

CSI 436/536

Introduction to Machine Learning

Dimension reduction: PCA

Professor Siwei Lyu
Computer Science

University at Albany, State University of New York

The need to reduce data dimension

The need to reduce data dimension

- The curse of dimensionality
 - effective learning requires more training data as dimensionality increases
 - accuracy and efficiency of learning algorithms degrade rapidly as the dimension increases
- Data intrinsic dimension may be small, and using the original data representation could be wasteful
 - data compression
- Only a fraction of information in data are relevant to the learning task, and small variations may be due to noise
 - feature extraction and noise reduction
- Humans can get intuition in 2D or 3D data (visualization)

Dimension reduction

- For an input high dimensional data source $x \in \mathcal{R}^d$, find a low dimensional representation $\tilde{x} \in \mathcal{R}^m$ with $m \ll d$ that “best” approximate the original data
 - Determine a pair of transforms $\phi : \mathcal{R}^d \mapsto \mathcal{R}^m$ (**encoder**) and $\psi : \mathcal{R}^m \mapsto \mathcal{R}^d$ (**decoder**) such that $\tilde{x} = \phi(x)$, and $L(x - \psi(\tilde{x})) = L(x - \psi(\phi(x)))$ is minimized, where L is a loss function
 - Dimension reduction is an example of unsupervised learning problem (**self-supervised learning**)
 - The dimensionality constraint is served as an **information bottleneck**, filtering out less relevant information as discarded dimension

Dimension reduction

- Representation learning
 - The encoder facilitates the process by ordering the information content corresponding to different levels of relevancy for a more efficient representation
 - The decoder reconstruct the data from the low dimensional representation
- If the encoder and decoder are linear functions, then it looks for an optimal *linear subspace*, otherwise, it seeks an optimal low dimensional *manifold*
 - Learning low dimensional linear subspace: PCA
 - Learning low dimensional manifold: ISOMAP

Linear dimension reduction — PCA

- Assume centered data matrix $X = \begin{pmatrix} | & | & & | \\ x_1 & x_2 & \cdots & x_n \\ | & | & & | \end{pmatrix}$
- Choose encoder and decoder as orthonormal transforms $W \in \mathcal{R}^{d \times m}$, so the low dimensional representation will be $\tilde{X} = W^\top X \in \mathcal{R}^{m \times n}$, and the decoder as W itself, with $W^\top W = I_m$,
- Choose the metric as the squared matrix L_2 distance (also known as the Frobenius distance), the overall learning problem is a constrained optimization problem $\min_W \|X - W(W^\top X)\|_F^2$, s.t $W^\top W = I_m$
 - Solution: W corresponds to the eigenvectors of the top- m eigenvalues of matrix XX^\top (principal components)

PCA

- In the 1-D case, it is equivalent to the total least squares
- In the m-D case, *principal values* are the top-m eigenvalues of the data covariance matrix, while *principal components* are the corresponding eigenvectors
 - Principal values measure variance/level of uncertainty/information in the direction of principal component

The PCA algorithm — training

- Computing data mean $\mu = \frac{1}{n} X \mathbf{1}_n$, where $\mathbf{1}_n$ is all 1 vector
- Centering data matrix $\bar{X} = X \left(I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T \right)$
- Forming the covariance matrix [centering matrix is symmetric and idempotent]
$$C = \bar{X} \bar{X}^T = X \left(I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T \right) X^T$$
- Eigen-decomposing (diagonalizing) the covariance matrix [spectral theorem] $C = U \Lambda U^T$
- Choosing eigenvectors of the top-m eigenvalues $W = [u_1, \dots, u_m]$, corresponding $\lambda_1 \geq \dots \geq \lambda_m$

The PCA algorithm — new data

- The model includes m and W : $O((m+1)d)$ vs. $O(nd)$
- given a new data point x , its representation is $\tilde{x} = W^T(x - \mu)$, and its reconstruction is $W\tilde{x} + \mu$
- why centering is important:
 - matrix $R = XX^T$ is the correlation matrix and $2R$ is the covariance matrix for data[X - X], this is the data set formed by putting the negatives of each individual data

how to choose dimension

- for data matrix X with rank $r < d$, all principal values $\lambda_{r+1}, \dots, \lambda_d$, are zero, assuming descending order of principal values

how to choose the cutoff dimension

- assume $\lambda_1 \geq \lambda_2 \dots \geq \lambda_d > 0$

- heuristic 1: pick threshold $\varepsilon > 0$, and choose r such that $\lambda_r \geq \varepsilon \geq \lambda_{r+1} \dots \geq \lambda_d > 0$ any principal value smaller than the threshold may be caused by noise
- heuristic 2: pick fraction $0 < \eta < 1$, and choose r such that keep significant fraction of energy

$$\frac{\sum_{i=1}^{r-1} \lambda_i}{\sum_{i=1}^d \lambda_i} \leq \eta \leq \frac{\sum_{i=1}^r \lambda_i}{\sum_{i=1}^d \lambda_i}$$

application of PCA: face recognition

- face recognition algorithm developed by M. Turk and A. Pentland in 1987
- represent a high dim face image with first few *eigenfaces*
- the coefficients of a face on *eigenfaces* are used to match against all faces in a database

The covariance and Gramm matrices

- The covariance matrix is of dimension $d \times d$
 - when d is large, eigenvalue decomposition of covariance matrix can be difficult
- The Gram (inner product) matrix: $G = X^T X$ is of dimension $n \times n$
- correlation (covariance, outer product) matrix: $C = X X^T$
 - G and C are both positive definite matrices
 - G and C share the same **non-zero** eigenvalues
 - G and C 's eigenvectors are related by X

PCA with Gram matrix

- PCA is based on the eigenvalue decomposition of the covariance matrix.
- Covariance matrix and the (centered) Gram matrix share eigenvalues and eigenvectors are related.
- PCA with the centered Gram matrix

- Centering data matrix $\bar{X} = X \left(I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T \right)$

- Form the centered Gram matrix (double centering)

$$\bar{G} = \bar{X}^T \bar{X} = \left(I - \frac{1}{n} \mathbf{1} \mathbf{1}^T \right) X^T X \left(I - \frac{1}{n} \mathbf{1} \mathbf{1}^T \right)$$

- Eigenvalue decompose $\bar{G} = U \Lambda U^T$
- Choosing eigenvectors of the top-m eigenvalues $W = X[u_1, \dots, u_m]$, corresponding $\lambda_1 \geq \dots \geq \lambda_m$