

CSI 436/536 Introduction to Machine Learning

SVM algorithm

Professor Siwei Lyu Computer Science University at Albany, State University of New York

Solving SVM: separable case

• SVM in separable case is to

Minimize $||w||^2$, subject to: $y_i(w \cdot x_i + b) \ge 1$

• How do we solve this quadratic programming problem numerically?

constrained optimization

- to solve $\min_x f(x)$ s.t., $g(x) \le 0$
 - general idea: convert to unconstrained problem
 - three types of general methods
 - the barrier method, e.g.,
 min_x f(x) + log(-g(x)): always feasible
 - the penalty method, e.g., $\min_x f(x) + \max(0,g(x))$: can be infeasible
 - primal-dual method, using Lagrangian duality

constrained optimization

• Lagrangian and Lagrangian multipliers for the primal problem

 $\min_{x} f(x) \text{ s.t., } g(x) \leq 0$

- introduce multiplier $0 \le \lambda$ and form Lagrangian $L(x, \lambda) = f(x) + \lambda g(x)$
- for any feasible x, $L(x,\lambda) \le f(x)$, i.e., a lower bound
- dual problem
 - first, find $x^*(\lambda) = \operatorname{argmin}_x L(x,\lambda)$
 - dual function: $h(\lambda) = L(x^*(\lambda), \lambda)$ is concave
 - $\max_{\lambda} h(\lambda)$, s.t., $0 \le \lambda$ is the dual problem

weak & strong duality

- $f^* = optimal value of the primal problem$ $min_x f(x) s.t., g(x) \le 0$
- $h^* = optimal value of the dual problem$ $max_{\lambda} h(\lambda), s.t., 0 \le \lambda$
- with very loose conditions, we always have h* ≤ f* this is known as the weak duality
- with more assumptions (e.g., primal problem is convex), we have

 $h^* = f^*$

this is known as the strong duality

• many problem can be solved easily in the dual form

KKT condition

- Karush-Kuhn-Tucker condition
 - gradient of Lagrangian has to be zero $\nabla f(x) + \lambda \nabla g(x) = 0$
 - primal feasibility: $g(x) \le 0$
 - dual feasibility: $\lambda \ge 0$
 - complementary slackness: $\lambda g(x) = 0$
- counterpart of the optimal condition of $\nabla f(x) = 0$ for unconstrained optimization

understanding the KKT condition

- Case 1: optimal solution inside feasible region $\nabla f(x) = 0, \lambda = 0, g(x) < 0$
- Case 2: optimal solution on boundary $\nabla f(x) \propto -\nabla g(x), \lambda > 0, g(x) = 0$

understanding the KKT condition

- optimal solution
 - inside the feasible region
 - gradient of objective function is zero
 - on the boundary of the feasible region
 - gradient of objective function is orthogonal to the linear constraint form the boundary
- which case is indicated by the Lagrangian multiplier $\lambda \ge 0$
 - $\lambda = 0$: inside feasible region
 - $\lambda > 0$: on the boundary of feasible region

Example

• $\min_{x,y} f(x,y) = x^2 + 2y^2$, s.t., $x + y \ge 1$

Primary problem

$$\min_{\mathbf{w},\mathbf{b}} \frac{1}{2} \|\mathbf{w}\|^2$$
s.t. $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 \text{ for } i = 1, \cdots, n$

Introducing multipliers $\alpha_i \geq 0$ and forming Lagrangian

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i y_i (\mathbf{w}^T \mathbf{x}_i + b) + \sum_{i=1}^n \alpha_i.$$

solving SVM: separable case

- We can solve the primary problem directly
 - Solution always exist when data are separable
 - But some elegant geometry is buried in the solution
- We instead solve the dual problem after removing primal variables because
 - KKT condition requires many multipliers to take zero values
 - training examples whose corresponding multiplier take nonzero values are the **support vectors**

solving SVM: separable case

Eliminate primal variables w and b

$$\frac{\partial L(\mathbf{w}, b, \alpha)}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = 0$$
$$\frac{\partial L(\mathbf{w}, b, \alpha)}{\partial b} = \sum_{i=1}^{n} \alpha_i y_i = 0$$

From the first condition, we have $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$. From the second condition, we have $\sum_{i=1}^{n} \alpha_i y_i = 0$. Complementary slackness (from KKT condition) $\alpha_i(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1) = 0$.

solving SVM: separable case

Eliminate primal variables **w** and *b* with $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$ and $\sum_{i=1}^{n} \alpha_i y_i = 0$, the dual problem becomes

Support vectors

solving SVM: non-separable case

Minimize:

$$||w||^2 + C \sum_{i=1}^m \xi_i$$

subject to:

$$y_i(w \cdot x_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0$$

Dual form:

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$$

s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = \mathbf{0}, \ \mathbf{0} \le \alpha_{i} \le C$$

Solving SVM

- The quadratic programming problem for either separable and non-separable cases can be solve efficiently using off-the-shelf packages
- We introduce however a particularly simple optimization scheme known as sequential minimization optimization (SMO) based on the paper of John Platt in 1996
 - This is the SVM algorithm I implemented in C
- Idea: coordinate descent

SMO for SVM

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$$

s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0, \ 0 \le \alpha_{i} \le C$$

- Coordinate ascent: updating each element individually to reduce the optimization problem to a sequence of low-dim optimization problems
- however, for SVM, this does not work [Why?]

SMO for SVM L α_1 α_1 α_2 α_2 α_1 α_2 α_1 α_2 α_1 α_2 α_2 α_1 α_2 α_1 α_2 α_2 α_2 α_2 α_1 α_2 α_2 α_2 α_1 α_2 α_2 α_2 α_2 α_2 α_1 α_2 α_2 α_2 α_2 α_2 α_1 α_2 $\alpha_$

• each time optimize w.r.t. a^{α_1} pair of variables and reduce the problem to

$$\max_{\alpha} \quad W(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y^{(i)} y^{(j)} \alpha_i \alpha_j \langle x^{(i)}, x^{(j)} \rangle.$$

s.t. $0 \le \alpha_i \le C, \quad i = 1, \dots, m$
 $\sum_{i=1}^{m} \alpha_i y^{(i)} = 0.$

$$\alpha_1 y^{(1)} + \alpha_2 y^{(2)} = -\sum_{i=3}^m \alpha_i y^{(i)}$$

$$\alpha_1 y^{(1)} + \alpha_2 y^{(2)} = \zeta.$$
 $\alpha_1 = (\zeta - \alpha_2 y^{(2)}) y^{(1)}.$

$$W(\alpha_1, \alpha_2, \dots, \alpha_m) = W((\zeta - \alpha_2 y^{(2)}) y^{(1)}, \alpha_2, \dots, \alpha_m)$$

SMO for SVM

• Each time minimize a simple quadratic function with two variables and box constraints

$$W(\alpha_1, \alpha_2, \dots, \alpha_m) = W((\zeta - \alpha_2 y^{(2)}) y^{(1)}, \alpha_2, \dots, \alpha_m)$$

SMO for SVM

Repeat till convergence {

- 1. Select some pair α_i and α_j to update next (using a heuristic that tries to pick the two that will allow us to make the biggest progress towards the global maximum).
- 2. Reoptimize $W(\alpha)$ with respect to α_i and α_j , while holding all the other α_k 's $(k \neq i, j)$ fixed.

SVM solvers

- Many SVM solvers for python and other languages
 - Scikt-learn
 - LibSVM
 - SVM-light
 - SVM-torch
 - Matlab ML toolkit