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Support vector machines
• Support vector machines (SVM) is one of the most 

widely used ML algorithms today 
• Theoretical foundation (statistical learning theory) 

developed in 1960s by Vapnik & Chervonenkis  
• Algorithm first introduced by Vapnik et.al. in 1992 
• Aims to replace NN as a more provable method to 

alleviate overfitting  
• Many successful applications (computer vision, text, 

bioinformatics)



Key components of SVM
• Large-margin learning 

• theoretical guarantee of good performance in 
generalization 

• Efficiency in model: reducing training data to SVs 
• Quadratic programming optimization 

• efficient optimization and unique global solution 
• The “Kernel tricks” 

• extension to nonlinear prediction functions and models 
without explicit feature mapping



SVM for binary classification
• Characteristics  

• training to maximize classification margin 
• decision function specified by a subset of training 

examples known as the support vectors 
• we study the following cases 

• Linear SVM: separable case 
• Linear SVM: non-separable case 
• Nonlinear SVM



Linear SVM: separable case
• Uses linear prediction function 
• Assume separable data: 

• There exist a linear function that can perfectly separate 
the two classes of data 

• If there is one linear function 
that can separate the two 
classes of data, then there 
are infinite number of linear 
functions that can do  
the same (Hausdorff separation theorem) 

• The question is: which one is the optimal 
• This is an ill-posed problem

6 Training sets and prediction models

• input/output sets X , Y

• training set (x1, y1), . . . , (xm, ym)

• ”generalization”: given a previously seen x ∈ X , find a suitable
y ∈ Y .

• i.e., want to learn a classifier: y = f(x, α), where α are the
parameters of the function.

• For example, if we are choosing our model from the set of
hyperplanes in Rn, then we have:

f(x, {w, b}) = sign(w · x + b).
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Linear Programming / Perceptron

Find a,b,c, such that
ax + by � c for red points
ax + by � c for green points.

Which Hyperplane?

In general, lots of possible
solutions for a,b,c.



Linear SVM: separable case
• choosing an optimal linear classifier for separable 

training data is an ill-posed problem 
• Extra requirement: the classifier needs to generalize to 

unseen data 
• Idea of SVM 

• Find linear classifier with the 
maximal classification margin 

• Margin measures the size of the 
open space between the two 
classes given a classifier
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Support Vector Machine (SVM)
Support vectors

Maximize
margin

! SVMs maximize the margin
around the separating 
hyperplane.

! The decision function is 
fully specified by a subset 
of training samples, the 
support vectors.

! Quadratic programming
problem

! Text classification method 
du jour

Separation by Hyperplanes

! Assume linear separability for now:
= in 2 dimensions, can separate by a line
= in higher dimensions, need hyperplanes

! Can find separating hyperplane by linear 
programming (e.g. perceptron):
= separator can be expressed as ax + by = c



Why seek larger-margin?
• Large margin gives less 

chance for future errors 
• Large margin guarantees  

generalization of the learned 
model3 Support Vector Machines: basics

[Boser, Guyon, Vapnik ’92],[Cortes & Vapnik ’95]
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Nice properties: convex, theoretically motivated, nonlinear with kernels..



Large margin and generalization7 Empirical Risk and the true Risk

• We can try to learn f(x, α) by choosing a function that performs well
on training data:

Remp(α) =
1
m

m
∑

i=1

"(f(xi, α), yi) = Training Error

where " is the zero-one loss function, "(y, ŷ) = 1, if y != ŷ, and 0
otherwise. Remp is called the empirical risk.

• By doing this we are trying to minimize the overall risk:

R(α) =
∫

"(f(x, α), y)dP (x, y) = Test Error

where P(x,y) is the (unknown) joint distribution function of x and y.



No free lunch theorem
• training data alone are not enough to choose which 

function is better 
• if f(x) allows all function from X to {±1}

8 Choosing the set of functions

What about f(x, α) allowing all functions from X to {±1}?

Training set (x1, y1), . . . , (xm, ym) ∈ X × {±1}

Test set x̄1, . . . , x̄m̄ ∈ X ,

such that the two sets do not intersect.

For any f there exists f∗:

1. f∗(xi) = f(xi) for all i

2. f∗(xj) #= f(xj) for all j

Based on the training data alone, there is no means of choosing which
function is better. On the test set however they give different results. So
generalization is not guaranteed.

=⇒ a restriction must be placed on the functions that we allow.



Controlling the flexibility 
• NFL theorem says that we cannot use the whole function 

family for learning as it will easily lead to overfitting 
• When all things equal, we should choose a model family 

that is not “too flexible” 
• How do we quantify a model family’s flexibility



Shattering
• A decision function mapping X → {-1,+1} limited to a 

training set of m samples is equivalent to a complete 
bipartite graph 
• One set of nodes correspond to m training data 
• The other correspond to {-1,+1} label 

• The total number of such mapping is 2m 
• A function family shatters a data set means that all such 

mappings can be obtained from one member from that 
family



The VC dimension
• The Vapnik-Chervonenkis (VC) dimension 

• A combinatorial entity controlling the flexibility of a 
function family, the more phenomena explained by f, 
the higher the VC-dim 

• It is the maximum number of points that can be 
shattered in all possible ways by a member of the 
function family

Lines Circles



Some VC-dims
• For a finite family, VC-dim(H) ≤ log2|H| 
• hyper-plane in d-dims space has VC-dim d+1 
• Neural network with n nodes and E edges has VC-dim 

O(nE) 
• Norm-limited hyper-planes 

15 Capacity of hyperplanes

Vapnik & Chervonenkis also showed the following:

Consider hyperplanes (w · x) = 0 where w is normalized w.r.t a set of
points X∗ such that: mini |w · xi| = 1.

