTT (back propagation through time) with fixed window  

• All weights are tied together 

• Vanishing gradient as in feedforward NN 
• “Future” loss has small effect on “present” cell 
• Squashing nonlinearity of hidden state is one problem 

Image from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Window size = 4



LSTM (Hochreiter & Schmidhuber ’94)
• Stands for long short-term memory cell 

• LSTM-RNN cell has  
• A short term “public” memory channel (bottom) 
• a long term “private” memory channel (top) 
• Private channel is used to carry long term history 

through the use of “gates”
Image from https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Why LSTM
• The public hidden state in vanilla RNN cell “forgets” too 

fast 

• The memory channel carries information that is strongly 
affected by current input 
• There are too many blocks in the way

Image from https://colah.github.io/posts/2015-08-Understanding-LSTMs/



How LSTM solves this
• Providing a more persistent information channel  

 
 
 
 
 
 
only simple multiplication and addition on the way 

• Modulate this channel with gates: sigmoid function 
followed by point-wise multiplication 



How LSTM solves this
• LSTM-RNN is “stateful” while CNN and RNN are 

stateless  
• Think about the long-term memory as a global variable 

in a function 

• Three gates: forget gate, input gate, output gate

Image from https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Summary
• RNN solves sequential learning problem through 

recursion 
• One problem with RNN is the fast fading of history, 

which also leads to vanishing gradients in BPTT 
• One solution to this problem is to introduce long term 

memory as in LSTM or GRU 
• Training of LSTM-RNN is much complex and slow so 

recent trend is to replace RNN completely with CNN of 
many layers and skip connections



Seq2seq
• Sequence to sequence learning 

• Unlike CNN, we need to map one sequence to another 
sequence directly 

• Unlike RNN, it is hard to put symbols in order and 
handle different # of symbols 

• Example machine translation



Seq2seq
• Applications  

• Neural machine translation 

• Neural speech recognition 

• Video dubbing and captioning  



Encoder-decoder model [Suskever eval 2014]
• Consider a simple machine translation task 

• The model has two modules 
• Encoder: an LSTM-RNN convert input into states 

(private & public) 
• Decoder: an LSTM-RNN generate output taking 

encoder’s states
https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html



Encoder-decoder in seq2seq
• Many variants about how to transfer LSTM-RNN states 

from encoder to decoder 
• Last state or the average of all states 

• Encoder and decoder can be trained individually



Attention in seq2seq
• “No symbols are created equal”, so using only the 

summary state is too crude



Summary 
• Seq2seq learning uses RNN as building blocks but 

handles locally out of sequential order and different 
length of input and output 

• Two new aspects in seq2seq become independently 
important in ML 
• Attention mechanism  
• Encoder-decoder architecture



GANs
• Generative Adversary Network (GAN) 

• Goodfellow et.al., 2015 
• Discriminative training of generative models

Discriminator

Generator

Goal: produce 
counterfeit money that 
is as similar as real 
money

Goal: distinguish 
between real and 

counterfeit money



GAN
• The goal of GAN is to learn a generative model for data 

but using a discriminative NN as helper



Issues with DL
• DL systems are good tools, but have not lead to 

knowledge and insights 
• DL cannot take advantage of prior knowledge effectively, 

and put too heavy reliance on data 
• DL are only suitable for certain type of problems, but are 

not flexible and adaptive to general decision making 
process 

• DL systems are brittle and can be broken with adversarial 
examples  

• DL systems are potentially biased, and difficult to 
interpret and explain for the final results



Adversarial perturbations
• Deep neural network models are brittle to adversarial 

perturbations 
• We can use gradient information of DNN based model to 

change classification results arbitrarily

+ =
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Adversarial perturbations
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Bias in deep learning model
• A DL algorithm is as good as the data we feed to it for 

training 
• Data can be contaminated or biased and can be 

manipulated (a procedure known as data poisoning) 



Explainability of DL models
• DL models are not explainable — how the conclusion is 

made, based on what?  
• So the trustworthiness of these algorithms are 

questionable 


