CSI 436/536
 Introduction to Machine Learning

Review of multivariate calculus (1)
Professor Siwei Lyu
Computer Science
University at Albany, State University of New York

review of 1D optimization

$$
f(x)=x^{3}+3 x^{2}-24 x+2
$$

- $f(x)>-\infty$ and $f(x)$ second order differentiable
- first, solve $f^{\prime}(x)=0$, to get all solutions $f^{\prime}(x)=3 x^{2}+6 x-24=0, x=-4, x=2$
- for each solution, check $\mathrm{f}^{\prime \prime}(\mathrm{x}): \mathrm{f}^{\prime \prime}(\mathrm{x})=6 \mathrm{x}+6$
- $\mathrm{f}^{\prime \prime}(\mathrm{x})>0$: minimum (local or global) $\mathrm{x}=2$
- $\mathrm{f}^{\prime \prime}(\mathrm{x})<0$: maximum (local or global) $\mathrm{x}=-4$
- f " $(\mathrm{x})=0$: undetermined, changing curvature
- for all minimums, check if the solution is also global

vector functions

- we study function of vector input and scalar output
- Partial derivatives
- fixing all other variables and take derivative of one variable as if it is a scalar function
- Everything you know about differentiation still

- gradient
- vector formed by all partial derivatives

$$
\nabla f(x)=\left(\begin{array}{c}
\frac{\partial f(x)}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right)
$$

gradient

- Geometric interpretation
- fastest descent (Taylor series) $f(\mathbf{x}+\mathbf{h}) \doteq f(\mathbf{x})+$ $\mathbf{h}^{\top} \nabla f(\mathbf{x})$ the maximum is reached using Cauchy-Schwartz inequality $\mathbf{h}^{\top} \nabla f(\mathbf{x}) \leq\|\mathbf{h}\| \times\|\nabla f(\mathbf{x})\|$,
so minimum reached for $\mathbf{h}=-\nabla f(\mathbf{x})$
maximum reached for $\mathbf{h}=\nabla f(\mathbf{x})$

Hessian matrix

- symbolically, Hessian is outer product of gradient operator

$$
\nabla f=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right) \quad \text { and } \quad \nabla^{2} f=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right)
$$

- intuition of Hessian matrix

$x^{2}+y^{2}$
(definite)

x^{2}
(semidefinite)

(indefinite)

Hessian matrix

- quadratic approximation of a function $\mathrm{f}(\mathbf{x}+\mathbf{h}) \doteq \mathrm{f}(\mathbf{x})+\mathbf{h}^{\top} \nabla \mathrm{f}(\mathbf{x})+1 / 2 \mathbf{h}^{\top} \nabla^{2 f}(\mathbf{x}) \mathbf{h}$

- Hessian matrix is symmetric
- Hessian matrix corresponds to the local curvature of the function
- minimum: Hessian positive definite
- maximum: Hessian negative definite
- saddle point: : Hessian indefinite

Quadratic function

- Quadratic function (for A a symmetric matrix)

$$
f(x)=\frac{1}{2} x^{T} A x+b^{T} x+c
$$

- gradient $\nabla f(x)=A x+b$
- Hessian matrix $\nabla \nabla^{T} f(x)=A$
- Chain rule still works, e.g.,
- Gaussian function $f(x)=e^{-\frac{1}{2} x^{T} A^{-1} x}$
- Sigmoid function $g(x)=\frac{1}{1+e^{-w^{T} x}}$

Quadratic programming

- minimize

$$
f(\mathbf{x})=c+\mathbf{b}^{\top} \mathbf{x}+1 / 2 \mathbf{x}^{\top} A \mathbf{x}
$$

- first, solve $\nabla f(\mathbf{x})=\mathbf{b}+A \mathbf{x}=0$
- check $\nabla^{2 f}(\mathbf{x})$:
- $\nabla^{2} f(\mathbf{x})$ is positive (semi)definite: minimum (local or global)
- $\nabla^{2} f(\mathbf{x})$ is negative (semi)definite: maximum (local or global) $x=-4$
- $\nabla^{2 f}(\mathbf{x})$ is indefinite: undetermined, changing curvature
- semi-definiteness determines uniqueness of solution

Convex function

- Conditions on the Hessian matrix
- $\nabla \nabla^{T} f(x) \succeq 0 f(x)$ is convex
- No local minimum
- $\nabla \nabla^{T} f(x)>0 f(x)$ is strongly convex
- Unique global minimum
- $-\nabla \nabla^{T} f(x) \succeq 0 \mathrm{f}(\mathrm{x})$ is concave
- No local maximum

- $-\nabla \nabla^{T} f(x)>0 f(x)$ is strongly concave
- Unique global maximum
- We will encounter many convex quadratic
 programing problems

Constrained optimization

- Example: maximize the area of a rectangular with fixed circumference $\max _{x, y} x y$, s.t. $x+y=c$
- Approach 1: use y = c-x, and solve for x directly $\max _{x} x(c-x), x=y=\frac{c}{2}$, symmetry and optimal
- Approach 2: use Lagrangian multipliers $L(x, y, \lambda)=x y-\lambda(x+y-c)$
- Differentiate with regards to x and y , we have $x=y=\lambda$
- Then using the constraint to get $x=y=\frac{c}{2}$
- Note xy is neither convex or concave, so only with constraint it has a solution

Equality constrained problem

- $\min _{x, y} f(x, y)=x^{2}+2 y^{2}-2$, s.t. $x+y=1$

- objective gradient has to be perpendicular to the constraint, otherwise, we can still go done in the direction along the gradient

Equality constrained problem

- Solve equality constrained $\min _{x} f(x)=\frac{1}{2} x^{T} A x+b^{T} x+c$, s.t. $\quad D x=e$
- introduce Lagrangian multiplier \mathbf{v} and form Lagrangian $L(x, v)=f(x)-v^{\top}(D x-e)$
- optimal solution given at the stationary point of L ∂L
$\frac{\partial L}{\partial x}=b+A x-D^{\top} v=0 \quad$ (dual feasibility)
$\frac{\partial L}{\partial v}=D x-e=0 \quad$ (primal feasibility)
- Solution: solving the KKT equation

$$
\left(\begin{array}{cc}
A & -D^{\top} \\
D & 0
\end{array}\right)\binom{x}{v}=\binom{-b}{e}
$$

Previous example

- Rewrite the problem as

$$
\min _{x, y} f(x, y)=x^{2}+2 y^{2}-2, \text { s.t. } x+y=1
$$

- Solution given by

$$
\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & 4 & -1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
v
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

constrained quadratic optimization

- minimize

$$
\begin{array}{ll}
& f(\mathbf{x})=1 / 2 \mathbf{x}^{\top} A \mathbf{x} \\
\text { s.t., } & \mathbf{x}^{\top} \mathbf{x}-1=0
\end{array}
$$

- introduce Lagrangian multiplier λ and form Lagrangian $L(\mathbf{x}, \mathbf{v})=f(\mathbf{x})-\lambda\left(\mathbf{x}^{\top} \mathbf{x}-1\right)$
- optimal solution given at the stationary point of L $\partial \mathrm{L} / \partial \mathbf{x}=\mathrm{A} \mathbf{x}-\lambda \mathbf{x}=0$, or $\mathrm{A} \mathbf{x}=\lambda \mathbf{x}$
- so optimal solution is eigenvalue of A, objective function is λ
- to minimize, we should choose the one corresponding to the minimal eigenvalue (RitzFisher theorem)