The set of decision functions fw(x) = sign(w · x) defined on X∗ such
that ||w|| ≤ A has a VC dimension satisfying

h ≤ R2A2.

where R is the radius of the smallest sphere around the origin containing
X∗.

=⇒ minimize ||w||2 and have low capacity
=⇒ minimizing ||w||2 equivalent to obtaining a large margin classifier



VC-dim and generalization
• Vapnik & Chervonenkis in the 1960s showed that 

• For any function family with VC-dim <= h 
• For any training set of size m 
• For any number               , with probability larger than 

1-η, we have 
 
 
 
or simply, with high probability, 

9 Empirical Risk and the true Risk

Vapnik & Chervonenkis showed that an upper bound on the true risk can
be given by the empirical risk + an additional term:

R(α) ≤ Remp(α) +

√

h(log( 2m
h + 1) − log(η

4 )
m

where h is the VC dimension of the set of functions parameterized by α.

• The VC dimension of a set of functions is a measure of their capacity
or complexity.

• If you can describe a lot of different phenomena with a set of
functions then the value of h is large.

[VC dim = the maximum number of points that can be separated in all
possible ways by that set of functions.]

η ∈ (0,1)

11 VC dimension and capacity of functions

Simplification of bound:

Test Error ≤ Training Error + Complexity of set of Models

• Actually, a lot of bounds of this form have been proved (different
measures of capacity). The complexity function is often called a
regularizer.

• If you take a high capacity set of functions (explain a lot) you get low
training error. But you might ”overfit”.

• If you take a very simple set of models, you have low complexity, but
won’t get low training error.



Interpreting the inequality
• It is probabilistic: so there is a chance, albeit small, that it 

does not hold true 
• It is a bound: so even we minimize the RHS, the true risk 

may still be large 
• It is for a family of functions, so it is not really that 

useful for individual model  
• It works for all data distributions, so it may not give the 

best on the data we interested 
• Its asymptotic behavior is good but not useful 



How to understand this
• With high probability, we have 

          test error ≤ training error + model complexity 
a high capacity set of functions get low training error but 
may ”overfit” 
• a simple set of models have low complexity, but will 

get high training error ”under-fit” 
• We can understand it as            

test error ≤ training error + VC-dimension



Large margin -> low VC dim
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• For most models, we cannot compute VC-dim, but for 
linear classifiers wTx we can bound its VC-dim with the 
norm of w 

• The norm of w is related with classification margin



Large margin -> low VC dim
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• Large margin -> upper bound norm of w -> related with 
the VC dim of norm bounded linear functions



From low complexity to larger margin
• Large margin -> upper bound norm of w -> related with 

the VC dim of norm bounded linear functions 
• Using the VC-inequality, we would like to minimize the 

upper-bound of test error 
test error ≤ training error + VC-dimension 

• For linear model, we use the result that for the family of 
linear functions determined by w, f(x) = wTx + b (varying 
b), VC-dim < O(||w||), so for linear model, we have 
(roughly)  
          test error ≤ training error + ||w||2  



Linear SVM: separable case17 Linear Support Vector Machines II

That function before was a little difficult to minimize because of the step
function in !(y, ŷ) (either 1 or 0).

Let’s assume we can separate the data perfectly. Then we can optimize
the following:

Minimize ||w||2, subject to:

(w · xi + b) ≥ 1, if yi = 1

(w · xi + b) ≤ −1, if yi = −1

The last two constraints can be compacted to:

yi(w · xi + b) ≥ 1

This is a quadratic program.



Linear SVM: non-separable case
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• Introducing slack variables to measure the error 

• SVs are those data points that support the hyperplane and 
in the margin area



Linear SVM: non-separable case
18 SVMs : non-separable case

To deal with the non-separable case, one can rewrite the problem as:

Minimize:

||w||2 + C
m

∑

i=1

ξi

subject to:

yi(w · xi + b) ≥ 1 − ξi, ξi ≥ 0

This is just the same as the original objective:

1
m

m
∑

i=1

"(w · xi + b, yi) + ||w||2

except " is no longer the zero-one loss, but is called the ”hinge-loss”:
"(y, ŷ) = max(0, 1 − yŷ). This is still a quadratic program!

w and b

C



Why hinge loss
• We can use other types of losses  

• If we use least squares loss, this is Tikhonov-regularized 
binary classification 

• We can also use logistic loss, then it is Tikhonov-regularized 
logistic regression 

• Hinge loss gives sparsity  
• Optimal solution is going to be a linear combination of 

training data, hinge loss makes sure we only need a small 
set of them 

• Important for nonlinear SVM

18 SVMs : non-separable case

To deal with the non-separable case, one can rewrite the problem as:
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