CSI 436/536

Introduction to Machine Learning

Model selection for LLSE

Professor Siwei Lyu
Computer Science
University at Albany, State University of New York

Model selection

- Training a model (e.g., linear model using LLSE) from a training data can determine the parameters in the model
- There are model families that cannot be determined from data alone, such as
- The degree of polynomial in polynomial fitting
- The type of nonlinear models in regression
- Model selection decides the form of the model and the model parameter to be learned
- Model training decides the specific value of the model parameter for a model from the model family based on training data

Model selection in LLSE

- find d-degree polynomial

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}
$$

as

$$
\min _{w=\left(a_{0}, \cdots, a_{d}\right)^{T}} \sum_{i=1}^{N}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

- What is the right d for a particular set of data?
- This cannot be learned solely from data

Overfitting and underfitting

- If models are not chosen carefully, overfitting or underfitting will occur
- When a model has low error on training data but high error on testing data, it overfits. When it has high error on training data, it underfits
- Both are undesirable, but overfitting may be more harmful

Underfitting

Desired

Overfitting

Model selection by validation

- Models cannot be chosen based on their performance on the training data
- Performance should be tested on a test dataset that are not used in training to avoid overfitting
- Model selection is performed on a part of training data that are not used in training - the validation dataset

General procedure of model selection

- Decide a candidate set of model families
- For LLSE, corresponding to choosing polynomials of different degrees
- For each candidate model family
- Obtain optimal parameter using the training set
- Compute the error metric on the validation dataset
- Choose the model family that leads to the minimum error on the validation dataset
- Deploy the best model of the chosen family on the test dataset to report results

Incremental LLSE

- Idea: fitting data with polynomials of different degrees,
- A simple idea is to try for a range of $d=1, \ldots, D$, to fit the training data using LLSE of each degree
- problem: each time we have to solve the normal equation by inverting the correlation matrix, leading to complexity $\mathrm{O}\left(\mathrm{ND}^{4}\right)$
- Better idea is to do this incrementally, using the result of previous step to bootstrap
- This is known as incremental LLSE, which can be solved similarly as recursive LLSE using dynamic programming and matrix inverse lemma

Incremental LLSE

- Old data matrix X and correlation matrix XX^{T}
. New data matrix $\tilde{X}=\binom{X}{\tilde{x}^{T}}$, where the new vector is N x 1 corresponding to the evaluation of additional degree monomial
- New correlation matrix

$$
\tilde{X} \tilde{X}^{T}=\binom{X}{\tilde{x}^{T}}\left(\begin{array}{ll}
X^{T} & \tilde{x}
\end{array}\right)=\left(\begin{array}{cc}
X X^{T} & X \tilde{x} \\
\tilde{x}^{T} X^{T} & \tilde{x}^{T} \tilde{x}
\end{array}\right)
$$

- We need to compute $\left(\tilde{X} \tilde{X}^{T}\right)^{-1}$, can we use the result we already have for $\left(X X^{T}\right)^{-1}$?

Block matrix inversion lemma

. Given a block matrix $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$, if D is invertible, define D's Schur complement as $\hat{D}=A-B D^{-1} C$, then we can show that

$$
M=\left(\begin{array}{cc}
I & B D^{-1} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
\hat{D} & 0 \\
0 & D
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
D^{-1} & I
\end{array}\right)
$$

- Then it is easy to show that

$$
M^{-1}=\left(\begin{array}{cc}
I & 0 \\
-D^{-1} C & I
\end{array}\right)\left(\begin{array}{cc}
\hat{D}^{-1} & 0 \\
0 & D^{-1}
\end{array}\right)\left(\begin{array}{cc}
I & -B D^{-1} \\
0 & I
\end{array}\right)
$$

- Special case, when $\mathrm{D}=\mathrm{d}, \mathrm{B}=\mathrm{x}, \mathrm{C}=\mathrm{x}^{\mathrm{T}}$, we have

$$
M^{-1}=\left(\begin{array}{cc}
I & 0 \\
-x^{T} / d & I
\end{array}\right)\left(\begin{array}{cc}
\left(A-x x^{T} / d\right)^{-1} & 0 \\
0 & 1 / d
\end{array}\right)\left(\begin{array}{cc}
I & -x / d \\
0 & I
\end{array}\right)
$$

