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Fitting multiple linear models
• In many practical problems, we need to deal with 

multiple models at the same time to separate cooccurring 
factors attributing to observed data 

• fitting two lines to the data set 
• need to find parameters of two lines a1, a2, b1, b2 
• need to know the assignment of  

each point to line 1 or line 2 
• knowing one solve the other  

is easy, but solving them  
at the same time is hard

2.2 Expectation Maximization (EM) †

The Expectation/Maximization (EM) algorithm simultaneously
segments and fits data generated from multiple parametric models.
For example, shown in Figure 2.3 are a collection of data points
(xi, yi) generated from one of two linear models of the form:

y(i) = a1x(i) + b1 + n1(i) (2.21)

y(i) = a2x(i) + b2 + n2(i), (2.22)

where the model parameters are a1, b1 and a2, b2, and the system
is modeled with additive noise n1(i) and n2(i).

Figure 2.3 Data from

two models

If we are told the model parameters, then determining which data
point was generated by which model would be a simple matter of
choosing, for each data point i, the model k that minimizes the
error between the data and the model prediction:

rk(i) = |akx(i) + bk − y(i))|, (2.23)

for k = 1, 2 in our example. On the other hand, if we are told which
data points were generated by which model, then estimating the
model parameters reduces to solving, for each model k, an over-
constrained set of linear equations:
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where the xk(i) and yk(i) all belong to model k. In either case,
knowing one piece of information (the model assignment or param-
eters) makes determining the other relatively easy. But, lacking
either piece of information makes this a considerably more difficult
estimation problem. The EM algorithm is an iterative two step
algorithm that estimates both the model assignment and param-
eters.

The “E-step” of EM assumes that the model parameters are known
(initially, the model parameters can be assigned random values)
and calculates the likelihood of each data point belonging to each
model. In so doing the model assignment is made in a “soft”
probabilistic fashion. That is, each data point is not explicitly
assigned a single model, instead each data point i is assigned a
probability of it belonging to each model k. For each model the
residual error is first computed as:

rk(i) = akx(i) + bk − y(i) (2.25)
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Problem formulation & solution
• Overall objective function 

 

• Solution is a special case of the expectation-
maximization (EM) algorithm 

• Starting with initial values of , 

• Iterate until convergence  

• Update for j = 1, …, K (E-step: fitting data to 
each line) 

• Update  (M-step: figuring out the model of each 
data example belongs)
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E-step
• Solving sub-problem with regards to each wj 

 — this is a weighted LLSE 

• Diagonal weight matrix W with , and to 
solve 
                  

• Solution 
  

so 
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n

∑
i=1

αij(yi − wT
j xi)2

Wii = αij ≥ 0

minw(y − XTw)TW(y − XTw)

∇w(y − XTw)TW(y − XTw) = 2(XWXTw − XWy) = 0
XWXTw = XWy ⇒ w = (XWXT)−1XWy



M-step
• Solving sub-problem with regards to each  

 

• Define , this reduces to a linear 
programming (LP) problem for each i, as

 

• We can solve this using LP solver, but this problem 
has a simple solution
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M-step
• Solving the M-step problem 

 

• The constraint set  

 is known as the 

probability simplex 
• L is a vector in the positive orthant, so optimal solution 

is on the probability simplex 
• Optimal solution can be obtained by Cauchy-Shwartz 

inequality , which satisfies the constraint 
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EM-LLSE algorithm
• Stands for expectation-

maximization  
• Set initial values of the 

two linear models 
• Iterate until 

convergence occurs 
• For each model to 

be considered 
• Compute errors 

of each data point 
• Update model 

parameter with 
Weighted LLSE 
algorithm



clustering problem
• multi-modal linear LSE is a soft clustering problem 

• Membership to each model/cluster is in the form of a 
“soft” weight 

• We can convert the problem to a hard clustering setting 
• Membership is a “yes/no” binary question 
• One data point can only belong to one cluster

2.2 Expectation Maximization (EM) †

The Expectation/Maximization (EM) algorithm simultaneously
segments and fits data generated from multiple parametric models.
For example, shown in Figure 2.3 are a collection of data points
(xi, yi) generated from one of two linear models of the form:

y(i) = a1x(i) + b1 + n1(i) (2.21)

y(i) = a2x(i) + b2 + n2(i), (2.22)

where the model parameters are a1, b1 and a2, b2, and the system
is modeled with additive noise n1(i) and n2(i).

