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Solving SVM: separable case

• SVM in separable case is to  

• How do we solve this quadratic programming problem 
numerically?

17 Linear Support Vector Machines II

That function before was a little difficult to minimize because of the step
function in !(y, ŷ) (either 1 or 0).

Let’s assume we can separate the data perfectly. Then we can optimize
the following:

Minimize ||w||2, subject to:

(w · xi + b) ≥ 1, if yi = 1

(w · xi + b) ≤ −1, if yi = −1

The last two constraints can be compacted to:

yi(w · xi + b) ≥ 1

This is a quadratic program.
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constrained optimization

• to solve minx f(x) s.t., g(x) ≤ 0 
• general idea: convert to unconstrained problem 
• three types of general methods 

• the barrier method, e.g., 
minx f(x) + log(-g(x)): always feasible 

• the penalty method, e.g., 
minx f(x) + max(0,g(x)): can be infeasible 

• primal-dual method, using Lagrangian duality 



constrained optimization

• Lagrangian and Lagrangian multipliers for the primal 
problem  
           minx f(x) s.t., g(x) ≤ 0 
• introduce multiplier 0 ≤ λ and form Lagrangian 

        L(x, λ) = f(x) + λg(x) 
• for any feasible x, L(x,λ) ≤ f(x), i.e., a lower bound 

• dual problem 
• first, find x*(λ) = argminx L(x,λ) 
• dual function: h(λ) = L(x*(λ),λ) is concave 
• maxλ h(λ), s.t., 0 ≤ λ is the dual problem



weak & strong duality

• f* = optimal value of the primal problem  
            minx f(x) s.t., g(x) ≤ 0 

• h* = optimal value of the dual problem  
            maxλ h(λ), s.t., 0 ≤ λ 

• with very loose conditions, we always have 
            h* ≤ f* 
this is known as the weak duality 

• with more assumptions (e.g., primal problem is convex), 
we have  
            h* = f* 
this is known as the strong duality 

• many problem can be solved easily in the dual form



KKT condition

• Karush-Kuhn-Tucker condition 
• gradient of Lagrangian has to be zero 

            ∇f(x) + λ∇g(x) = 0 

• primal feasibility: g(x) ≤ 0  
• dual feasibility: λ ≥ 0 
• complementary slackness: λg(x) = 0 

• counterpart of the optimal condition of ∇f(x) = 0 for 
unconstrained optimization



understanding the KKT condition

• Two cases  

• Case 1: optimal solution inside feasible region 
∇f(x) = 0, λ = 0, g(x) < 0 

• Case 2: optimal solution on boundary 
∇f(x) ∝ -∇g(x), λ > 0, g(x) = 0



understanding the KKT condition

• optimal solution  
• inside the feasible region 

• gradient of objective function is zero 
• on the boundary of the feasible region 

• gradient of objective function is orthogonal to the 
linear constraint form the boundary 

• which case is indicated by the Lagrangian multiplier λ≥0 
• λ = 0: inside feasible region 
• λ > 0: on the boundary of feasible region



Example

• minx,y f(x,y) = x2+2y2, s.t., x+y ≥ 1
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flattened paraboloid f: 2-x2-2y2=0 with superimposed constraint  g: 
x +y = 1;  at tangent solution p, gradient vectors of  f,g are parallel 
(no possible move to incr f that also keeps you in region g)

Maximize when the constraint line g is tangent to the inner ellipse
contour line of f

Two constraints

1. Parallel normal constraint (= gradient constraint 
on f, g solution is a max)

2. G(x)=0 (solution is on the constraint line)

We now recast these by combining f, g as the 
Lagrangian



solving SVM: separable case
SVM – separable case

Primary problem

minw
1
2
kwk2

s.t. yi(wT xi + b) � 1 for i = 1, · · · , n

Introducing multipliers ↵i � 0 and forming Lagrangian

L(w, b,↵) =
1
2
kwk2 �

nX

i=1

↵i yi(wT xi + b) +
nX

i=1

↵i .

