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The need to reduce data dimension




The need to reduce data dimension

The curse of dimensionality

- effective learning requires more training data as
dimensionality increases

- accuracy and efficiency of learning algorithms degrade
rapidly as the dimension increases

Data intrinsic dimension may be small, and using the
original data representation could be wasteful

* data compression

* Only a fraction of information 1n data are relevant to the
learning task, and small variations may be due to noise

- feature extraction and noise reduction

Humans can get intuition 1n 2D or 3D data (visualization)



Dimension reduction

- For an input high dimensional data source x € %<, find a
low dimensional representation X € £ with m < d that
“best” approximate the original data

- Determine a pair of transforms ¢ : B¢ > R
(encoder) and v : B — R (decoder) such that

X = ¢(x), and L(x — w(X)) = L(x — w(¢(x))) 18
minimized, where L 1s a loss function

- Dimension reduction 1s an example of unsupervised
learning problem (self-supervised learning)

+ The dimensionality constraint 1s served as an
information bottleneck, filtering out less relevant
information as discarded dimension



Dimension reduction

-+ Representation learning

- The encoder facilitates the process by ordering the
information content corresponding to different levels
of relevancy for a more efficient representation

e

I'he decoder reconstruct the data from the low
dimensional representation

- If the encoder and decoder are linear functions, then 1t
looks for an optimal linear subspace, otherwise, it seeks
an optimal low dimensional manifold

- Learning low dimensional linear subspace: PCA

 Learning low dimensional manifold: ISOMAP



[Linear dimension reduction — PCA
| )

Assume centered data matrix X = |X; X - X,
| y

- Choose encoder and decoder as orthonormal transforms
W e R 5o the low dimensional representation will be
X=W'X e @™ and the decoder as W itself, with

W'w=1I,

» Choose the metric as the squared matrix L, distance (also
known as the Frobenius distance), the overall learning
problem 1s a constrained optimization problem

min || X — WW'X)||%, st WW=1,
1%

+  Solution: W corresponds to the eigenvectors of the top-
m eigenvalues of matrix XX ' (principal components)



PCA

- In the 1-D case, it 1s equivalent to the total least squares

- In the m-D case, principal values are the top-m
eigenvalues of the data covariance matrix, while
principal components are the corresponding
eigenvectors

- Principal values measure variance/level of uncertainty/
information 1n the direction of principal component
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The PCA algorithm — training

. Computing data mean y = —X1,, where 14 1s all 1 vector
n

_ 1
. Centering data matrix X = X <In -—1,1! )
n

- Forming the covariance matrix [centering matrix is
symmetric and idempotent]

_ 1
C=XX"=X <1n — —1n1,{> X'
n
- Eigen-decomposing (diagonalizing) the covariance

matrix [spectral theorem] C = UAU!

 Choosing eigenvectors of the top-m eigenvalues W = [uy,
..., Um], corresponding 4; > -+ > A



The PCA algorithm — new data
+ The model includes m and W: O((m+1)d) vs. O(nd)

- given a new data point x, 1ts representation 1s
¥ = W!(x — u), and its reconstruction is WX + u
- why centering is important:

- matrix R = XXT1is the correlation matrix and 2R 1is the
covariance matrix for data[ X -X], this 1s the data set
formed by putting the negates of each individual data

First PC of
uncentered data

First PC of centered data



how to choose dimension

- for data matrix X with rank r < d, all principal values
Ar+1,..., Ad, are zero, assuming descending order of
principal values



how to choose the cutoff dimension

e assume A1 > A...> >0

O 1 2 3 UEUUUENUDENUREES S o ol I o o2 2N d

- heuristic 1: pick threshold € > 0, and choose r such that
A > €> Arr1... > A > 0 any principal value smaller than

the threshold may be caused by noise
- heuristic 2: pick fraction 0 <m < 1, and choose r such

that keep significant fraction of energy
22;11 Ai 22:1 Ai
ijl Ai Z?:l Ai

<n<



application of PCA: face recognition

face recognition algorithm developed by M. Turk and A.
Pentland 1n 1987

- represent a high dim
face 1image with first
few eigenfaces .
l

- the coefficients of a
face on eigenfaces
are used to match
against all faces in
a database




The covariance and Gramm matrices

- The covariance matrix 1s of dimension d x d

- when d 1s large, eigenvalue decomposition of
covariance matrix can be difficult

+ The Gram (inner product) matrix: G = XTX 1s of
dimension n x n

- correlation (covariance, outer product) matrix: C = XXT
* G and C are both positive definite matrices

+ G and C share the same non-zero eigenvalues

- G and C’s eigenvectors are related by X



PCA with Gram matrix

- PCA 1s based on the eigenvalue decomposition of the
covariance matrix.

+ Covariance matrix and the (centered) Gram matrix share
eigenvalues and eigenvectors are related.

- PCA with the centered Gram matrix

_ 1
. Centering data matrix X = X <In ——1,1! >
n

+ Form the centered Gram matrix (double centering)

L 1 1
G=X'X= <1——11T> X'x <1——11T>
n n

+ Eigenvalue decompose G = UAU!

»+ Choosing eigenvectors of the top-m eigenvalues W = X[ui,
..., Um|, corresponding A; > «-- > 4