Block matrix inversion lemma

- Using matrix inversion lemma,

$$
\left(A-x x^{T} / d\right)^{-1}=A^{-1}+\frac{A^{-1} x x^{T} A^{-1}}{d-x^{T} A^{-1} x}
$$

then

$$
\begin{aligned}
& M^{-1}=\left(\begin{array}{cc}
I & 0 \\
-x^{T} / d & I
\end{array}\right)\left(\begin{array}{cc}
A^{-1}+\frac{A^{-1} x x^{T} A^{-1}}{d-x^{T} A^{-1} x} & 0 \\
0 & 1 / d
\end{array}\right)\left(\begin{array}{cc}
I & -x / d \\
0 & I
\end{array}\right) \\
& =\left(\begin{array}{cc}
A^{-1}+\frac{A^{-1} x x^{T} A^{-1}}{d-x^{T} A^{-1} x} & 0 \\
\frac{-x^{T} A^{-1}}{\left(d-x^{T} A^{-1} x\right)} & 1 / d
\end{array}\right)\left(\begin{array}{cc}
I & -x / d \\
0 & I
\end{array}\right) \\
& =\left(\begin{array}{cc}
A^{-1}+\frac{A^{-1} x x^{T} A^{-1}}{d-x^{T} A^{-1} x} & \frac{-A^{-1} x}{\left(d-x^{T} A^{-1} x\right)} \\
\frac{-x^{T} A^{-1}}{\left(d-x^{T} A^{-1} x\right)} & \frac{1}{d-x^{T} A^{-1} x}
\end{array}\right)
\end{aligned}
$$

Incremental LLSE

- Computing

$$
\hat{w}=\left(\begin{array}{cc}
\left(X X^{T}\right)^{-1}+\frac{\left(X X^{T}\right)^{-1} x x^{T}\left(X X^{T}\right)^{-1}}{d-x^{T}\left(X X^{T}\right)^{-1} x} & \frac{-\left(X X^{T}\right)^{-1} x}{\left(d-x^{T}\left(X X^{T}\right)^{-1} x\right)} \\
\frac{-x^{T}\left(X X^{T}\right)^{-1}}{\left(d-x^{T}\left(X X^{T}\right)^{-1} x\right)} & \frac{1}{d-x^{T}\left(X X^{T}\right)^{-1} x}
\end{array}\right)\binom{X y}{\tilde{x}^{T} y}
$$

- After simplification we have $\hat{w}=\binom{w+w_{0}\left(X X^{T}\right)^{-1} X \tilde{x}}{w_{0}}$, where $w_{0}=\frac{\tilde{x}^{T}\left(X^{T} w-y\right)}{\tilde{x}^{T} \tilde{x}-\tilde{x}^{T} X^{T}\left(X X^{T}\right)^{-1} X \tilde{x}}$
- interpretation: $\mathrm{w}_{0}=0$ if $\mathrm{X}^{\mathrm{T}} \mathrm{w}-\mathrm{y}=0$, i.e., the previous model is enough to get perfect prediction on the data, so no need to add any further new components

Cross-validation

- Cross-validation is used to avoid any potential bias in the trainingvalidation segmentation
- k-fold cross-validation: equally segment training dataset to k parts, then train on any k-1 parts and test the error on the remaining part

5-fold cross-validation

- For training single model, choose the best model out of the k -fold estimates
- For model selection, find a model family that gives the smallest average k-fold training losses
- Special case: $\mathrm{k}=\mathrm{N}$, known as the leave-one-out (LOO) cross-validation
- In the case of LLSE, LOO can be computed in closed form

Matrix inversion lemma

- Woodsbury identity: when A and D are invertible $\left(A+B D C^{T}\right)^{-1}=A^{-1}-A^{-1} C\left(D^{-1}+C A^{-1} B^{T}\right)^{-1} B^{T} A^{-1}$
- Proof: multiply the matrix on both sides
- important special case
- $\mathrm{B}=\mathrm{C}=\mathrm{z}$, a vector, $\mathrm{D}=\mathrm{I}$

$$
\left(A+z z^{T}\right)^{-1}=A^{-1}-\left(A^{-1} z z^{T} A^{-1}\right) /\left(1+z^{T} A^{-1} z\right)
$$

- $\mathrm{B}=-\mathrm{C}=\mathrm{z}$, a vector, $\mathrm{D}=\mathrm{I}$

$$
\left(A-z z^{T}\right)^{-1}=A^{-1}+\left(A^{-1} z z^{T} A^{-1}\right) /\left(1-z^{T} A^{-1} z\right)
$$

- caching A^{-1} and computing the inversion recursively, typical inversion will take $\mathrm{O}\left(\mathrm{n}^{3}\right)$, while this special case it is $\mathrm{O}(\mathrm{n})$

Correlation matrix

- Data matrix

$$
X=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
x_{1} & x_{2} & \cdots & x_{N} \\
\mid & \mid & & \mid
\end{array}\right)
$$