,b



solving SVM: separable case

• We can solve the primary problem directly 
• Solution always exist when data are separable 
• But some elegant geometry is buried in the solution 

• We instead solve the dual problem after removing primal 
variables because 
• KKT condition requires many multipliers to take zero 

values 
• training examples whose corresponding multiplier take 

nonzero values are the support vectors



solving SVM: separable case
Dual Problem

Eliminate primal variables w and b

@L(w, b,↵)

@w
= w �

nX

i=1

↵i yixi = 0

@L(w, b,↵)

@b
=

nX

i=1

↵i yi = 0

From the first condition, we have w =
Pn

i=1 ↵i yixi .
From the second condition, we have

Pn
i=1 ↵i yi = 0.

Complementary slackness (from KKT condition)
↵i(yi(wT xi + b)� 1) = 0.



solving SVM: separable case

Dual Problem

Eliminate primal variables w and b with w =
Pn

i=1 ↵i yixi
and

Pn
i=1 ↵i yi = 0, the dual problem becomes

max↵
nX

i=1

↵i �
1
2

nX

i=1

nX

j=1

↵i↵j yiyjxT
i xj

s.t.
nX

i=1

↵i yi = 0,↵i � 0.
3 Support Vector Machines: basics
[Boser, Guyon, Vapnik ’92],[Cortes & Vapnik ’95]

-
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+ +
+

- - - -

margin

margin

Nice properties: convex, theoretically motivated, nonlinear with kernels..



Support vectors
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Moving a support vector 
moves the decision 
boundary

Moving the other vectors 
has no effect

The algorithm to generate the weights proceeds in such a way that 
only the support vectors determine the weights and thus the boundary

Maximizing the margin

d+

d-

We want a classifier with as big margin as possible. 

Recall the distance from a point(x0,y0) to a line:
Ax+By+c = 0 is|A x0 +B y0 +c|/sqrt(A2+B2)

The distance between H and H1 is:
|w"x+b|/||w||=1/||w||

The distance between H1 and H2 is: 2/||w||

In order to maximize the margin, we need to minimize ||w||. With the 
condition that there are no datapoints between H1 and H2:
xiJw+b � +1 when yi =+1 
xiJw+b � -1 when yi =-1        Can be combined into yi(xiJw) � 1 

H1

H2
H



solving SVM: non-separable case
18 SVMs : non-separable case

To deal with the non-separable case, one can rewrite the problem as:

Minimize:

||w||2 + C
m

∑

i=1

ξi

subject to:

yi(w · xi + b) ≥ 1 − ξi, ξi ≥ 0

This is just the same as the original objective:

1
m

m
∑

i=1

"(w · xi + b, yi) + ||w||2

except " is no longer the zero-one loss, but is called the ”hinge-loss”:
"(y, ŷ) = max(0, 1 − yŷ). This is still a quadratic program!

Dual Problem

Eliminate primal variables w and b with w =
Pn

i=1 ↵i yixi
and

Pn
i=1 ↵i yi = 0, the dual problem becomes

max↵
nX

i=1

↵i �
1
2

nX

i=1

nX

j=1

↵i↵j yiyjxT
i xj

s.t.
nX

i=1

↵i yi = 0,↵i � 0.

Dual form: 

0 ≤ αi ≤ C



Solving SVM

• The quadratic programming problem for either separable 
and non-separable cases can be solve efficiently using 
off-the-shelf packages 

• We introduce however a particularly simple optimization 
scheme known as sequential minimization optimization 
(SMO) based on the paper of John Platt in 1996 
• This is the SVM algorithm I implemented in C 

• Idea: coordinate descent



SMO for SVM

• Coordinate ascent: updating each element individually to 
reduce the optimization problem to a sequence of low-
dim optimization problems 

• however, for SVM, this does not work [Why?]

Dual Problem

Eliminate primal variables w and b with w =
Pn

i=1 ↵i yixi
and

Pn
i=1 ↵i yi = 0, the dual problem becomes

max↵
nX

i=1

↵i �
1
2

nX

i=1

nX

j=1

↵i↵j yiyjxT
i xj

s.t.
nX

i=1

↵i yi = 0,↵i � 0.0 ≤ αi ≤ C



SMO for SVM

• each time optimize w.r.t. a pair of variables and reduce 
the problem to 
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The ellipses in the figure are the contours of a quadratic function that
we want to optimize. Coordinate ascent was initialized at (2,−2), and also
plotted in the figure is the path that it took on its way to the global maximum.
Notice that on each step, coordinate ascent takes a step that’s parallel to one
of the axes, since only one variable is being optimized at a time.

