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Fitting multiple linear models

- In many practical problems, we need to deal with
multiple models at the same time to separate cooccurring
factors attributing to observed data

- fitting two lines to the data set
- need to find parameters of two lines aj, az, b1, b2

- need to know the assignment of

cach point to line 1 or line 2 27
- knowing one solve the other %, o’
is easy, but solving them “oa,
at the same time 1s hard ’,?’t‘ -
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Problem formulation & solution

. Overall obj ective function

mlnzz%(yl W, Tx)?, s.t. a; € [0,1], Za =1

=1 j=1

- Solution 1s a special case of the expectation-
maximization (EM) algorithm

: e 1
. Starting with 1initial values of ;= E,

- Iterate until convergence

- Update w;, forj =1, ..., K (E-step: fitting data to
each line)

- Update a;; (M-step: figuring out the model of each
data example belongs)



E-step
» Solving sub-problem with regards to each w;
n:vi.n Z o (y; — ijxi)2 — this 1s a weighted LLSE
=1
- Diagonal weight matrix W with W;; = a;; > 0, and to
solve
min, (y — X wyIw(y — XTw)
» Solution
V., = X"'WIW(y — XTw) = 2(XWXTw — XWy) =0
so XWXTw = XWy = w = XWX~ XWy



M-step

- Solving sub-problem with regards to each q;;

K K
min Z o (y; — ijxl-)z, s.t. a; € [0,1], Z a; =1
Y =1 j=1
+ Define L;; = (y; — ijxl-)z, this reduces to a linear
programming (LP) problem for each 1, as

K K
min )’ a;L. st. a; € [0,1], ) a; =1
W=l j=1

+  We can solve this using LP solver, but this problem
has a simple solution



M-step

Solvmg the M-step problem ! L.
min Z a;Ly, st a; € [0,1], Z a; = 1 a
i ] 1 ] 1 //.

The constraint set

a; € [0,1], Z a; = 1 1s known as the

j=1
probability simplex

L 1s a vector 1n the positive orthant, so optimal solution
1s on the probability simplex

Optimal solution can be obtained by Cauchy-Shwartz
L.

mequality a;; = ! , which satisfies the constraint
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EM-LLSE algorithm

- Stands for expectation-
maximization

- Set 1nitial values of the
two linear models

0.4

« Jterate until
convergence OCcurs

« For each model to
be considered

+ Compute errors

of each data point| .*° o

- Update model

parameter with -
Weighted LLSE

algorithm
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clustering problem

- multi-modal linear LSE 1s a soft clustering problem

* Membership to each model/cluster is in the form of a
“soft” weight

- We can convert the problem to a hard clustering setting
- Membership 1s a “yes/no” binary question

+ One data point can only belong to one cluster




Hard multi-modal LLSE

- Overall objective function

n K K
min Z Z o (y; — ijxi)z, s.t. a; € {0,1}, Z a; =1

- Note the difference is that the constraint changes from
a continue interval [0,1] to a discrete binary set {0,1}

- The summation constraint determines that each data
point 1s assigned to exactly one model

» solving this problem directly 1s NP-hard because It
involves enumerating all possible clusters

*  We can solve it with the EM algorithm for an
approximate solution



EM algorithm for hard multi-modal LLSE

. Solvmg sub-problem with regards to each w;
min Z %(yl W x)2 = min Z 1()C y)~model (y; — w; x)2
Y= Y=t
. Solvmg the M-step problem
mlnz% i Stoa; € {0,115, Za =1
l ] 1

- Solution 1s given by Q;; = =1, j=arg min, L;,

- Intuitively, data point 1 belongs to the model that gives
the minimum error



Clustering algorithm

- We can extend the multi-modal LLSE algorithm to
clustering algorithms

Cluster 2

Cluster 1

Cluster 3




k-means algorithm

»  One of the most popular and simplest clustering
algorithms, also known as Lloyd algorithm, or vector
quantization

n d-dim data in matrix X

C > 2 clusters

Ck, k=1,...,C cluster index set

e 1 & Cx, then x; 1s 1n the kth cluster

cluster membership indicator

no dual cluster membership

cluster representatives Lk



K-means algorithm

[terates between two steps

* Cluster assignment: update cluster membership
indicator

+ Cluster representation: refine representative of each
cluster

- optimality: minimize representation error
n C
> cad(F, k)
i=1 k=1
- d 1s a distance metric, usually, assume euclidean norm

n C
SN call@ — il
1=1 k=1




Optimizing k-means

» solving this problem directly 1s NP-hard because It
involves enumerating all possible clusters

n C
min >1>1c- Z; — ikl
cinofin St £ ol T = fik]

- solving by coordinate descent
- starting from 1nitial guesses of pk,
- repeat until convergence
- fixing pk, find optimal cik - regrouping
- fixing cik, update pk - reassigning

- This guarantees to converge [why?]



derivation

: C m
regroupin : 2
grouping rgiLnZZCikHXi—NkHz
M step e
N 1 k= argmlnj 1% — a5
K=l 0 k+# argmin; [|x; — ;|5

There 1s also a soft Version of the k-means clustering

Z Z Cik||X; — 2|13

i=1 k=1
reassigning
= > Ixi— pl3
E step xze;k
= 2> (Xi—pk)=2) X;i—2|Cklux =0
X;€Cx X;€Cx

= Nk:%zxi

‘ k‘ X;€Ck
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Problem

Consider the situation above where we need to cluster 4
data points into two clusters: to break ties, we take the
left closest center in membership reassignment

- Imitial cluster centers as {1,3}

- Imitial cluster centers as {2,4}



No guarantee for local mimimum

- Initial cluster centers as {1,3}
— 00—
—0—0 00—

. Objective = (1/2)2 + (1/2)2 + (1/2)2 + (1/2)2= 1

- Initial cluster centers as {2,4}

O—@—C—@—
—0—0—0—0—

- Objective=1+0+1+0=2

- conclusion: k-means algorithm may not converge to a
local minimum of the objective function



