
CSI 436/536  
Introduction to Machine Learning

Professor Siwei Lyu 
Computer Science 

University at Albany, State University of New York

Model selection for LLSE



Model selection
• Training a model (e.g., linear model using LLSE) from a 

training data can determine the parameters in the model 
• There are model families that cannot be determined from 

data alone, such as  
• The degree of polynomial in polynomial fitting 
• The type of nonlinear models in regression 

• Model selection decides the form of the model and the 
model parameter to be learned 

• Model training decides the specific value of the model 
parameter for a model from the model family based on 
training data



Model selection in LLSE
• find d-degree polynomial 

              
as 
               

• What is the right d for a particular set of data? 
• This cannot be learned solely from data

f(x) = a0 + a1x + a2x2 + ⋯ + adxd

minw=(a0,⋯,ad)T ∑N
i=1 (yi − f(xi))2



Overfitting and underfitting
• If models are not chosen carefully, overfitting or under-

fitting will occur  
• When a model has low error on training data but high 

error on testing data, it overfits. When it has high error 
on training data, it underfits 

• Both are undesirable, but overfitting may be more 
harmful



Model selection by validation
• Models cannot be chosen based on their performance on 

the training data 
• Performance should be tested on a test dataset that are 

not used in training to avoid overfitting  
• Model selection is performed on a part of training data 

that are not used in training — the validation dataset  

Training data Test  
data 

Training target ???

Training Validation



General procedure of model selection
• Decide a candidate set of model families 

• For LLSE, corresponding to choosing polynomials of 
different degrees 

• For each candidate model family 
• Obtain optimal parameter using the training set 
• Compute the error metric on the validation dataset 

• Choose the model family that leads to the minimum error 
on the validation dataset 

• Deploy the best model of the chosen family on the test 
dataset to report results



Incremental LLSE
• Idea: fitting data with polynomials of different degrees, 

• A simple idea is to try for a range of d = 1, …, D, to fit 
the training data using LLSE of each degree 
• problem: each time we have to solve the normal 

equation by inverting the correlation matrix, leading 
to complexity O(ND4) 

• Better idea is to do this incrementally, using the result of 
previous step to bootstrap 

• This is known as incremental LLSE, which can be 
solved similarly as recursive LLSE using dynamic 
programming and matrix inverse lemma



Incremental LLSE
• Old data matrix X and correlation matrix XXT 

• New data matrix , where the new vector is N x 

1 corresponding to the evaluation of additional degree 
monomial  

• New correlation matrix 

 

• We need to compute , can we use the result we 
already have for ?

X̃ = (X
x̃T)

X̃X̃T = (X
x̃T) (XT x̃) = ( XXT Xx̃

x̃T XT x̃T x̃)
(X̃X̃T)−1

(XXT)−1



Block matrix inversion lemma

• Given a block matrix , if D is invertible, 

define D’s Schur complement as , then 
we can show that 

 

• Then it is easy to show that 

 

• Special case, when D = d, B = x, C = xT, we have  

M = (A B
C D)

D̂ = A − BD−1C

M = (I BD−1

0 I ) (D̂ 0
0 D) ( I 0

D−1 I)
M−1 = ( I 0

−D−1C I) (D̂−1 0
0 D−1) (I −BD−1

0 I )
M−1 = ( I 0

−xT /d I) ((A − xxT /d)−1 0
0 1/d) (I −x/d

0 I )



Block matrix inversion lemma
• Using matrix inversion lemma,  

 

then 

            

(A − xxT /d)−1 = A−1 +
A−1xxT A−1

d − xT A−1x

M−1 = ( I 0
−xT /d I) (A−1 + A−1xxT A−1

d − xT A−1x
0

0 1/d) (I −x/d
0 I )

=
A−1 + A−1xxT A−1

d − xT A−1x
0

−xT A−1

(d − xT A−1x)
1/d (I −x/d

0 I )

=
A−1 + A−1xxT A−1

d − xT A−1x
−A−1x

(d − xT A−1x)

−xT A−1

(d − xT A−1x)
1

d − xT A−1x



Incremental LLSE
• Computing 

  

• After simplification we have , 

where  

• interpretation: w0 = 0 if XTw - y = 0, i.e., the previous 
model is enough to get perfect prediction on the data, 
so no need to add any further new components

ŵ =
(XXT)−1 + (XXT)−1xxT(XXT)−1

d − xT(XXT)−1x
−(XXT)−1x

(d − xT(XXT)−1x)

