

CSI 436/536 Introduction to Machine Learning

Dimension reduction: PCA

Professor Siwei Lyu Computer Science University at Albany, State University of New York

The need to reduce data dimension

The need to reduce data dimension

- The curse of dimensionality
 - effective learning requires more training data as dimensionality increases
 - accuracy and efficiency of learning algorithms degrade rapidly as the dimension increases
- Data intrinsic dimension may be small, and using the original data representation could be wasteful
 - data compression
- Only a fraction of information in data are relevant to the learning task, and small variations may be due to noise
 - feature extraction and noise reduction
- Humans can get intuition in 2D or 3D data (visualization)

Dimension reduction

- For an input high dimensional data source $x \in \mathbb{R}^d$, find a low dimensional representation $\tilde{x} \in \mathbb{R}^m$ with $m \ll d$ that "best" approximate the original data
 - Determine a pair of transforms $\phi : \mathscr{R}^d \mapsto \mathscr{R}^m$ (*encoder*) and $\psi : \mathscr{R}^m \mapsto \mathscr{R}^d$ (*decoder*) such that $\tilde{x} = \phi(x)$, and $L(x - \psi(\tilde{x})) = L(x - \psi(\phi(x)))$ is minimized, where *L* is a loss function
 - Dimension reduction is an example of unsupervised learning problem (self-supervised learning)
- The dimensionality constraint is served as an *information bottleneck*, filtering out less relevant information as discarded dimension

Dimension reduction

- Representation learning
 - The encoder facilitates the process by ordering the information content corresponding to different levels of relevancy for a more efficient representation
 - The decoder reconstruct the data from the low dimensional representation
- If the encoder and decoder are linear functions, then it looks for an optimal *linear subspace*, otherwise, it seeks an optimal low dimensional *manifold*
 - Learning low dimensional linear subspace: PCA
 - Learning low dimensional manifold: ISOMAP

Linear dimension reduction — PCA

Assume centered data matrix $X = \begin{pmatrix} | & | & | \\ x_1 & x_2 & \cdots & x_n \\ | & | & | \end{pmatrix}$

- Choose encoder and decoder as orthonormal transforms $W \in \mathscr{R}^{d \times m}$, so the low dimensional representation will be $\tilde{X} = W^{\mathsf{T}} X \in \mathscr{R}^{m \times n}$, and the decoder as W itself, with $W^{\mathsf{T}} W = I_m$,
- Choose the metric as the squared matrix L₂ distance (also known as the Frobenius distance), the overall learning problem is a constrained optimization problem $\min_{W} ||X - W(W^{T}X)||_{F}^{2}$, s.t $W^{T}W = I_{m}$
 - Solution: W corresponds to the eigenvectors of the topm eigenvalues of matrix XX^{T} (principal components)

PCA

- In the 1-D case, it is equivalent to the total least squares
- In the m-D case, *principal values* are the top-m eigenvalues of the data covariance matrix, while *principal components* are the corresponding eigenvectors
 - Principal values measure variance/level of uncertainty/ information in the direction of principal component

The PCA algorithm — training

• Computing data mean $\mu = \frac{1}{n} X \mathbb{1}_n$, where $\mathbb{1}_n$ is all 1 vector

Centering data matrix
$$\bar{X} = X\left(I_n - \frac{1}{n}\mathbf{1}_n\mathbf{1}_n^T\right)$$

- Forming the covariance matrix [centering matrix is symmetric and idempotent] $C = \bar{X}\bar{X}^T = X\left(I_n - \frac{1}{n}1_n1_n^T\right)X^T$
- Eigen-decomposing (diagonalizing) the covariance matrix [spectral theorem] $C = U\Lambda U^T$
- Choosing eigenvectors of the top-m eigenvalues W = [u₁, ..., u_m], corresponding λ₁ ≥ ··· ≥ λ_m

The PCA algorithm — new data

- The model includes m and W: O((m+1)d) vs. O(nd)
- given a new data point **x**, its representation is $\tilde{x} = W^T(x \mu)$, and its reconstruction is $W\tilde{x} + \mu$
- why centering is important:
 - matrix R = XX^T is the correlation matrix and 2R is the covariance matrix for data[X -X], this is the data set formed by putting the negates of each individual data

First PC of uncentered data

First PC of centered data

how to choose dimension

• for data matrix X with rank r < d, all principal values $\lambda_{r+1}, \ldots, \lambda_d$, are zero, assuming descending order of principal values

how to choose the cutoff dimension

• assume $\lambda_1 \geq \lambda_2 \dots \geq \lambda_d > 0$

- heuristic 1: pick threshold $\varepsilon > 0$, and choose r such that $\lambda_r \ge \varepsilon \ge \lambda_{r+1} \dots \ge \lambda_d > 0$ any principal value smaller than the threshold may be caused by noise

- heuristic 2: pick fraction $0 < \eta < 1$, and choose r such that keep significant fraction of energy

$$\frac{\sum_{i=1}^{r-1} \lambda_i}{\sum_{i=1}^d \lambda_i} \le \eta \le \frac{\sum_{i=1}^r \lambda_i}{\sum_{i=1}^d \lambda_i}$$

application of PCA: face recognition

- face recognition algorithm developed by M. Turk and A.
 Pentland in 1987
- represent a high dim face image with first few *eigenfaces*
- the coefficients of a face on *eigenfaces* are used to match against all faces in a database

The covariance and Gramm matrices

- The covariance matrix is of dimension d x d
 - when d is large, eigenvalue decomposition of covariance matrix can be difficult
- The Gram (inner product) matrix: G = X^TX is of dimension n x n
- correlation (covariance, outer product) matrix: $C = XX^T$
 - G and C are both positive definite matrices
 - G and C share the same **non-zero** eigenvalues
 - G and C's eigenvectors are related by X

PCA with Gram matrix

- PCA is based on the eigenvalue decomposition of the covariance matrix.
- Covariance matrix and the (centered) Gram matrix share eigenvalues and eigenvectors are related.
- PCA with the centered Gram matrix

Centering data matrix
$$\bar{X} = X\left(I_n - \frac{1}{n}\mathbf{1}_n\mathbf{1}_n^T\right)$$

- Form the centered Gram matrix (double centering) $\bar{G} = \bar{X}^T \bar{X} = \left(I - \frac{1}{n} \mathbf{1} \mathbf{1}^T\right) X^T X \left(I - \frac{1}{n} \mathbf{1} \mathbf{1}^T\right)$
- Eigenvalue decompose $\bar{G} = U\Lambda U^T$
- Choosing eigenvectors of the top-m eigenvalues W = X[u₁, ..., u_m], corresponding λ₁ ≥ ··· ≥ λ_m