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Solving SVM: separable case

SVM 1n separable case 1s to

Minimize ||w||?, subject to: y;(w - x; +b) > 1

- How do we solve this quadratic programming problem
numerically?




constrained optimization

* to solve miny f(x) s.t., g(x) <0
- general 1dea: convert to unconstrained problem
- three types of general methods

» the barrier method, e.g.,
miny f(x) + log(-g(x)): always feasible

» the penalty method, e.g.,
miny f(x) + max(0,g(x)): can be infeasible

- primal-dual method, using Lagrangian duality



constrained optimization

- Lagrangian and Lagrangian multipliers for the primal
problem
miny f(x) s.t., g(x) <0

- 1ntroduce multiplier 0 <A and form Lagrangian
L(x, ) = f(x) + Ag(x)

- for any feasible x, L(x,A) < {(x), 1.e., a lower bound
* dual problem

- first, find x*(\) = argminx L(x,A)

* dual function: h(A) = L(x*(A),A) is concave

- maxjy h(A), s.t., 0 <A 1s the dual problem



weak & strong duality

- f* = optimal value of the primal problem
miny f(x) s.t., g(x) <0

- h* = optimal value of the dual problem
maxj h(A), s.t., 0 <A

- with very loose conditions, we always have
h* < f*
this 1s known as the weak duality

- with more assumptions (e.g., primal problem 1s convex),

we have
h* = f*
this 1s known as the strong duality

- many problem can be solved easily in the dual form



KKT condition

- Karush-Kuhn-Tucker condition

- gradient of Lagrangian has to be zero
Vi(x) + AVg(x) =0

- primal feasibility: g(x) <0
* dual feasibility: A >0
- complementary slackness: Ag(x) =0

- counterpart of the optimal condition of V{(x) = 0 for
unconstrained optimization



understanding the KKT condition

« Two cases

- Case 1: optimal solution inside feasible region
Vi(x)=0,A=0, g(x) <0

- Case 2: optimal solution on boundary
Vix) L -Vg(x), 4> 0, g(x) =0



understanding the KKT condition

- optimal solution
- 1nside the feasible region
- gradient of objective function 1s zero
- on the boundary of the feasible region

- gradient of objective function is orthogonal to the
linear constraint form the boundary

- which case 1s indicated by the Lagrangian multiplier A>0
- A =0: 1nside feasible region

+ A >0: on the boundary of feasible region
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solving SVM: separable case

Primary problem

1
2
st. yi(w'x;+b)>1fori=1---,n

Miny p, = ||W]|°

Introducing multipliers «; > 0 and forming Lagrangian

1 n n
L(W7 b, a) — EHWHZ T Zaiyi(wai + b) + Zai-
=1 =1



solving SVM: separable case

- We can solve the primary problem directly
Solution always exist when data are separable
- But some elegant geometry 1s buried 1n the solution

- We 1nstead solve the dual problem after removing primal
variables because

- KKT condition requires many multipliers to take zero
values

- training examples whose corresponding multiplier take
nonzero values are the support vectors



solving SVM: separable case

Eliminate primal variables w and b

OL(W, b, L
(8w ) W_;Oﬁ}/ixi:O

OL(W,b,@) <~
ab - ;&Iyl_o

From the first condition, we have w = >"7 . a;y;X;.
From the second condition, we have >_7 , a;y; = 0.

Complementary slackness (from KKT condition)
ai(yi(w'x;+b) — 1) =0.



solving SVM: separable case

Eliminate primal variables w and b with w = >~ . a;y;X;
and Y7 . a;y; = 0, the dual problem becomes

max,, Za, — YYa iy x;

/1/1

s.t. Za,y, =0,0; > 0.
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Support vectors
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Moving the other vectors
has no effect

Moving a support vector
moves the decision
boundary




solving SVM: non-separable case

Minimize:
[w]|[> +C Y &
i=1
subject to:
yi(w-x; +b) >1-&, & >0
Dual form:

n

max., Za,—— Yozozjy,ij X;
i=1 j=1

s.t. Za,y,:o 0<a,<C
=1



Solving SVM

» The quadratic programming problem for either separable
and non-separable cases can be solve efficiently using
off-the-shelf packages

- We introduce however a particularly simple optimization
scheme known as sequential minimization optimization

(SMO) based on the paper of John Platt in 1996
» This 1s the SVM algorithm I implemented in C

- Idea: coordinate descent



SMO for SVM

max., Za, — S‘S‘a iy} x;

/1/1

S.1. Zaiy,-:O, OSGZSC
i=1

- Coordinate ascent: updating each element individually to
reduce the optimization problem to a sequence of low-
dim optimization problems

- however, for SVM, this does not work [Why?]



SMO for SVM

- each time optimize w.r.t. a pair of variables and reduce
the problem to

max, Z o — = Z NONCIORMONY

zyl
s.t. OSO&LSC, z':l,...,m

i ozz-y“) = 0.
i=1

ary™M + apy® = =) " ayt?
1=3
ony™ + agy® = ¢. ar = (¢ — axy®)yth.

W((C T CYQy(Q))y(l), a2, ..., CY?TL)

W(Oél, Qo, ... ,Oém)



SMO for SVM

- Each time minimize a simple quadratic function with two
variables and box constraints

W(Oéla a2, ..., Oém) — W((C o aQy(z))y(l)v a2, . .. 7am)

o,=0 o, =0

WEY, > -a,=k w=y,>a+a,=k



SMO for SVM

Repeat till convergence {

1. Select some pair a; and «; to update next (using a heuristic that
tries to pick the two that will allow us to make the biggest progress
towards the global maximum).

2. Reoptimize W (a) with respect to a; and «a;, while holding all the
other ay’s (k # i, 7) fixed.



SVM solvers

« Many SVM solvers for python and other languages
»  Scikt-learn
- LibSVM
- SVM-light
+ SVM-torch
- Matlab ML toolkit



