

CSI 436/536 Introduction to Machine Learning

Dimension reduction and total LLSE

Professor Siwei Lyu Computer Science University at Albany, State University of New York

Linear least squares

- Fitting a line (linear model) by minimizing prediction error
 - The error is on the y-axis only

Total least squares estimation

- Fitting a line (linear model) by minimizing the total error
 - The error is for both x- and y- coordinates

TLSE as encoder-decoder

• The TLSE model can be understood with an encoder-decoder model

- The encoder takes the input and reduces it to a code
- The decoder takes the code and reconstructs it to an output
- The low dimensional code is the "information bottleneck"
- Learning is achieved through "self-supervision", i.e., reducing the error between the input and the reconstructed output

TLSE as data compression

- The encoder-decoder interpretation of TLSE also suggests that TLSE can be viewed as a data compression procedure
 - Input and output have dimension d
 - The code has dimension 1
- Compression

Total least squares

- given m data vector of dimensions $X = (\mathbf{x}_1, \cdots, \mathbf{x}_m)$.
- assumption: data are centered, i.e., $\sum_i \mathbf{x}_i = 0$.
- find the best one-dimensional approximation to X minimizing ℓ_2 errors.
- specifically, find a unit vector v (why?), and scaling factors (s₁, , s_m), s.t.,

solution

First, given **v**, find optimal solution to s_i .

$$\begin{aligned} &\frac{\partial}{\partial s_i} \sum_{i=1}^m \|x_i - s_i \mathbf{v}\|_2^2 = \frac{\partial}{\partial s_i} \|x_i - s_i \mathbf{v}\|_2^2 = 0 \\ \Rightarrow &\frac{\partial}{\partial s_i} (x_i - s_i \mathbf{v})^T (x_i - s_i \mathbf{v}) = 0 \\ \Rightarrow &\frac{\partial}{\partial s_i} (s_i^2 \mathbf{v}^T \mathbf{v} - 2s_i \mathbf{v}^T \mathbf{x}_i + \mathbf{x}_i^T \mathbf{x}_i) = 0 \\ \Rightarrow &s_i = \mathbf{x}_i^T \mathbf{v}. \end{aligned}$$

$$\min_{\mathbf{v}:\|\mathbf{v}\|_2=1}\sum_{i=1}^m \|\mathbf{x}_i - (\mathbf{x}_i^T\mathbf{v})\mathbf{v}\|_2^2.$$

solution (continued)

$$\sum_{i=1}^{m} \|\mathbf{x}_{i} - (\mathbf{x}_{i}^{T}\mathbf{v})\mathbf{v}\|_{2}^{2} = \sum_{i=1}^{m} (\mathbf{x}_{i} - (\mathbf{x}_{i}^{T}\mathbf{v})\mathbf{v})^{T} (\mathbf{x}_{i} - (\mathbf{x}_{i}^{T}\mathbf{v})\mathbf{v})$$
$$= \sum_{i=1}^{m} (\mathbf{x}_{i}^{T}\mathbf{x}_{i} - 2(\mathbf{x}_{i}^{T}\mathbf{v})\mathbf{x}_{i}^{T}\mathbf{v} + (\mathbf{x}_{i}^{T}\mathbf{v})^{2}\mathbf{v}^{T}\mathbf{v})$$
$$= \sum_{i=1}^{m} (\mathbf{x}_{i}^{T}\mathbf{x}_{i} - (\mathbf{x}_{i}^{T}\mathbf{v})^{2}) = \sum_{i=1}^{m} (\mathbf{x}_{i}^{T}\mathbf{x}_{i} - \mathbf{v}^{T}\mathbf{x}_{i}\mathbf{x}_{i}^{T}\mathbf{v})$$

Total LLSE

Furthermore

$$\sum_{i=1}^{m} \mathbf{v}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{v} = \mathbf{v}^{T} \left(\sum_{i=1}^{m} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \right) \mathbf{v} = \mathbf{v}^{T} (XX^{T}) \mathbf{v}.$$

Recall XX^T is the covariance matrix of data matrix X

• because X is centered.

Equivalently, in PCA, we seek

$$\max_{\mathbf{v}} \quad \mathbf{v}^{T}(XX^{T})\mathbf{v}$$

s.t. $\|\mathbf{v}\|_{2}^{2} - 1 = 0$

Total LLSE

Constrained optimization:

$$\max_{\mathbf{v}} \quad \mathbf{v}^{T} (XX^{T}) \mathbf{v}$$

s.t.
$$\mathbf{v}^{T} \mathbf{v} - 1 = 0$$

Lagrangian

$$L(\mathbf{v},\lambda) = \mathbf{v}^T (XX^T)\mathbf{v} - \lambda(\mathbf{v}^T\mathbf{v} - 1)$$

Derivative w.r.t. **x** sets to zero

 $(XX^T)\mathbf{v} = \lambda \mathbf{v}.$

Example

- data
 - $X = \{(1,2), (3,3), (3,5), (5,4), (5,6), (6,5), (8,7), (9,8)\}$
- centering
- covariance

- EVD $-\lambda 1 = 9.34$ $-\lambda 2 = 0.41$
 - $-v_1 = [0.81 \ 0.59], v_2 = [0.81 \ -0.59],$

Dimension reduction

- Total LLSE fits a 1D line to a set of multi-dimensional vectors with minimum distortion
- This can be equivalently viewed as finding a low dimensional approximation (in this case 1D) of a high-dimensional data point
- The procedure is known as dimension reduction, and it is behind image compression algorithms
- We will talk about the more general version of dimension reduction known as principal component analysis (PCA) later