Figure 2.3 Data from

two models

If we are told the model parameters, then determining which data
point was generated by which model would be a simple matter of
choosing, for each data point i, the model k that minimizes the
error between the data and the model prediction:

rk(i) = |akx(i) + bk − y(i))|, (2.23)

for k = 1, 2 in our example. On the other hand, if we are told which
data points were generated by which model, then estimating the
model parameters reduces to solving, for each model k, an over-
constrained set of linear equations:
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where the xk(i) and yk(i) all belong to model k. In either case,
knowing one piece of information (the model assignment or param-
eters) makes determining the other relatively easy. But, lacking
either piece of information makes this a considerably more difficult
estimation problem. The EM algorithm is an iterative two step
algorithm that estimates both the model assignment and param-
eters.

The “E-step” of EM assumes that the model parameters are known
(initially, the model parameters can be assigned random values)
and calculates the likelihood of each data point belonging to each
model. In so doing the model assignment is made in a “soft”
probabilistic fashion. That is, each data point is not explicitly
assigned a single model, instead each data point i is assigned a
probability of it belonging to each model k. For each model the
residual error is first computed as:

rk(i) = akx(i) + bk − y(i) (2.25)
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Hard multi-modal LLSE
• Overall objective function 

 

• Note the difference is that the constraint changes from 
a continue interval [0,1] to a discrete binary set {0,1} 

• The summation constraint determines that each data 
point is assigned to exactly one model 

• solving this problem directly is NP-hard because It 
involves enumerating all possible clusters 

• We can solve it with the EM algorithm for an 
approximate solution 
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EM algorithm for hard multi-modal LLSE
• Solving sub-problem with regards to each wj 

 

• Solving the M-step problem 

 

• Solution is given by  

• Intuitively, data point i belongs to the model that gives 
the minimum error

min
wj

n

∑
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αij(yi − wT
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Clustering algorithm
• We can extend the multi-modal LLSE algorithm to 

clustering algorithms 



k-means algorithm
• One of the most popular and simplest clustering 

algorithms, also known as Lloyd algorithm, or vector 
quantization      

• n d-dim data in matrix X 

• C ≥ 2 clusters 

• Ck, k = 1,…,C cluster index set 

• i ∈ Ck, then xi is in the kth cluster 

• cluster membership indicator 

• no dual cluster membership 

• cluster representatives µk

cik =
�

1 i � Ck

0 i ⇥� Ck



K-means algorithm
• Iterates between two steps 

• Cluster assignment: update cluster membership 
indicator 

• Cluster representation: refine representative of each 
cluster 

• optimality: minimize representation error  

• d is a distance metric, usually, assume euclidean norm

n�
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Optimizing k-means
• solving this problem directly is NP-hard because It 

involves enumerating all possible clusters 

• solving by coordinate descent 
• starting from initial guesses of µk, 
• repeat until convergence 

• fixing µk, find optimal cik - regrouping 
• fixing cik, update µk - reassigning 

• This guarantees to converge [why?]

min
cik,~µk
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derivation

Optimizing Cluster Indicators

min
cik
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Optimizing Cluster Centers
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There is also a soft version of the k-means clustering



Example



Problem 

• Consider the situation above where we need to cluster 4 
data points into two clusters: to break ties, we take the 
left closest center in membership reassignment 
• Initial cluster centers as {1,3} 
• Initial cluster centers as {2,4} 

1 2 3 4



No guarantee for local minimum
• Initial cluster centers as {1,3} 

• Objective = (1/2)2 + (1/2)2 + (1/2)2 + (1/2)2 = 1 
• Initial cluster centers as {2,4} 

• Objective = 1 + 0 + 1 + 0 = 2 
• conclusion: k-means algorithm may not converge to a 

local minimum of the objective function 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4


