

CSI 436/536 Introduction to Machine Learning

Multi-model LLSE and k-means clustering

Professor Siwei Lyu Computer Science University at Albany, State University of New York

Fitting multiple linear models

- In many practical problems, we need to deal with multiple models at the same time to separate cooccurring factors attributing to observed data
- fitting two lines to the data set
 - need to find parameters of two lines a₁, a₂, b₁, b₂
 - need to know the assignment of each point to line 1 or line 2
- knowing one solve the other is easy, but solving them at the same time is hard

Problem formulation & solution

- Overall objective function $\min_{\alpha_{ij}, w_j} \sum_{i=1}^n \sum_{j=1}^K \alpha_{ij} (y_i - w_j^T x_i)^2, \text{ s.t. } \alpha_{ij} \in [0,1], \sum_{j=1}^K \alpha_{ij} = 1$
- Solution is a special case of the expectationmaximization (EM) algorithm
 - Starting with initial values of $\alpha_{ij} = \frac{1}{K}$,
 - Iterate until convergence
 - Update w_j , for j = 1, ..., K (E-step: fitting data to each line)
 - Update α_{ij} (M-step: figuring out the model of each data example belongs)

E-step

- Solving sub-problem with regards to each w_j $\min_{w_j} \sum_{i=1}^n \alpha_{ij} (y_i - w_j^T x_i)^2 - \text{this is a weighted LLSE}$
- Diagonal weight matrix W with $W_{ii} = \alpha_{ij} \ge 0$, and to solve

$$\min_{w}(y - X^{T}w)^{T}W(y - X^{T}w)$$

• Solution

$$\nabla_{w}(y - X^{T}w)^{T}W(y - X^{T}w) = 2(XWX^{T}w - XWy) = 0$$

so $XWX^{T}w = XWy \Rightarrow w = (XWX^{T})^{-1}XWy$

M-step

- Solving sub-problem with regards to each α_{ij} $\min_{\alpha_{ij}} \sum_{j=1}^{K} \alpha_{ij} (y_i - w_j^T x_i)^2, \text{ s.t. } \alpha_{ij} \in [0,1], \sum_{j=1}^{K} \alpha_{ij} = 1$
 - Define $L_{ij} = (y_i w_j^T x_i)^2$, this reduces to a linear programming (LP) problem for each i, as $\min_{\alpha_{ij}} \sum_{j=1}^{K} \alpha_{ij} L_{ij}$, s.t. $\alpha_{ij} \in [0,1]$, $\sum_{j=1}^{K} \alpha_{ij} = 1$
 - We can solve this using LP solver, but this problem has a simple solution

M-step

probability simplex

- L is a vector in the positive orthant, so optimal solution is on the probability simplex
- Optimal solution can be obtained by Cauchy-Shwartz inequality $\alpha_{ij} = \frac{L_{ij}}{\sum_{k=1}^{K} L_{ik}}$, which satisfies the constraint

EM-LLSE algorithm

- Stands for expectationmaximization
- Set initial values of the two linear models
 - Iterate until convergence occurs
 - For each model to be considered
 - Compute errors of each data point
 - Update model parameter with -0.4
 Weighted LLSE algorithm

clustering problem

- multi-modal linear LSE is a soft clustering problem
 - Membership to each model/cluster is in the form of a "soft" weight
- We can convert the problem to a hard clustering setting
 - Membership is a "yes/no" binary question
 - One data point can only belong to one cluster

Hard multi-modal LLSE

- Overall objective function $\min_{\alpha_{ij},w_j} \sum_{i=1}^n \sum_{j=1}^K \alpha_{ij}(y_i - w_j^T x_i)^2, \text{ s.t. } \alpha_{ij} \in \{0,1\}, \sum_{j=1}^K \alpha_{ij} = 1$
 - Note the difference is that the constraint changes from a continue interval [0,1] to a discrete binary set {0,1}
 - The summation constraint determines that each data point is assigned to exactly one model
- solving this problem directly is NP-hard because It involves enumerating all possible clusters
- We can solve it with the EM algorithm for an approximate solution