9.2 SMO

We close off the discussion of SVMs by sketching the derivation of the SMO
algorithm. Some details will be left to the homework, and for others you
may refer to the paper excerpt handed out in class.

Here’s the (dual) optimization problem that we want to solve:

maxα W (α) =
m

∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj〈x(i), x(j)〉. (17)

s.t. 0 ≤ αi ≤ C, i = 1, . . . ,m (18)
m

∑

i=1

αiy
(i) = 0. (19)

Lets say we have set of αi’s that satisfy the constraints (18-19). Now,
suppose we want to hold α2, . . . ,αm fixed, and take a coordinate ascent step
and reoptimize the objective with respect to α1. Can we make any progress?
The answer is no, because the constraint (19) ensures that

α1y
(1) = −

m
∑

i=2

αiy
(i).
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Or, by multiplying both sides by y(1), we equivalently have

α1 = −y(1)
m

∑

i=2

αiy
(i).

(This step used the fact that y(1) ∈ {−1, 1}, and hence (y(1))2 = 1.) Hence,
α1 is exactly determined by the other αi’s, and if we were to hold α2, . . . ,αm

fixed, then we can’t make any change to α1 without violating the con-
straint (19) in the optimization problem.

Thus, if we want to update some subject of the αi’s, we must update at
least two of them simultaneously in order to keep satisfying the constraints.
This motivates the SMO algorithm, which simply does the following:

Repeat till convergence {

1. Select some pair αi and αj to update next (using a heuristic that
tries to pick the two that will allow us to make the biggest progress
towards the global maximum).

2. Reoptimize W (α) with respect to αi and αj, while holding all the
other αk’s (k #= i, j) fixed.

}

To test for convergence of this algorithm, we can check whether the KKT
conditions (Equations 14-16) are satisfied to within some tol. Here, tol is
the convergence tolerance parameter, and is typically set to around 0.01 to
0.001. (See the paper and pseudocode for details.)

The key reason that SMO is an efficient algorithm is that the update to
αi, αj can be computed very efficiently. Lets now briefly sketch the main
ideas for deriving the efficient update.

Lets say we currently have some setting of the αi’s that satisfy the con-
straints (18-19), and suppose we’ve decided to hold α3, . . . ,αm fixed, and
want to reoptimize W (α1,α2, . . . ,αm) with respect to α1 and α2 (subject to
the constraints). From (19), we require that

α1y
(1) + α2y

(2) = −
m

∑

i=3

αiy
(i).

Since the right hand side is fixed (as we’ve fixed α3, . . . αm), we can just let
it be denoted by some constant ζ:

α1y
(1) + α2y

(2) = ζ. (20)

We can thus picture the constraints on α1 and α2 as follows:
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α2

α1

α1 α2

C

C

(1)+ (2)y y =ζH

L

From the constraints (18), we know that α1 and α2 must lie within the box
[0, C]× [0, C] shown. Also plotted is the line α1y(1) +α2y(2) = ζ, on which we
know α1 and α2 must lie. Note also that, from these constraints, we know
L ≤ α2 ≤ H; otherwise, (α1,α2) can’t simultaneously satisfy both the box
and the straight line constraint. In this example, L = 0. But depending on
what the line α1y(1) + α2y(2) = ζ looks like, this won’t always necessarily be
the case; but more generally, there will be some lower-bound L and some
upper-bound H on the permissable values for α2 that will ensure that α1, α2

lie within the box [0, C] × [0, C].
Using Equation (20), we can also write α1 as a function of α2:

α1 = (ζ − α2y
(2))y(1).

(Check this derivation yourself; we again used the fact that y(1) ∈ {−1, 1} so
that (y(1))2 = 1.) Hence, the objective W (α) can be written

W (α1,α2, . . . ,αm) = W ((ζ − α2y
(2))y(1),α2, . . . ,αm).

Treating α3, . . . ,αm as constants, you should be able to verify that this is
just some quadratic function in α2. I.e., this can also be expressed in the
form aα2

2 + bα2 + c for some appropriate a, b, and c. If we ignore the “box”
constraints (18) (or, equivalently, that L ≤ α2 ≤ H), then we can easily
maximize this quadratic function by setting its derivative to zero and solving.
We’ll let αnew,unclipped

2 denote the resulting value of α2. You should also be
able to convince yourself that if we had instead wanted to maximize W with
respect to α2 but subject to the box constraint, then we can find the resulting
value optimal simply by taking αnew,unclipped

2 and “clipping” it to lie in the
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SMO for SVM

• Each time minimize a simple quadratic function with two 
variables and box constraints

6

2. SEQUENTIAL MINIMAL OPTIMIZATION
Sequential Minimal Optimization (SMO) is a simple algorithm that can quickly solve the SVM
QP problem without any extra matrix storage and without using numerical QP optimization steps
at all.  SMO decomposes the overall QP problem into QP sub-problems, using Osuna’s theorem
to ensure convergence.

