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Spectral clustering



Spectral clustering 
• K-means clustering focuses on the closeness of elements 

within the same cluster 
• Spectral clustering focuses on distinctiveness of elements 

across different clusters 
• represents relation between data using an undirected 

weighted graph (similarity graph) 
• weights on the graph 

correspond to data 
similarities

Wij = exp(−d(xi, xj)2/σ2)



Spectral clustering for two clusters
• use a binary indicator vi for each vertex, vi  = 1 if vertex i 

is in cluster 1, vi  = 0 if vertex i is in cluster 2 
• for any edge connecting vertex i and vertex j,             

                 measures the cost of putting them into 
different cluster
Wij(vi − vj)2



Spectral clustering for two clusters
• total cost of a bi-section (cut) of the graph is then 

• two vertices in the same cluster has no cost 
• we aim to minimize this cost by searching optimal 

assignments for vi   
• this is a NP-hard problem if solved precisely  

cut(C1, C2) =
1
2 ∑

i,j

Wij(vi − vj)2



Spectral clustering for two clusters
• Expand the min-cut cost 

• Introduce                         and a diagonal matrix 
                       
                       as  

• The min-cut cost becomes 
• where L = D - W is the graph Laplacian matrix 
• an integer-programming problem 
• we find approximate solution by relaxation    
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Graph Laplacian
• Definition                              where 1 is the all one 

vector, it has the following properties 
• L is symmetric and positive definite 
• any constant vector is an eigenvector with eigenvalue 

zero 
• Graph Laplacian can be understood as the differential 

operator for functions on a graph 
• It is a very useful tool for graph data analysis 
• # of zero eigenvalues = # of connected components in 

a graph 
• smallest non-zero eigenvalue is known as the Fiedler 

number of the graph (spectral gap) 

L = diag(W1) − W



Relaxation of the min-cut problem
• Original problem  is 

intractable (exponential number of possible solutions) 
• Approximation by relaxation  

• Solve  

• Thresholding the obtained v into binary vector 
• The approximate solution is an upper-bound of the 

actual objective 
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v⊤Lv, s.t. vi ∈ {0,1}
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v⊤Lv, s.t. ∥v∥ = 1,v ≠ 1



Solving the relaxed objective
• This is a constrained optimization 

• Solve it by introducing Lagrangian multiplier 

• So optimal solution is necessarily an eigenvector of 
matrix L 

• Selecting the eigenvector corresponding to the smallest 
non-zero eigenvalue (Fiedler number) to be the optimal v

min
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v⊤Lv, s.t. ∥v∥ = 1,v ≠ 1

0 =
∂
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(v⊤Lv − 2λ(v⊤v − 1)) ⇒ Lv = λv


