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The need to reduce data dimension



The need to reduce data dimension
• The curse of dimensionality  

• effective learning requires more training data as 
dimensionality increases 

• accuracy and efficiency of learning algorithms degrade 
rapidly as the dimension increases 

• Data intrinsic dimension may be small, and using the 
original data representation could be wasteful  
• data compression 

• Only a fraction of information in data are relevant to the 
learning task, and small variations may be due to noise  

• feature extraction and noise reduction 
• Humans can get intuition in 2D or 3D data (visualization) 



Dimension reduction 
• For an input high dimensional data source , find a 

low dimensional representation  with  that 
“best” approximate the original data  
• Determine a pair of transforms  

(encoder) and  (decoder) such that 
, and  is 

minimized, where L is a loss function 
• Dimension reduction is an example of unsupervised 

learning problem (self-supervised learning) 
• The dimensionality constraint is served as an 

information bottleneck, filtering out less relevant 
information as discarded dimension

x ∈ ℛd

x̃ ∈ ℛm m ≪ d

ϕ : ℛd ↦ ℛm

ψ : ℛm ↦ ℛd

x̃ = ϕ(x) L(x − ψ(x̃)) = L(x − ψ(ϕ(x)))



Dimension reduction 
• Representation learning 

• The encoder facilitates the process by ordering the 
information content corresponding to different levels 
of relevancy for a more efficient representation  

• The decoder reconstruct the data from the low 
dimensional representation  

• If the encoder and decoder are linear functions, then it 
looks for an optimal linear subspace, otherwise, it seeks 
an optimal low dimensional manifold 
• Learning low dimensional linear subspace: PCA 
• Learning low dimensional manifold: ISOMAP



Linear dimension reduction — PCA

•
Assume centered data matrix   

• Choose encoder and decoder as orthonormal transforms 
, so the low dimensional representation will be 

, and the decoder as W itself, with 
,  

• Choose the metric as the squared matrix L2 distance (also 
known as the Frobenius distance), the overall learning 
problem is a constrained optimization problem 

 

• Solution: W corresponds to the eigenvectors of the top-
m eigenvalues of matrix  (principal components)

X =
| | |
x1 x2 ⋯ xn

| | |

W ∈ ℛd×m

X̃ = W⊤X ∈ ℛm×n

W⊤W = Im

min
W

∥X − W(W⊤X)∥2
F, s.t W⊤W = Im

XX⊤



PCA
• In the 1-D case, it is equivalent to the total least squares 
• In the m-D case, principal values are the top-m 

eigenvalues of the data covariance matrix, while 
principal components are the corresponding 
eigenvectors 
• Principal values measure variance/level of uncertainty/

information in the direction of principal component



The PCA algorithm — training

• Computing data mean , where 1n is all 1 vector 

• Centering data matrix  

• Forming the covariance matrix [centering matrix is 
symmetric and idempotent] 

 

• Eigen-decomposing (diagonalizing) the covariance 
matrix [spectral theorem]  

• Choosing eigenvectors of the top-m eigenvalues W = [u1,
…, um], corresponding 

μ =
1
n

X1n

X̄ = X (In −
1
n

1n1T
n)

C = X̄X̄T = X (In −
1
n

1n1T
n) XT

C = UΛUT

λ1 ≥ ⋯ ≥ λm



The PCA algorithm — new data
• The model includes m and W: O((m+1)d) vs. O(nd) 
• given a new data point x, its representation is 

, and its reconstruction is  
• why centering is important:  

• matrix R = XXT is the correlation matrix and 2R is the 
covariance matrix for data[X -X], this is the data set 
formed by putting the negates of each individual data

x̃ = WT(x − μ) Wx̃ + μ

First PC of centered data

First PC of  
uncentered data



how to choose dimension
• for data matrix X with rank r < d, all principal values 
λr+1,…, λd, are zero, assuming descending order of 
principal values
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how to choose the cutoff dimension

• assume  λ1 ≥ λ2… ≥ λd > 0 
 
 
 
 
 
 
- heuristic 1: pick threshold ε > 0, and choose r such that 
λr ≥ ε ≥ λr+1… ≥ λd > 0 any principal value smaller than 
the threshold may be caused by noise 
- heuristic 2: pick fraction 0 < η < 1, and choose r such 
that keep significant fraction of energy
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application of PCA: face recognition
• face recognition algorithm developed by M. Turk and A. 

Pentland in 1987 
• represent a high dim 

face image with first 
few eigenfaces 

• the coefficients of a 
face on eigenfaces 
are used to match 
against all faces in 
a database



The covariance and Gramm matrices
• The covariance matrix is of dimension d x d 

• when d is large, eigenvalue decomposition of 
covariance matrix can be difficult 

• The Gram (inner product) matrix: G = XTX is of 
dimension n x n 

• correlation (covariance, outer product) matrix: C = XXT 
• G and C are both positive definite matrices 
• G and C share the same non-zero eigenvalues 
• G and C’s eigenvectors are related by X



PCA with Gram matrix
• PCA is based on the eigenvalue decomposition of the 

covariance matrix.  
• Covariance matrix and the (centered) Gram matrix share 

eigenvalues and eigenvectors are related.  
• PCA with the centered Gram matrix 

• Centering data matrix  

• Form the centered Gram matrix (double centering)

 

• Eigenvalue decompose  
• Choosing eigenvectors of the top-m eigenvalues W = X[u1,

…, um], corresponding 

X̄ = X (In −
1
n

1n1T
n)

Ḡ = X̄T X̄ = (I −
1
n

11T) XT X (I −
1
n

11T)
Ḡ = UΛUT

λ1 ≥ ⋯ ≥ λm