EM algorithm for hard multi-modal LLSE

- Solving sub-problem with regards to each w_j $\min_{w_j} \sum_{i=1}^n \alpha_{ij} (y_i - w_j^T x_i)^2 = \min_{w_j} \sum_{i=1}^n 1_{(x_i, y_i) \sim model_j} (y_i - w_j^T x_i)^2$
- Solving the M-step problem $\min_{\alpha_{ij}} \sum_{j=1}^{K} \alpha_{ij} L_{ij}, \text{ s.t. } \alpha_{ij} \in \{0,1\}, \sum_{j=1}^{K} \alpha_{ij} = 1$
 - Solution is given by $\alpha_{ij} = 1_{j=\arg\min_k L_{ik}}$
 - Intuitively, data point i belongs to the model that gives the minimum error

Clustering algorithm

• We can extend the multi-modal LLSE algorithm to clustering algorithms

k-means algorithm

- One of the most popular and simplest clustering algorithms, also known as Lloyd algorithm, or vector quantization
- n d-dim data in matrix X
- $C \ge 2$ clusters
- C_k , k = 1,...,C cluster index set
 - $i \in C_k$, then x_i is in the kth cluster
- cluster membership indicator

$$c_{ik} = \begin{cases} 1 & i \in C_k \\ 0 & i \notin C_k \end{cases}$$

- no dual cluster membership
- cluster representatives μ_k

K-means algorithm

- Iterates between two steps
 - Cluster assignment: update cluster membership indicator
 - Cluster representation: refine representative of each cluster
 - optimality: minimize representation error

$$\sum_{i=1}^n \sum_{k=1}^C c_{ik} d(\vec{x}_i, \vec{\mu}_k)$$

• d is a distance metric, usually, assume euclidean norm

$$\sum_{i=1}^{n} \sum_{k=1}^{C} c_{ik} \|\vec{x}_i - \vec{\mu}_k\|^2$$

Optimizing k-means

• solving this problem directly is NP-hard because It involves enumerating all possible clusters

$$\min_{c_{ik},\vec{\mu}_k} \sum_{i=1}^n \sum_{k=1}^C c_{ik} \|\vec{x}_i - \vec{\mu}_k\|^2$$

- solving by coordinate descent
 - starting from initial guesses of μk ,
 - repeat until convergence
 - fixing μk , find optimal cik regrouping
 - fixing cik, update μk reassigning
- This guarantees to converge [why?]

derivation

regrouping

M step

$$\begin{split} \min_{c_{ik}} \sum_{k=1}^{C} \sum_{i=1}^{m} c_{ik} \| \mathbf{x}_{i} - \boldsymbol{\mu}_{k} \|_{2}^{2} \\ c_{ik} &= \begin{cases} 1 \quad k = \operatorname{argmin}_{j} \| \mathbf{x}_{i} - \boldsymbol{\mu}_{j} \|_{2}^{2} \\ 0 \quad k \neq \operatorname{argmin}_{j} \| \mathbf{x}_{i} - \boldsymbol{\mu}_{j} \|_{2}^{2} \end{cases} \end{split}$$

There is also a soft version of the k-means clustering

reassigning
E step
$$\begin{aligned}
& \frac{\partial}{\partial \mu_k} \sum_{i=1}^m \sum_{k=1}^C c_{ik} \|\mathbf{x}_i - \mu_k\|_2^2 \\
&= \frac{\partial}{\partial \mu_k} \sum_{\mathbf{x}_i \in \mathcal{C}_k} \|\mathbf{x}_i - \mu_k\|_2^2 \\
&= 2 \sum_{\mathbf{x}_i \in \mathcal{C}_k} (\mathbf{x}_i - \mu_k) = 2 \sum_{\mathbf{x}_i \in \mathcal{C}_k} \mathbf{x}_i - 2|\mathcal{C}_k|\mu_k = 0 \\
&\Rightarrow \mu_k = \frac{1}{|\mathcal{C}_k|} \sum_{\mathbf{x}_i \in \mathcal{C}_k} \mathbf{x}_i
\end{aligned}$$

Example

Problem

- Consider the situation above where we need to cluster 4 data points into two clusters: to break ties, we take the left closest center in membership reassignment
 - Initial cluster centers as {1,3}
 - Initial cluster centers as {2,4}

No guarantee for local minimum

• Initial cluster centers as {1,3}

- Objective = $(1/2)^2 + (1/2)^2 + (1/2)^2 + (1/2)^2 = 1$
- Initial cluster centers as {2,4}

- Objective = 1 + 0 + 1 + 0 = 2
- conclusion: k-means algorithm may not converge to a local minimum of the objective function