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Classification problem
• In many real life problems, we need to map input data to 

different categories, and this is known as classification 
• Classification is one basic machine learning problem 

• Medical diagnosis  
• Spam filtering 
• Face detection/recognition 
• Object recognition 
• Prompt word recognition 

“Hey Siri”, “Alexa” 
• The ML model that predicts the label of an input is 

known as the classifier



General classification problem
• Training 

• Training data matrix  
data points are column vectors 

• Training targets   
• Multi-label learning: an input can have many labels 

• parametric classifier   

• loss function  
• Numerical procedure to find optimal w to minimize 

the learning objective  

• In testing, for input x and generate prediction cw(x) 
• metric function 

y = (y1, y2, ⋯, yN)T ∈ {b1, b2, ⋯, bm}N

cw( ⋅ ) : Rd ↦ {b1, b2, ⋯, bm}
L(y − cw(x)) ≥ 0

∑n
i=1 L(yi − cw(xi))

m(y − cw(x)) ≥ 0

X =
| | |
x1 x2 ⋯ xN

| | |



Binary classification
• When the class label only takes two values 

• Usually assume the class labels to take values (0,1) or 
(-1, +1) for convenience 

• The most widely studied problem in machine learning 
• Multi-class classification problem can be solved as 

sequences of binary classification problems



terminology
• prediction function (model): f 

• maps input to R, many choices 
• link function (confidence): p = l(f) 

• maps R to [0,1], usually is the soft-max function 
• decision function (classifier): c(f) or c(l(f)) 

• maps R or [0,1] to {-1,+1}, usually is the sign function

model

decision

link

input

label

confidence



training a binary classifier
• form a loss function 

• minimize it over the training dataset

model

decision

link

training 
input

label

confidence

loss
training 

label 
(GT)

loss

ℓ(y, c) : {−1, + 1} × R ↦ R+



Prediction function
• Linear prediction function  

• Parameter w: surface normal 
• Parameter b: threshold 
• Decision surface f(x) = 0 

• Nonlinear function 
• Radial basis functions 
• Kernel support vector machines 
• Decision trees 
• Boosted classifiers (piece-wise linear) 
• Neural networks 

fw(x) = w⊤x + c



common individual loss functions
• 0-1 loss  (metric) 1(yf(x) < 0) ideal case 
• Use surrogate loss 

• margin loss, depending on yf(x) 
• square loss    (1- yf(x))2  
• hinge loss       max(0,1-yf(x)) 
• exponential loss    exp(-yf(x)) 
• logistic loss          
• squared hinge loss    max(0,1-yf(x))2 

• cross-entropy loss      -y logp(x) - (1-y)log(1-p(x)) 
• Area under ROC curve (AUC) metric

1
log 2

log(1 + exp(−yf(x))



LLSE classification problem
• Training 

• Training data matrix  
data points are column vectors 

• Binary targets   

• Linear classification function   
• Absorb b by introducing a homogeneous transform  

 and  

• Least squares loss function  
• Numerical procedure to find optimal w to minimize the learning 

objective  

• In testing, for input x and generate prediction fw(x) 

• 0-1 metric function , note it is different from the loss 
function 

y = (y1, y2, ⋯, yN)T ∈ {−1, + 1}N

cw(x) = sign(wT x + c)

x̃ = (x
1) w̃ = (w

c)
(y − wT x)2 = (1 − ywT x)2

∑n
i=1 (yi − wT xi)2

1yfw(x)

X =
| | |
x1 x2 ⋯ xN

| | |



Use LLSE to solve binary classification
• Basic idea: restrict target (y) to two choices {-b, a}, and 

find a linear decision function f(x) = wTx + c, such that if 
x is in class 0, f(x) is closer to -b, and if x is in class 1, 
f(x) is closer to a 

• We introduce data matrices 
 
 
 
 
 

, and  

• We also introduce all one vectors , ,and 

X = (X+, X−) N = N+ + N−

1N+
1N−

1N

X+ =
| | |

x+
1 x+

2 ⋯ x+
N+

| | |

X− =
| | |

x−
1 x−

2 ⋯ x−
N−

| | |



Problem formulation
• We aim to minimize the LLSE objective function 

• We first minimize c 

 

 

summing terms and ignoring factor 2, 
 

so   where  is the 

mean of all data  

∂
∂c

∥XT
+w + c1N+

− a1N+
∥2 = 2cN+ + 21T

N+
XT

+w − 2aN+

∂
∂c

∥XT
−w + c1N−

+ b1N−
∥2 = 2cN− + 21T

N−
XT

−w + 2bN−

cN + 1T
NXTw − aN+ + bN− = 0

c = − mTw + a
N+

N
− b

N−

N
m =

1
N

X1N

min
w,c

1
N

∥XT
+w + c1N+

− a1N+
∥2 +

1
N

∥XT
−w + c1N−

+ b1N−
∥2



Intermediate result
• We can use optimal c value to simplify 

 

 

• next, note that we have  and 
, we further have

XT
+w + c1N+

− a1N+
= XT

+w − mTw1N+
−

N−(a + b)
N

1N+

XT
−w + c1N−

+ b1N−
= XT

−w − mTw1N−
+

N+(a + b)
N

1N+

mTw1N+
= (1N+

mT)w
mTw1N−

= (1N−
mT)w

XT
+w + c1N+

− a1N+
= (XT

+ − 1N+
mT)w −

N−(a + b)
N

1N+

XT
−w + c1N−

+ b1N−
= (XT

− − 1N−
mT)w +

N+(a + b)
N

1N−



Solving for w
• Now we minimize w and dropping factor 2, we get 

• Introducing  and   

• Recall covariance matrices 

• the total gradient is

m+ =
1

N+
X+1N+

m− =
1

N−
X−1N−

∂
∂w

∥XT
+w + ⋯ ∥2 = (X+ − (1N+

mT)T)(XT
+ − 1N+

mT)w − N−1N+
XT

+
a + b

N
−

N−N+(a + b)
N

m

∂
∂w

∥XT
−w + ⋯ ∥2 = (X− − (1N−

mT)T)(XT
− − 1N−

mT)w + N+1N−
XT

−
a + b

N
+

N−N+(a + b)
N

m

Sw −
N+N−(a + b)

N2
(m+ − m−) = 0, or w ∝ S−1(m+ − m−)

S =
1
N

(X − (1NmT)T)(XT − 1NmT)



Discriminative LLSE
• LLSE solution to the binary classification problem gives 

the following linear decision function 
   

• Choosing a = N/N+ and b= N/N- leads to simpler 
decision function as  

f(x) = wT x + c =
N2

N+N−(a + b)
S−1(m+ − m−)T(x − m) + a

N+

N
− b

N−

N

f(x) = wT x + c = S−1(m+ − m−)T(x − m)



Summary 
• The direction given by the discriminative LLSE will be 

exactly the same as the one given by linear discriminant 
analysis we will see later in the class, albeit the two are 
derived from different principles 

• The parameters w and c are representations of the 
training data in X+ and X-, but they have much lower 
dimensionality (m+1), comparing the raw data (mN), 
they are usually called the features 

• We will cover more topics about binary classification in 
later part of the course 
• LDA, logistic regression, SVM, neural networks


