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Leap from linear to nonlinear techniques

• So far we have mostly focused on linear techniques  
• We need nonlinear analysis 
• There are two general approaches to obtain nonlinear 

models  
• Directly design a nonlinear model 
• Convert a linear model via the “kernel trick” to get a 

nonlinear model



How to build nonlinear models?

• Consider classification problem 
• Nonlinearly transform data into a feature space 
• Build non-linear linear separation surface in the 

feature space 
• Transform back to the original space to obtain a 

nonlinear transform

20 SVMs : non-linear case

Linear classifiers aren’t complex enough sometimes. SVM solution:

Map data into a richer feature space including nonlinear features, then
construct a hyperplane in that space so all other equations are the same!

Formally, preprocess the data with:

x !→ Φ(x)

and then learn the map from Φ(x) to y:

f(x) = w · Φ(x) + b.



Why this approach may work?

• Linearly non separable data can become linearly 
separable in a higher dimensional space

Nonlinear features

As with logistic regression, we can move to nonlinear
classifiers by mapping data into nonlinear feature space.
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What is the problem 

• We may raise to very high dimension
Example of nonlinear mapping

Consider the mapping:
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The (linear) SVM classifier in the feature space:
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The kernel trick

• Finding a feature map then a linear SVM classifier may 
not work when the feature map involves very high 
dimension (curse of dimensionality) 

• The SVM training and testing only requires inner 
product between data points in the feature space 

• That inner product can be computed using a function in 
the original space between a pair of training data, this is 
the kernel function 

• Many algorithms can be “kernelized” 
• If we can covert them into a formulation only depend 

on inner products



Kernel SVM

• data linearly separable in the (infinite-dimensional) 
feature space 

• We don’t need to explicitly compute dot products in that 
feature space – instead we simply evaluate the RBF 
kernel 
• avoid curse of dimensionality 

• need to design kernel with domain knowledge 
• “no free lunch theorem: no universal kernel



Kernel functions

• kernel function computes inner product in the feature 
space from an implicit feature mapping 

• can any function be a kernel function? 
• it has to be symmetric 
• it has to be positive when two inputs are same 
• it has to be zero when one input is zero 

• It needs to satisfy the Mercer’s condition



Mercer’s conditionMercer’s kernels

What kind of function K is a valid kernel, i.e. such that there
exists a feature space �(x) in which K(x, z) = �(x)T �(z)?
Theorem due to Mercer (1930s): K must be

• Continuous;
• symmetric: K(x, z) = K(z,x);
• positive definite: for any x1, . . . ,xN , the kernel matrix

K =

�
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. . . . . . . . . . . . . . . . .
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must be positive definite.
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★ Reproducing kernel Hilbert space
• A Hilbert space is an abstract vector space with a proper 

definition of inner product 
• Defined properly, a Mercer kernel induces a space like 

that for functions fK(x) = K(.,x), with <fK(x),fK(y)> = 
K(x,y), such a space is known as an RKHS with K being 
the reproducing kernel 
• This is a vector space with inf dimension 

• On training dataset, a finite vector space is formed by 
K(x1,.),…, K(xm,.) 

• We have the representer’s theorem stating that solutions 
to regularized LSE in such space is a vector in that space



Useful kernels

Some popular kernels

The linear kernel:
K(x, z) = xTz.

This leads to the original, linear SVM.

The polynomial kernel:

K(x, z; c, d) = (c + xTz)d.

We can write the expansion explicitly, by concatenating
powers up to d and multiplying by appropriate weights.
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Radial basis function (RBF) kernelsRadial basis function kernel

K(x, z;�) = exp

�
� 1

�2
⇧x� z⇧2

⇥
.

The RBF kernel is a measure of similarity between two
examples.

• The feature space is infinite-dimensional!

What is the role of parameter �? Consider � ⇥ 0.

K(xi,x;�) ⇥
⇤

1 if x = xi,

0 if x ⌅= xi.

All examples become SVs ⇤ likely overfitting.
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Special kernel functions

• string kernels 
• texts, DNA sequences, etc 

• Fisher kernels 
• probability distributions 

• tree kernels 
• tree structures 

• building kernels from similarity measures 
• Shoenberg’s theorem 

• Combining kernels to generate new kernels*

* topic of my first CVPR paper in 2005



Kernel SVM
The kernel trick

Replace dot products in the SVM formulation with kernel
values.

The optimization problem:

max
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• Need to compute the kernel matrix for the training data

The classifier:

ŷ = sign

�
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�iyiK(xi,x)

⇥

• Need to compute K(xi,x) for all SVs xi.
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Kernel SVM22 SVMs : non-linear case II

For example MNIST hand-writing recognition.
60,000 training examples, 10000 test examples, 28x28.

Linear SVM has around 8.5% test error.
Polynomial SVM has around 1% test error.
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23 SVMs : full MNIST results

Classifier Test Error

linear 8.4%

3-nearest-neighbor 2.4%

RBF-SVM 1.4 %

Tangent distance 1.1 %

LeNet 1.1 %

Boosted LeNet 0.7 %

Translation invariant SVM 0.56 %

Choosing a good mapping Φ(·) (encoding prior knowledge + getting right
complexity of function class) for your problem improves results.



SV regression SVM regression

The key ideas:

�-insensitive loss �-tube
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Kernel SVM

• Performance depends on the design of the kernel 
• May lose the generalization guarantee as linear SVM — 

kernels may lead to infinite VC dimensions 
• More recent trend focuses on designing good high 

dimensional features and then use linear SVM



Kernelizing other algorithms

• linear algorithms that can be re-written in the form of 
depending only on inner products 
• PCA/kernel PCA 

• ISOMAP and MDS is an instance of kernel PCA 
• LDA/kernel LDA 
• k-means/kernel k-means 
• CCA/kernel CCA 
• LSE/Kernel LSE