- Correlation matrix $X X^{T}=x_{1} x_{1}^{T}+x_{2} x_{2}^{T}+\cdots+x_{N} x_{N}^{T}$
- Inverse of correlation matrix when adding x

$$
\left(X X^{T}+x x^{T}\right)^{-1}=\left(X X^{T}\right)^{-1}-\frac{\left(X X^{T}\right)^{-1} x x^{T}\left(X X^{T}\right)^{-1}}{1+x^{T}\left(X X^{T}\right)^{-1} x}
$$

- Inverse of correlation matrix when removing x

$$
\left(X X^{T}-x x^{T}\right)^{-1}=\left(X X^{T}\right)^{-1}+\frac{\left(X X^{T}\right)^{-1} x x^{T}\left(X X^{T}\right)^{-1}}{1-x^{T}\left(X X^{T}\right)^{-1} x}
$$

Review of over-complete LLSE

- LLSE objective $\min _{w}\left\|y-X^{T} w\right\|^{2}$
- Solution (over-complete) $w=\left(X X^{T}\right)^{-1} X y$
- LS Error at optimum $y^{T} y-(X y)^{T}\left(X X^{T}\right)^{-1} X y$
- To prove: the prediction $\left(I_{N}-X^{T}\left(X X^{T}\right)^{-1} X\right) y$ matrix $A=\left(I_{N}-X^{T}\left(X X^{T}\right)^{-1} X\right) y$
is idempotent, i.e., $\mathrm{AA}=\mathrm{A}$, so the LS error

$$
y^{T}\left(I_{N}-X^{T}\left(X X^{T}\right)^{-1} X\right)^{T}\left(I_{N}-X^{T}\left(X X^{T}\right)^{-1} X\right) y
$$

becomes $\quad y^{T} y-(X y)^{T}\left(X X^{T}\right)^{-1} X y$

LOO for LLSE

- Each LOO pass corresponds to the removal of a particular data point from the data matrix, so correspondingly we can compute the updated parameter and error using matrix inversion lemma
- Parameter

$$
\begin{aligned}
\hat{w} & =\left(X X^{T}-x_{i} x_{i}^{T}\right)^{-1}\left(X y-y_{i} x_{i}\right) \\
& =\left(\left(X X^{T}\right)^{-1}+\frac{\left(X X^{T}\right)^{-1} x_{i} x_{i}^{T}\left(X X^{T}\right)^{-1}}{1-x_{i}^{T}\left(X X^{T}\right)^{-1} x_{i}}\right)\left(X y-y_{i} x_{i}\right) \\
& =w+\frac{x_{i}^{T} w-y_{i}}{1-x_{i}^{T}\left(X X^{T}\right)^{-1} x_{i}}\left(X X^{T}\right)^{-1} x_{i}
\end{aligned}
$$

LOO for LLSE

- The prediction on the single data point that is left out is

$$
\begin{aligned}
& y_{i}-x_{i}^{T} \hat{w}=y_{i}-x_{i}^{T}\left(w+\frac{x_{i}^{T} w-y_{i}}{1-x_{i}^{T}\left(X X^{T}\right)^{-1} x_{i}}\left(X X^{T}\right)^{-1} x_{i}\right) \\
& =y_{i}-x_{i}^{T} w-\frac{x_{i}^{T} w-y_{i}}{1-x_{i}^{T}\left(X X^{T}\right)^{-1} x_{i}} x_{i}^{T}\left(X X^{T}\right)^{-1} x_{i} \\
& =\frac{y_{i}-x_{i}^{T} w}{1-x_{i}^{T}\left(X X^{T}\right)^{-1} x_{i}}
\end{aligned}
$$

- So LSE loss on the single data point that is left out is

$$
\frac{\left(y_{i}-x_{i}^{T} w\right)^{2}}{\left(1-x_{i}^{T}\left(X X^{T}\right)^{-1} x_{i}\right)^{2}}
$$

Overall computation complexity

- Instead of inverting N matrices of dimension $\mathrm{m} \times \mathrm{m}$, which will have a time complexity of $\mathrm{O}\left(\mathrm{Nm}^{3}\right)$, the LOO algorithm can compute the inverse of the overall correlation matrix once and reuse it for all LOO objective computation, which leaves a time complexity of $\mathrm{O}\left(\mathrm{Nm}+\mathrm{m}^{3}\right)$
- Averaging LOO LSE loss can be used to choose from different model families, e.g., when fitting data, this will be polynomials of different degrees

Summary

- Incremental LLSE model selection based on LOO error
- For each degree $\mathrm{d}=1, \ldots, \mathrm{D}$:
- Compute optimal parameter using incremental LLSE wd
- Compute LOO error using w_{d}
- Select the optimal model with the minimum LOO error

