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Dimension reduction and total LLSE



Linear least squares
• Fitting a line (linear model) by minimizing prediction 

error 
• The error is on the y-axis only



Total least squares estimation
• Fitting a line (linear model) by minimizing the total error 

• The error is for both x- and y- coordinates



TLSE as encoder-decoder
• The TLSE model can be understood with an encoder-decoder 

model 

• The encoder takes the input and reduces it to a code  
• The decoder takes the code and reconstructs it to an 

output 
• The low dimensional code is the “information bottleneck” 

• Learning is achieved through “self-supervision”, i.e., 
reducing the error between the input and the reconstructed 
output
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TLSE as data compression 
• The encoder-decoder interpretation of TLSE also 

suggests that TLSE can be viewed as a data compression 
procedure 
• Input and output have dimension d 
• The code has dimension 1 

• Compression 



Total least squares
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• the 1st PC         is a minimum distance fit to a line in   X  space
• the 2nd PC        is a minimum distance fit to a line in the plane     

perpendicular to the 1st PC 

1z

PCs are a series of linear least squares fits to a sample,

each orthogonal to all the previous.

Principal component analysis (PCA)

Problem setting (1D case)
given m data vector of dimensions X = (x1, · · · , xm).
assumption: data are centered, i.e.,

P
i xi = 0.

find the best one-dimensional approximation to X
minimizing `2 errors.
specifically, find a unit vector v (why?), and scaling factors
(s1, , sm), s.t.,

min
v:kvk2=1,s1,,sm
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solution
1D PCA

First, given v, find optimal solution to si .
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solution (continued)

Objective function
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Total LLSE
Objective function

Furthermore
mX

i=1

vT xixT
i v = vT

 mX
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i

!
v = vT (XX T )v.

Recall XX T is the covariance matrix of data matrix X
because X is centered.

Equivalently, in PCA, we seek

maxv vT (XX T )v
s.t . kvk2

2 � 1 = 0



Total LLSE1D PCA

Constrained optimization:

maxv vT (XX T )v
s.t . vT v � 1 = 0

Lagrangian

L(v,�) = vT (XX T )v � �(vT v � 1)

Derivative w.r.t. x sets to zero

(XX T )v = �v.



Example

• data   

• X={(1,2),(3,3),(3,5),(5,4),(5,6),(6,5),(8,7),(9,8)} 

• centering 

• covariance 

• EVD 
- λ1 = 9.34 
- λ2 = 0.41 
- v1 = [0.81 0.59], v2 = [0.81 -0.59], 



Dimension reduction
• Total LLSE fits a 1D line to a set of multi-dimensional 

vectors with minimum distortion 
• This can be equivalently viewed as finding a low 

dimensional approximation (in this case 1D) of a high-
dimensional data point 

• The procedure is known as dimension reduction, and it is 
behind image compression algorithms 

• We will talk about the more general version of dimension 
reduction known as principal component analysis (PCA) 
later


