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Support vector machines

* Support vector machines (SVM) 1s one of the most
widely used ML algorithms today

- Theoretical foundation (statistical learning theory)
developed 1n 1960s by Vapnik & Chervonenkis

- Algorithm first introduced by Vapnik et.al. 1n 1992

- Aims to replace NN as a more provable method to
alleviate overfitting

- Many successful applications (computer vision, text,
bioinformatics)



Key components of SVM

- Large-margin learning

- theoretical guarantee of good performance 1n
generalization

- Efficiency 1in model: reducing training data to SVs
» Quadratic programming optimization
- efficient optimization and unique global solution

« The “Kernel tricks™

- extension to nonlinear prediction functions and models
without explicit feature mapping



SVM for binary classification

- Characteristics
- training to maximize classification

- decision function specified by a subset of training
examples known as the

- we study the following cases
- Linear SVM: separable case

- Linear SVM: non-separable case
+ Nonlinear SVM



Linear SVM: separable case

- Uses linear prediction function f(z,{w,b}) = sign(w -  + b).
- Assume separable data:

- There exist a linear function that can perfectly separate
the two classes of data

- If there 1s one linear function
that can separate the two °
classes of data, then there ® .
are infinite number of linear
functions that can do
the same (Hausdorff separation theorem)

- The question 1s: which one 1s the optimal

» This 1s an 1ll-posed problem



Linear SVM: separable case

- choosing an optimal linear classifier for separable
training data 1s an 1ll-posed problem

- Extra requirement: the classifier needs to generalize to
unseen data

* [Idea of SVM

» Find linear classifier with the
maximal classification margin

Support vectors

- Margin measures the size of the
open space between the two
classes given a classifier

Maximize
margin



Why seek larger-margin?

- Large margin gives less
chance for future errors

- Large margin guarantees
generalization of the learned
model




Large margin and generalization

e We can try to learn f(x, «) by choosing a function that performs well
on training data:
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where / is the zero-one loss function, ((y,y) = 1,if y # §,and 0
otherwise. Ry, 1S called the empirical risk.

e By doing this we are trying to minimize the overall risk:

R(a) = /E(f(x,oz),y)dP(m,y) = Test Error

where P(X,y) 1s the (unknown) joint distribution function of x and y.



No free lunch theorem

- training data alone are not enough to choose which

function 1s better

- 1f {(x) allows all function from X to {£1}

Training set (z1,vy1), .-+, (T, Ym) € X X {4
Testset 21,...,T5; € &,

such that the two sets do not intersect.

For any f there exists f*:

2. f*(asj) # f(afj) for allj

1}



Controlling the flexibility

- NFL theorem says that we cannot use the whole function
family for learning as 1t will easily lead to overfitting

- When all things equal, we should choose a model family
that 1s not “too flexible”

- How do we quantify a model family’s flexibility



Shattering

- A decision function mapping X — {-1,+1} limited to a
training set of m samples 1s equivalent to a complete
bipartite graph

* One set of nodes correspond to m training data

» The other correspond to {-1,+1} label

» The total number of such mapping 1s 2m

- A function family shatters a data set means that all such
mappings can be obtained from one member from that
family



The VC dimension

» The Vapnik-Chervonenkis (VC) dimension

- A combinatorial entity controlling the flexibility of a

function family, the more phenomena explained by f,
the higher the VC-dim

« It is the maximum number of points that can be
shattered 1n all possible ways by a member of the
function family
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Some VC-dims

- For a finite family, VC-dim(H) < logz|H]
- hyper-plane in d-dims space has VC-dim d+1

» Neural network with n nodes and E edges has VC-dim
O(nE)

- Norm-limited hyper-planes

Consider hyperplanes (w - x) = 0 where w is normalized w.r.t a set of

points X* such that: min; |w - x;| = 1.

The set of decision functions f,,(x) = sign(w - x) defined on X* such
that ||\w|| < A has a VC dimension satisfying

h < R*A?.

where R is the radius of the smallest sphere around the origin containing
X*.



VC(C-dim and generalization

+ Vapnik & Chervonenkis in the 1960s showed that
- For any function family with VC-dim <=h
- For any training set of size m

 For any numbery € (0,1), with probability larger than
1-n, we have

h(lOg(QTm +1) —log(%)
m

R(a) < Remp(a) + \/

or simply, with high probability,

Test Error < + Complexity of set of Models



Interpreting the inequality
- It 1s probabilistic: so there 1s a chance, albeit small, that 1t

does not hold true

- It 1s a bound: so even we minimize the RHS, the true risk
may still be large

- It 1s for a family of functions, so it 1s not really that
useful for individual model

- It works for all data distributions, so 1t may not give the
best on the data we interested

- Its asymptotic behavior 1s good but not useful



How to understand this

- With high probability, we have
< + model complexity
a hlgh capacity set of functions get low training error but
may ~overfit”

- a simple set of models have low complexity, but will
get high training error “under-fit”

« We can understand it as
< + VC-dimension

out-of-sample error

Error

in-sample error

~
~—
< *
A
Q

VC dimension, dye



Large margin -> low VC dim

+ For most models, we cannot compute VC-dim, but for
linear classifiers wTx we can bound 1ts VC-dim with the

norm of w \

{x|<w,x>+b =0}

\

+ The norm of w is related with classification margin




Large margin -> low VC dim

- Large margin -> upper bound norm of w -> related with
the VC dim of norm bounded linear functions

\

\ \
T \
\ {x|<w,x>+b=+1}

Note:

<W9X1>+b=+l
<W,X2>+b=—1

=  <Wr (X=X, p>= 2

AL ~_ 2
=> wii* X=X 2= i




From low complexity to larger margin

- Large margin -> upper bound norm of w -> related with
the VC dim of norm bounded linear functions

- Using the VC-1nequality, we would like to minimize the

upper-bound of test error
< +

- For linear model, we use the result that for the family of
linear functions determined by w, f(x) = wIx + b (varying
b), VC-dim < O(||w]|), so for linear model, we have

(roughly)
< +



Linear SVM: separable case

That function before was a little difficult to minimize because of the step
function in ¢(y, ) (either 1 or 0).

Let’s assume we can separate the data perfectly. Then we can optimize
the following:

Minimize ||w||?, subject to:

(w-z; +b) > 1, if y; =1
(w-z; +b) < -1, if y; =—1
The last two constraints can be compacted to:

yi(w-x; +b) > 1



Linear SVM: non-separable case

- Introducing slack variables to measure the error
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- SVs are those data points that support the hyperplane and
in the margin area



Linear SVM: non-separable case

Minimize: w and b
[w]|[> +C Y &
i=1

subject to:

yi(w-x; +b) >1-&, & >0

This is just the same as the original objective:

1 m
— -2 + b,y ’
C— > lw-zi+by)+]ul

i=1
except £ is no longer the zero-one loss, but is called the ’hinge-loss”:
¢(y,y) = max(0, 1 — yg). This is still a quadratic program!



Why hinge loss

- We can use other types of losses

Hinge loss:

1 - , 0-1 Loss:~” \/ max (0.1 - gy
o ¢ ) b) ) Lly.g) = Vi # )
A S

1=1 0 ;
- If we use least squares loss, this 1s Tikhonov-regularized
binary classification

- We can also use logistic loss, then it 1s Tikhonov-regularized
logistic regression

- Hinge loss gives sparsity

- Optimal solution 1s going to be a linear combination of
training data, hinge loss makes sure we only need a small
set of them

Important for nonlinear SVM



