CSI 436/536

Introduction to Machine Learning

Dimension reduction and total LLSE

Professor Siwei Lyu
Computer Science
University at Albany, State University of New York

Linear least squares

- Fitting a line (linear model) by minimizing prediction error
- The error is on the y-axis only

Total least squares estimation

- Fitting a line (linear model) by minimizing the total error
- The error is for both x - and y - coordinates

TLSE as encoder-decoder

- The TLSE model can be understood with an encoder-decoder model

- The encoder takes the input and reduces it to a code
- The decoder takes the code and reconstructs it to an output
- The low dimensional code is the "information bottleneck"
- Learning is achieved through "self-supervision", i.e., reducing the error between the input and the reconstructed output

TLSE as data compression

- The encoder-decoder interpretation of TLSE also suggests that TLSE can be viewed as a data compression procedure
- Input and output have dimension d
- The code has dimension 1
- Compression

Total least squares

- given m data vector of dimensions $X=\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{m}\right)$.
- assumption: data are centered, i.e., $\sum_{i} \mathbf{x}_{i}=0$.
- find the best one-dimensional approximation to X minimizing ℓ_{2} errors.
- specifically, find a unit vector \mathbf{v} (why?), and scaling factors $\left(s_{1}, s_{m}\right)$, s.t.,

$$
\min _{\mathbf{v}:\|\mathbf{v}\|_{2}=1, s_{1}, s_{m}} \sum_{i=1}^{m}\left\|x_{i}-s_{i} \mathbf{v}\right\|_{2}^{2}
$$

solution

First, given \mathbf{v}, find optimal solution to s_{i}.

$$
\begin{aligned}
& \frac{\partial}{\partial s_{i}} \sum_{i=1}^{m}\left\|x_{i}-s_{i} \mathbf{v}\right\|_{2}^{2}=\frac{\partial}{\partial s_{i}}\left\|x_{i}-s_{i} \mathbf{v}\right\|_{2}^{2}=0 \\
\Rightarrow & \frac{\partial}{\partial s_{i}}\left(x_{i}-s_{i} \mathbf{v}\right)^{T}\left(x_{i}-s_{i} \mathbf{v}\right)=0 \\
\Rightarrow & \frac{\partial}{\partial s_{i}}\left(s_{i}^{2} \mathbf{v}^{T} \mathbf{v}-2 s_{i} \mathbf{v}^{T} \mathbf{x}_{i}+\mathbf{x}_{i}^{T} \mathbf{x}_{i}\right)=0 \\
\Rightarrow & s_{i}=\mathbf{x}_{i}^{T} \mathbf{v} \\
& \min _{\mathbf{v}:\|\mathbf{v}\|_{2}=1} \sum_{i=1}^{m}\left\|\mathbf{x}_{i}-\left(\mathbf{x}_{i}^{T} \mathbf{v}\right) \mathbf{v}\right\|_{2}^{2}
\end{aligned}
$$

solution (continued)

$$
\begin{aligned}
& \sum_{i=1}^{m}\left\|\mathbf{x}_{i}-\left(\mathbf{x}_{i}^{T} \mathbf{v}\right) \mathbf{v}\right\|_{2}^{2}=\sum_{i=1}^{m}\left(\mathbf{x}_{i}-\left(\mathbf{x}_{i}^{T} \mathbf{v}\right) \mathbf{v}\right)^{T}\left(\mathbf{x}_{i}-\left(\mathbf{x}_{i}^{T} \mathbf{v}\right) \mathbf{v}\right) \\
= & \sum_{i=1}^{m}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{i}-2\left(\mathbf{x}_{i}^{T} \mathbf{v}\right) \mathbf{x}_{i}^{T} \mathbf{v}+\left(\mathbf{x}_{i}^{T} \mathbf{v}\right)^{2} \mathbf{v}^{T} \mathbf{v}\right) \\
= & \sum_{i=1}^{m}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{i}-\left(\mathbf{x}_{i}^{T} \mathbf{v}\right)^{2}\right)=\sum_{i=1}^{m}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{i}-\mathbf{v}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{v}\right)
\end{aligned}
$$

Total LLSE

Furthermore

$$
\sum_{i=1}^{m} \mathbf{v}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{v}=\mathbf{v}^{T}\left(\sum_{i=1}^{m} \mathbf{x}_{i} \mathbf{x}_{i}^{T}\right) \mathbf{v}=\mathbf{v}^{\top}\left(X X^{T}\right) \mathbf{v} .
$$

Recall $X X^{\top}$ is the covariance matrix of data matrix X

- because X is centered.

Equivalently, in PCA, we seek

$$
\begin{array}{cl}
\max _{\mathbf{v}} & \mathbf{v}^{\top}\left(X X^{\top}\right) \mathbf{v} \\
\text { s.t. } & \|\mathbf{v}\|_{2}^{2}-1=0
\end{array}
$$

Total LLSE

Constrained optimization:

$$
\begin{array}{cl}
\max _{\mathbf{v}} & \mathbf{v}^{\top}\left(X X^{T}\right) \mathbf{v} \\
\text { s.t. } & \mathbf{v}^{T} \mathbf{v}-1=0
\end{array}
$$

Lagrangian

$$
L(\mathbf{v}, \lambda)=\mathbf{v}^{T}\left(X X^{T}\right) \mathbf{v}-\lambda\left(\mathbf{v}^{T} \mathbf{v}-1\right)
$$

Derivative w.r.t. x sets to zero

$$
\left(X X^{T}\right) \mathbf{v}=\lambda \mathbf{v} .
$$

Example

- data
- $\mathrm{X}=\{(1,2),(3,3),(3,5),(5,4),(5,6),(6,5),(8,7),(9,8)\}$
- centering
- covariance
- EVD
$-\lambda 1=9.34$
$-\lambda 2=0.41$
$-\mathrm{v} 1=\left[\begin{array}{ll}0.81 & 0.59\end{array}\right], \mathrm{v} 2=\left[\begin{array}{ll}0.81 & -0.59\end{array}\right]$,

Dimension reduction

- Total LLSE fits a 1D line to a set of multi-dimensional vectors with minimum distortion
- This can be equivalently viewed as finding a low dimensional approximation (in this case 1D) of a highdimensional data point
- The procedure is known as dimension reduction, and it is behind image compression algorithms
- We will talk about the more general version of dimension reduction known as principal component analysis (PCA) later

