CSI 436/536

Introduction to Machine Learning

Dimension reduction: PCA

Professor Siwei Lyu
Computer Science
University at Albany, State University of New York

The need to reduce data dimension

The need to reduce data dimension

- The curse of dimensionality
- effective learning requires more training data as dimensionality increases
- accuracy and efficiency of learning algorithms degrade rapidly as the dimension increases
- Data intrinsic dimension may be small, and using the original data representation could be wasteful
- data compression
- Only a fraction of information in data are relevant to the learning task, and small variations may be due to noise
- feature extraction and noise reduction
- Humans can get intuition in 2D or 3D data (visualization)

Dimension reduction

- For an input high dimensional data source $x \in \mathscr{R}^{d}$, find a low dimensional representation $\tilde{x} \in \mathscr{R}^{m}$ with $m \ll d$ that "best" approximate the original data
- Determine a pair of transforms $\phi: \mathscr{R}^{d} \mapsto \mathscr{R}^{m}$ (encoder) and $\psi: \mathscr{R}^{m} \mapsto \mathscr{R}^{d}$ (decoder) such that $\tilde{x}=\phi(x)$, and $L(x-\psi(\tilde{x}))=L(x-\psi(\phi(x)))$ is minimized, where L is a loss function
- Dimension reduction is an example of unsupervised learning problem (self-supervised learning)
- The dimensionality constraint is served as an information bottleneck, filtering out less relevant information as discarded dimension

Dimension reduction

- Representation learning
- The encoder facilitates the process by ordering the information content corresponding to different levels of relevancy for a more efficient representation
- The decoder reconstruct the data from the low dimensional representation
- If the encoder and decoder are linear functions, then it looks for an optimal linear subspace, otherwise, it seeks an optimal low dimensional manifold
- Learning low dimensional linear subspace: PCA
- Learning low dimensional manifold: ISOMAP

Linear dimension reduction - PCA

Assume centered data matrix $X=\left(\begin{array}{cccc}\mid & \mid & & \mid \\ x_{1} & x_{2} & \cdots & x_{n} \\ \mid & \mid & & \mid\end{array}\right)$

- Choose encoder and decoder as orthonormal transforms $W \in \mathscr{R}^{d \times m}$, so the low dimensional representation will be $\tilde{X}=W^{\top} X \in \mathscr{R}^{m \times n}$, and the decoder as W itself, with $W^{\top} W=I_{m}$,
- Choose the metric as the squared matrix L_{2} distance (also known as the Frobenius distance), the overall learning problem is a constrained optimization problem $\min _{W}\left\|X-W\left(W^{\top} X\right)\right\|_{F}^{2}$, s.t $W^{\top} W=I_{m}$ W
- Solution: W corresponds to the eigenvectors of the topm eigenvalues of matrix $X X^{\top}$ (principal components)

PCA

- In the 1-D case, it is equivalent to the total least squares
- In the m-D case, principal values are the top-m eigenvalues of the data covariance matrix, while principal components are the corresponding eigenvectors
- Principal values measure variance/level of uncertainty/ information in the direction of principal component

The PCA algorithm - training

- Computing data mean $\mu=\frac{1}{n} X 1_{n}$, where 1_{n} is all 1 vector
- Centering data matrix $\bar{X}=X\left(I_{n}-\frac{1}{n} 1_{n} 1_{n}^{T}\right)$
- Forming the covariance matrix [centering matrix is symmetric and idempotent]
$C=\bar{X} \bar{X}^{T}=X\left(I_{n}-\frac{1}{n} 1_{n} 1_{n}^{T}\right) X^{T}$
- Eigen-decomposing (diagonalizing) the covariance matrix [spectral theorem] $C=U \Lambda U^{T}$
- Choosing eigenvectors of the top- m eigenvalues $\mathrm{W}=\left[\mathrm{u}_{1}\right.$, $\ldots, \mathrm{u}_{\mathrm{m}}$], corresponding $\lambda_{1} \geq \cdots \geq \lambda_{m}$

The PCA algorithm - new data

- The model includes m and $\mathrm{W}: ~ \mathrm{O}((\mathrm{m}+1) \mathrm{d})$ vs. $\mathrm{O}(\mathrm{nd})$
- given a new data point \mathbf{x}, its representation is $\tilde{x}=W^{T}(x-\mu)$, and its reconstruction is $W \tilde{x}+\mu$
- why centering is important:
- matrix $\mathrm{R}=\mathrm{XX}^{\mathrm{T}}$ is the correlation matrix and 2 R is the covariance matrix for data[X -X], this is the data set formed by putting the negates of each individual data

how to choose dimension

- for data matrix X with rank $\mathrm{r}<\mathrm{d}$, all principal values $\lambda_{r+1}, \ldots, \lambda_{\mathrm{d}}$, are zero, assuming descending order of principal values

how to choose the cutoff dimension

- assume $\lambda_{1} \geq \lambda_{2} \ldots \geq \lambda_{d}>0$

- heuristic 1: pick threshold $\varepsilon>0$, and choose r such that $\lambda_{r} \geq \varepsilon \geq \lambda_{r+1} \ldots \geq \lambda_{d}>0$ any principal value smaller than the threshold may be caused by noise
- heuristic 2: pick fraction $0<\eta<1$, and choose r such that keep significant fraction of energy

$$
\frac{\sum_{i=1}^{r-1} \lambda_{i}}{\sum_{i=1}^{d} \lambda_{i}} \leq \eta \leq \frac{\sum_{i=1}^{r} \lambda_{i}}{\sum_{i=1}^{d} \lambda_{i}}
$$

application of PCA: face recognition

- face recognition algorithm developed by M. Turk and A. Pentland in 1987
- represent a high dim face image with first few eigenfaces
- the coefficients of a face on eigenfaces are used to match against all faces in a database

The covariance and Gramm matrices

- The covariance matrix is of dimension dxd
- when d is large, eigenvalue decomposition of covariance matrix can be difficult
- The Gram (inner product) matrix: $\mathrm{G}=\mathrm{X}^{\mathrm{T}} \mathrm{X}$ is of dimension nx n
- correlation (covariance, outer product) matrix: $\mathrm{C}=\mathrm{XX}^{\mathrm{T}}$
- G and C are both positive definite matrices
- G and C share the same non-zero eigenvalues
- G and C's eigenvectors are related by X

PCA with Gram matrix

- PCA is based on the eigenvalue decomposition of the covariance matrix.
- Covariance matrix and the (centered) Gram matrix share eigenvalues and eigenvectors are related.
- PCA with the centered Gram matrix
. Centering data matrix $\bar{X}=X\left(I_{n}-\frac{1}{n} 1_{n} 1_{n}^{T}\right)$
- Form the centered Gram matrix (double centering)

$$
\bar{G}=\bar{X}^{T} \bar{X}=\left(I-\frac{1}{n} 11^{T}\right) X^{T} X\left(I-\frac{1}{n} 11^{T}\right)
$$

- Eigenvalue decompose $\bar{G}=U \Lambda U^{T}$
- Choosing eigenvectors of the top-m eigenvalues $\mathrm{W}=\mathrm{X}\left[\mathrm{u}_{1}\right.$, $\left.\ldots, \mathrm{u}_{\mathrm{m}}\right]$, corresponding $\lambda_{1} \geq \cdots \geq \lambda_{m}$

