CSI 436/536
Introduction to Machine Learning

Kernel SVM

Professor Siwei Lyu
Computer Science
University at Albany, State University of New York

Leap from linear to nonlinear techniques

- So far we have mostly focused on linear techniques
- We need nonlinear analysis

- There are two general approaches to obtain nonlinear
models

- Directly design a nonlinear model

- Convert a linear model via the “kernel trick” to get a
nonlinear model

How to build nonlinear models?

- Consider classification problem
- Nonlinearly transform data into a feature space

* Build non-linear linear separation surface in the
feature space

- Transform back to the original space to obtain a
nonlinear transform

T

Why this approach may work?

- Linearly non separable data can become linearly
separable 1n a higher dimensional space

0 3
xo /—\H“‘m x . X
x| x 2] % X T 2 211
x| X x Xy x o :|r1, 2|7 — [\/55131582513

X@%x; ’ . ofooo [)] [1>) 2]
X%@U/x I o OOO a2 ZI
X x xX %

X 2

Elliptical decision boundary in the input space becomes linear
in the feature space z = ¢(x):

2 2

T T 2z z

1 > 1 3
+2=—¢c=> S 42 =

a? b2 a? b2

What is the problem

- We may raise to very high dimension

Consider the mapping:
¢ [z1,22)" — [1, V2x1, V210, 23, 23, V2z110]".

The (linear) SVM classifier in the feature space:

y = sign (150 +) Oéiyi¢(Xi)T¢(X)>

a; >0

The dot product in the feature space:

¢(X)Tgb(z) = 1+ 22121 + 22020 + az%zf + x%z% + 2x1X021 22

= (1 + XTZ)2 :

The kernel trick

- Finding a feature map then a linear SVM classifier may
not work when the feature map involves very high
dimension (curse of dimensionality)

- The SVM training and testing only requires inner
product between data points in the feature space

- That mner product can be computed using a function in
the original space between a pair of training data, this 1s
the kernel function

- Many algorithms can be “kernelized”

- If we can covert them 1nto a formulation only depend
on 1nner products

Kernel SVM

- data linearly separable in the (infinite-dimensional)
feature space

- We don’t need to explicitly compute dot products in that
feature space — instead we simply evaluate the RBF
kernel

- avoid curse of dimensionality
- need to design kernel with domain knowledge

+ “no free lunch theorem: no universal kernel

Kernel functions

- kernel function computes inner product in the feature
space from an implicit feature mapping

- can any function be a kernel function?
- 1t has to be symmetric

- 1t has to be positive when two 1nputs are same

it has to be zero when one 1nput 1s zero

- It needs to satisfy the Mercer’s condition

Mercer’s condition

What kind of function K is a valid kernel, i.e. such that there
exists a feature space ®(x) in which K(x,z) = ¢(x)! ¢(z)?
Theorem due to Mercer (1930s): K must be

e Continuous;

e symmetric: K(x,z) = K(z,x);

e positive definite: for any x1,...,Xy, the kernel matrix

K(Xl,X]_) K(X17X2) K(X].)XN)_
K =

K(XN,Xl) K(XN,XQ) K(XN,XN)

must be positive definite.

* Reproducing kernel Hilbert space

-+ A Hilbert space 1s an abstract vector space with a proper
definition of inner product

- Defined properly, a Mercer kernel induces a space like
that for functions fx(x) = K(.,x), with <fx(x),fk(y)> =
K(x,y), such a space 1s known as an RKHS with K being
the reproducing kernel

- This 1s a vector space with inf dimension

- On training dataset, a finite vector space 1s formed by
K(x1,.),..., K(Xm,.)

- We have the representer’s theorem stating that solutions
to regularized LSE 1n such space 1s a vector in that space

Useful kernels

The linear kernel:
K(x,z) = x'z.

This leads to the original, linear SVM.

The polynomial kernel:
K(x,z; ¢,d) = (c+x'z)"

We can write the expansion explicitly, by concatenating
powers up to d and multiplying by appropriate weights.

Radial basis function (RBF) kernels

1
K(x,z;0) = —|lx—z|]?) .
(x,2;0) exp(0_2||X z||)

The RBF kernel is a measure of similarity between two
examples.

e The feature space is infinite-dimensional!

What is the role of parameter o? Consider ¢ — 0.

1 if x = x;,

K(x;,x;0) — |
0 if x # x;.

All examples become SVs = likely overfitting.

Special kernel functions

string kernels
- texts, DNA sequences, etc
- Fisher kernels
- probability distributions
» tree kernels
* tree structures
- building kernels from similarity measures
Shoenberg’s theorem

Combining kernels to generate new kernels*

* topic of my first CVPR paper in 2005

Kernel SVM

The optimization problem:

\

max < ZO&Z — — Z Oézo{yyzyj XZ7Xj) %

5,j=1)

e Need to compute the kernel matrix for the training data

The classifier:

y = sign (?ﬁo + Y oK (. X))

a; >0

e Need to compute K(x;,x) for all SVs x;.

Kernel SVM

['Decision Boundary:', 'linear’]

['Decision Boundary:', 'poly’]

['Decision Boundary:', 'rbf']

e ® . NN N ®

BAEIVA RS ES R ERNNEY

137316 772} g6 2 Classifier Test Error
Mgl gl zlAN2y1312] 7 linear 8.4%
5'?:8096 697005..{"6‘ o =36 3-nearest-neighbor 2.4%
11gl1m9l=zl9lgsT8113 RBF-SVM 14 %
5300774f59€{8300 94&' / Tangent distance 1.1 %
Qll«llelldysTé6 10 o LeNet 1.1 %
11771j°é33°02‘2_ /11 7 Boosted LeNet 0.7 %
7 § ° 0 ? al {07—? i 33—5 ?00) Translation invariant SVM | 0.56 %
[él[7][4T6llg]l0]17]18]1311/

SV regression

The key ideas:

e-insensitive loss e-tube
A
L(z)
—€ € >

Two sets of slack variables:

v < f(xi)+e+&,
yi > f(x) —e—&, §& >0,& > 0.

Optimization: min C') . (&; +§z) + %HWH2

Kernel SVM

- Performance depends on the design of the kernel

- May lose the generalization guarantee as linear SVM —
kernels may lead to infinite VC dimensions

- More recent trend focuses on designing good high
dimensional features and then use linear SVM

Kernelizing other algorithms

- linear algorithms that can be re-written in the form of
depending only on inner products

- PCA/kernel PCA
- ISOMAP and MDS i1s an instance of kernel PCA
- LDA/kernel LDA
- k-means/kernel k-means
- CCA/kernel CCA
- LSE/Kernel LSE

