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review of 1D optimization

• f(x) > -∞ and f(x) second order differentiable


• first, solve f’(x) = 0, to get all solutions f’(x) = 3x2 + 6x -24 = 0, x=-4,x=2


• for each solution, check f”(x): f”(x) = 6x+6


• f’’(x) > 0: minimum (local or global) x = 2


• f’’(x) < 0: maximum (local or global) x = -4


• f’’(x) = 0: undetermined, changing curvature


• for all minimums, check if the solution is also global

f(x) = x3 + 3x2 � 24x + 2



vector functions
• we study function of vector input and scalar output 
• Partial derivatives 

• fixing all other variables and take derivative of 
one variable as if it is a scalar function 

• Everything you know about differentiation still 
holds (chain rule, additivity, etc) 

• gradient  
• vector formed by all  

partial derivatives 
∇f(x) =

∂f(x)
∂x1

∂f(x)
∂x2

⋮
∂f(x)
∂xn



gradient
• Geometric interpretation 
• fastest descent (Taylor series) f(x+h) ≐f(x) + 

hT∇f(x) the maximum is reached 
using Cauchy-Schwartz inequality  
hT∇f(x) ≤ ||h||×||∇f(x)||, 
 
so minimum reached for 
h = - ∇f(x) 
maximum reached for 
h = ∇f(x)



Hessian matrix
• symbolically, Hessian is outer product of gradient 

operator 

• intuition of Hessian matrix



Hessian matrix
• quadratic approximation of a function 

f(x+h) ≐f(x) + hT∇f(x) + ½ hT∇2f(x)h
Hessian Matrix
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Hessian matrix is symmetric

Hessian matrix corresponds to the local curvature of the

function

minimum: Hessian positive definite

maximum: Hessian negative definite

saddle point: : Hessian indefinite



Quadratic function
• Quadratic function (for A a symmetric matrix) 

• gradient   
• Hessian matrix  

• Chain rule still works, e.g.,  

• Gaussian function   

• Sigmoid function 

∇f(x) = Ax + b
∇∇T f(x) = A

f(x) = e− 1
2 xT A−1x

g(x) =
1

1 + e−wT x

f(x) =
1
2

xT Ax + bT x + c



Quadratic programming
• minimize  

             f(x) = c + bTx + ½ xTAx
• first, solve ∇f(x) = b + Ax = 0


• check ∇2f(x):


• ∇2f(x) is positive (semi)definite: minimum (local or global)


• ∇2f(x) is negative (semi)definite: maximum (local or global) x = -4


• ∇2f(x) is indefinite: undetermined, changing curvature


• semi-definiteness determines uniqueness of solution



Convex function
• Conditions on the Hessian matrix  

•  f(x) is convex 
• No local minimum 

•  f(x) is strongly convex 
• Unique global minimum 

•  f(x) is concave 
• No local maximum 

•  f(x) is strongly concave 
• Unique global maximum  

• We will encounter many convex quadratic 
programing problems

∇∇T f(x) ⪰ 0

∇∇T f(x) ≻ 0

−∇∇T f(x) ⪰ 0

−∇∇T f(x) ≻ 0



Constrained optimization
• Example: maximize the area of a rectangular with 

fixed circumference    
• Approach 1: use y = c-x, and solve for x directly 

, , symmetry and optimal 

• Approach 2: use Lagrangian multipliers
 

• Differentiate with regards to x and y, we have 
 

• Then using the constraint to get  

• Note xy is neither convex or concave, so only with 
constraint it has a solution 

maxx,y xy, s.t. x + y = c

maxx x(c − x) x = y =
c
2

L(x, y, λ) = xy − λ(x + y − c)

x = y = λ

x = y =
c
2



Equality constrained problem
•  

• objective gradient has to be perpendicular to the 
constraint, otherwise, we can still go done in the 
direction along the gradient 

minx,y f(x, y) = x2 + 2y2 − 2, s.t. x + y = 1

11

flattened paraboloid 2-x2-2y2 with superimposed constraint
x2 +y2 = 1

flattened paraboloid f: 2-x2-2y2=0 with superimposed 
constraint   g: x +y = 1

Maximize when the constraint line g is tangent to the inner ellipse
contour line of f



Equality constrained problem
• Solve equality constrained  

 

• introduce Lagrangian multiplier v and form 
Lagrangian  

• optimal solution given at the stationary point of L 

  (dual feasibility) 

   (primal feasibility) 

• Solution: solving the KKT equation  

minx f(x) = 1
2 xT Ax + bTx + c, s.t. Dx = e

L(x, v) = f(x) − v⊤(Dx − e)

∂L
∂x

= b + Ax − D⊤v = 0
∂L
∂v

= Dx − e = 0

(A −D⊤

D 0 ) (x
v) = (−b

e )



Previous example
• Rewrite the problem as  

• Solution given by 

minx,y f(x, y) = x2 + 2y2 − 2, s.t. x + y = 1

(
2 0 −1
0 4 −1
1 1 0 ) (

x
y
v) = (

0
0
1)
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flattened paraboloid 2-x2-2y2 with superimposed constraint
x2 +y2 = 1

flattened paraboloid f: 2-x2-2y2=0 with superimposed 
constraint   g: x +y = 1

Maximize when the constraint line g is tangent to the inner ellipse
contour line of f



constrained quadratic optimization
• minimize  

             f(x) = ½ xTAx  
s.t.,       xTx - 1 = 0 

• introduce Lagrangian multiplier λ and form 
Lagrangian L(x,v) = f(x) - λ(xTx - 1) 

• optimal solution given at the stationary point of L 
∂L/∂x = Ax - λx= 0, or Ax = λx 

• so optimal solution is eigenvalue of A, objective 
function is λ 

• to minimize, we should choose the one 
corresponding to the minimal eigenvalue (Ritz-
Fisher theorem)