−xT(XXT)−1

(d − xT(XXT)−1x)
1

d − xT(XXT)−1x
( Xy

x̃Ty)
ŵ = (w + w0(XXT)−1Xx̃

w0 )
w0 =

x̃T(XTw − y)
x̃T x̃ − x̃T XT(XXT)−1Xx̃



Cross-validation
• Cross-validation is used to avoid 

any potential bias in the training- 
validation segmentation  

• k-fold cross-validation: equally  
segment training dataset to k  
parts, then train on any k-1 parts and 
test the error on the remaining part         5-fold cross-validation 
• For training single model, choose the best model out of the 

k-fold estimates 
• For model selection, find a model family that gives the 

smallest average k-fold training losses 
• Special case: k = N, known as the leave-one-out (LOO) 

cross-validation  
• In the case of LLSE, LOO can be computed in closed form



Matrix inversion lemma
• Woodsbury identity: when A and D are invertible 

• Proof: multiply the matrix on both sides 
• important special case  

• B=C=z, a vector, D=I 

• B=-C=z, a vector, D=I 

• caching A-1 and computing the inversion recursively, 
typical inversion will take O(n3), while this special 
case it is O(n)

(A + zzT)−1 = A−1 − (A−1zzT A−1)/(1 + zT A−1z)

(A − zzT)−1 = A−1 + (A−1zzT A−1)/(1 − zT A−1z)

(A + BDCT)−1 = A−1 − A−1C(D−1 + CA−1BT)−1BT A−1



Correlation matrix
• Data matrix 

• Correlation matrix 
• Inverse of correlation matrix when adding x  

• Inverse of correlation matrix when removing x

X =
| | |
x1 x2 ⋯ xN

| | |

XXT = x1xT
1 + x2xT

2 + ⋯ + xNxT
N

(XXT + xxT)−1 = (XXT)−1 −
(XXT)−1xxT(XXT)−1

1 + xT(XXT)−1x

(XXT − xxT)−1 = (XXT)−1 +
(XXT)−1xxT(XXT)−1

1 − xT(XXT)−1x



Review of over-complete LLSE
• LLSE objective  

• Solution (over-complete)   
• LS Error at optimum 

• To prove: the prediction 
matrix                                 
is idempotent, i.e., AA = A, so the LS error  
 
 
becomes    

A = (IN − XT(XXT)−1X)y

minw ∥y − XTw∥2

w = (XXT)−1Xy

yT(IN − XT(XXT)−1X)T(IN − XT(XXT)−1X)y

yT y − (Xy)T(XXT)−1Xy

(IN − XT(XXT)−1X)y

yT y − (Xy)T(XXT)−1Xy



LOO for LLSE
• Each LOO pass corresponds to the removal of a 

particular data point from the data matrix, so 
correspondingly we can compute the updated parameter 
and error using matrix inversion lemma 

• Parameter 
ŵ = (XXT − xixT

i )−1(Xy − yixi)

= ((XXT)−1 +
(XXT)−1xixT

i (XXT)−1

1 − xT
i (XXT)−1xi )(Xy − yixi)

= w +
xT

i w − yi

1 − xT
i (XXT)−1xi

(XXT)−1xi



LOO for LLSE
• The prediction on the single data point that is left out is 

• So LSE loss on the single data point that is left out is

yi − xT
i ŵ = yi − xT

i (w +
xT

i w − yi

1 − xT
i (XXT)−1xi

(XXT)−1xi)
= yi − xT

i w −
xT

i w − yi

1 − xT
i (XXT)−1xi

xT
i (XXT)−1xi

=
yi − xT

i w
1 − xT

i (XXT)−1xi

(yi − xT
i w)2

(1 − xT
i (XXT)−1xi)2



Overall computation complexity
• Instead of inverting N matrices of dimension m x m, 

which will have a time complexity of O(Nm3), the LOO 
algorithm can compute the inverse of the overall 
correlation matrix once and reuse it for all LOO objective 
computation, which leaves a time complexity of 
O(Nm+m3) 

• Averaging LOO LSE loss can be used to choose from 
different model families, e.g., when fitting data, this will 
be polynomials of different degrees 



Summary 
• Incremental LLSE model selection based on LOO error 

• For each degree d = 1, …, D: 
• Compute optimal parameter using incremental 

LLSE wd 
• Compute LOO error using wd 

• Select the optimal model with the minimum LOO error


