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review of 1D optimization

f(x) = 2° 4+ 32° — 242 + 2

* f(x) > -00 and f(x) second order differentiable

- first, solve f’(x) = 0, to get all solutions f’(x) = 3x2 + 6x -24 = 0, x=-4,x=2
- for each solution, check f’(x): f’(x) = 6x+6

 f7(x) > 0: minimum (local or global) x = 2

 f7(x) < 0: maximum (local or global) x = -4

 f’(x) = 0: undetermined, changing curvature

- for all minimums, check if the solution is also global



vector functions

e we study function of vector input and scalar output
« Partial derivatives

* fixing all other variables and take derivative of
one variable as if it is a scalar function

* Everything you know about differentiation still

holds (chain rule, additivity, €tC) xis fixed on| =
this plane.
* gradient ] y is fixed on
of(x) \ this plane.
e vector formed by all o,
partial derivatives of(x) ~
Vi) = | o . (i,
. y
0f(x) ’

0x,, )



gradient

e (Geometric interpretation

o fastest descent (Taylor series) f(x+h) =f(Xx) +

h™Vi(x) the maximum is reached
using Cauchy-Schwartz inequality
hTVi(x) < ||h||x||V(x)]|,

so minimum reached for e /
h=- Vf(X) \ \/(mbza,b» f
maximum reached for L i

h = Vf(x)




Hessian matrix

* symbolically, Hessian is outer product of gradient

operator (i) (B R )
0x1 0x? 9x10x, dx10x,
af 2 f ?f 3 f
Vf = E and sz = | dx20x, 3x% 0x20x,
of v vf s
Kaxn) \8x,,8x1 X, 0%y dx2 )

e intuition of Hessian matrix

2 2 2 Y- 2
J. * 3, J.— J’ ."

{(definite) (semidefinite) (indefinite)



Hessian matrix

e quadratic approximation of a function
f(x+h) =f(x) + hTVi(x) + 72 hTV2{(x)h

(definite) (semidefinite) (indefinite)

@ Hessian matrix is symmetric

@ Hessian matrix corresponds to the local curvature of the
function

@ minimum: Hessian positive definite
@ maximum: Hessian negative definite
e saddle point: : Hessian indefinite



Quadratic function

* Quadratic function (for A a symmetric matrix)

|
f(x) = ExTAx +blx+c

« gradient Vf(x) = Ax+ b
o Hessian matrix VVIf(x) = A
e Chain rule still works, e.g.,

1 —1
« Gaussian function f(x) = g7V AT

1

1+ e—w'x

. Sigmoid function g(x) =



Quadratic programming
* minimize
f(x) =c + b™X + 2 XxTAx
. first, solve Vf(x) = b + Ax = 0
. check V2f(x):
. V2f(x) is positive (semi)definite: minimum (local or global)
. V2f(x) is negative (semi)definite: maximum (local or global) x = -4

 V2f(x) is indefinite: undetermined, changing curvature

« semi-definiteness determines uniqueness of solution




Convex function

e Conditions on the Hessian matrix
. VVIA(x) > 01x) is convex
e No local minimum
. VVIf(x) > 0f(x) is strongly convex
« Unique global minimum
. —V VIf(x) = 0f(x)is concave
* No local maximum
. —V VIf(x) > 0f(x)is strongly concave

* Unigue global maximum

 We will encounter many convex quadratic
programing problems



Constrained optimization

* Example: maximize the area of a rectangular with
fixed circumference max, ,xy, st. x+y=¢

* Approach 1: usey = c-X, %nd solve for x directly
max, x(c —x),x =y = > symmetry and optimal

e Approach 2: use Lagrangian multipliers
L(x,y,A) =xy —Alx+y —c)

* Differentiate with regards to x and y, we have
xX=y=4
- . C
. Then using the constraintto getx = y = >

* Note xy is neither convex or concave, so only with
constraint it has a solution



guality constrained problem
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constraint, otherwise, we can still go done in the

e Objective gradient has to be perpendicular to the
direction along the gradient



—quality constrained problem

Solve equality constrained
min, f(x) = %xTAx +blx+c,st. Dx=e

introduce Lagrangian multiplier v and form
Lagrangian L(x, v) = f(x) — v'(Dx — e)

optimal solution given at the stationary point of L

oL -

g— =b+Ax—D v =0 (dual feasibility)
X
L

— = Dx —e =0 (primal feasibility)

ov

Solution: solving the KKT equation

(4 2 ()= (2)



Previous example

* Rewrite the problem as

min, , f(x,y) = x*4+2y? -2, st.x+y=1

R
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e Solution given by
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constrained quadratic optimization

°* minimize
f(x) = 2 xTAx
S.1., X'x-1=0

* introduce Lagrangian multiplier A and form
Lagrangian L(x,v) = f(X) - A(xTx - 1)

* optimal solution given at the stationary point of L
oL/ox = Ax - Ax= 0, or AX = A\X

* 50 optimal solution is eigenvalue of A, objective
function is A

* to minimize, we should choose the one
corresponding to the minimal eigenvalue (Ritz-
Fisher theorem)