Unlike the previous methods, SMO chooses to solve the smallest possible optimization problem
at every step.  For the standard SVM QP problem, the smallest possible optimization problem
involves two Lagrange multipliers, because the Lagrange multipliers must obey a linear equality
constraint.  At every step, SMO chooses two Lagrange multipliers to jointly optimize, finds the
optimal values for these multipliers, and updates the SVM to reflect the new optimal values (see
figure 2).

The advantage of SMO lies in the fact that solving for two Lagrange multipliers can be done
analytically.  Thus, numerical QP optimization is avoided entirely.  The inner loop of the
algorithm can be expressed in a short amount of C code, rather than invoking an entire QP library
routine. Even though more optimization sub-problems are solved in the course of the algorithm,
each sub-problem is so fast that the overall QP problem is solved quickly.

In addition, SMO requires no extra matrix storage at all.  Thus, very large SVM training problems
can fit inside of the memory of an ordinary personal computer or workstation.  Because no matrix
algorithms are used in SMO, it is less susceptible to numerical precision problems.

There are two components to SMO: an analytic method for solving for the two Lagrange
multipliers, and a heuristic for choosing which multipliers to optimize.

Figure 1. The two Lagrange multipliers must fulfill all of the constraints of the full problem.
The inequality constraints cause the Lagrange multipliers to lie in the box. The linear equality
constraint causes them to lie on a diagonal line. Therefore, one step of SMO must find an
optimum of the objective function on a diagonal line segment.

! 2 ! C ! 2 ! C

! 2 0!

! 1 0! ! 1 ! C

y y k1 2 1 2" # $ !! !

! 2 0!

! 1 0! ! 1 ! C

y y k1 2 1 2! # % !! !
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SMO for SVM
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Or, by multiplying both sides by y(1), we equivalently have

α1 = −y(1)
m

∑

i=2

αiy
(i).

(This step used the fact that y(1) ∈ {−1, 1}, and hence (y(1))2 = 1.) Hence,
α1 is exactly determined by the other αi’s, and if we were to hold α2, . . . ,αm

fixed, then we can’t make any change to α1 without violating the con-
straint (19) in the optimization problem.

Thus, if we want to update some subject of the αi’s, we must update at
least two of them simultaneously in order to keep satisfying the constraints.
This motivates the SMO algorithm, which simply does the following:

Repeat till convergence {

1. Select some pair αi and αj to update next (using a heuristic that
tries to pick the two that will allow us to make the biggest progress
towards the global maximum).

2. Reoptimize W (α) with respect to αi and αj, while holding all the
other αk’s (k #= i, j) fixed.

}

To test for convergence of this algorithm, we can check whether the KKT
conditions (Equations 14-16) are satisfied to within some tol. Here, tol is
the convergence tolerance parameter, and is typically set to around 0.01 to
0.001. (See the paper and pseudocode for details.)

The key reason that SMO is an efficient algorithm is that the update to
αi, αj can be computed very efficiently. Lets now briefly sketch the main
ideas for deriving the efficient update.

Lets say we currently have some setting of the αi’s that satisfy the con-
straints (18-19), and suppose we’ve decided to hold α3, . . . ,αm fixed, and
want to reoptimize W (α1,α2, . . . ,αm) with respect to α1 and α2 (subject to
the constraints). From (19), we require that

α1y
(1) + α2y

(2) = −
m

∑

i=3

αiy
(i).

Since the right hand side is fixed (as we’ve fixed α3, . . . αm), we can just let
it be denoted by some constant ζ:

α1y
(1) + α2y

(2) = ζ. (20)

We can thus picture the constraints on α1 and α2 as follows:



SVM solvers

• Many SVM solvers for python and other languages 
• Scikt-learn  
• LibSVM 
• SVM-light 
• SVM-torch 
• Matlab ML toolkit


