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Model selection

+ Training a model (e.g., linear model using LLSE) from a
training data can determine the parameters in the model

« There are that cannot be determined from
data alone, such as

» The degree of polynomial in polynomial fitting
* The type of nonlinear models 1n regression

» Model selection decides the form of the model and the
model parameter to be learned

» Model training decides the specific value of the model
parameter for a model from the model family based on
training data



Model selection in LLSE

- find d-degree polynomial
f(x) = ay + a;x + ax* + - + ax°
as
. N
Min,_ . g7 2y O = f60))
- What 1s the right d for a particular set of data?

» This cannot be learned solely from data

100+

i 100+
-10 0 20 30 40 504
5 10
=200+ Aﬁ \O_/
-3005-



Overfitting and underfitting

- If models are not chosen carefully, overfitting or under-
fitting will occur

* When a model has low error on training data but high
error on testing data, it overfits. When 1t has high error
on training data, it underfits

-+ Both are undesirable, but overfitting may be more

harmful

Overfitting




Model selection by validation

+ Models cannot be chosen based on their performance on
the training data

« Performance should be tested on a resr daraser that are
not used in training to avoid overfitting

- Model selection 1s performed on a part of training data
that are not used 1n training — the validation dataset

Training Validation

Training data

Training target 277



General procedure of model selection

- Decide a candidate set of model families

- For LLSE, corresponding to choosing polynomials of
different degrees

+ For each candidate model family
+ Obtain optimal parameter using the training set
- Compute the error metric on the validation dataset

» Choose the model family that leads to the minimum error
on the validation dataset

+ Deploy the best model of the chosen family on the test
dataset to report results



Incremental LLSE

- Idea: fitting data with polynomials of different degrees,

- A simple idea is to try for arange of d=1, ..., D, to fit
the training data using LLSE of each degree

- problem: each time we have to solve the normal
equation by inverting the correlation matrix, leading
to complexity O(ND#4)

- Better 1dea 1s to do this incrementally, using the result of

previous step to bootstrap

 This 1s known as incremental LLSE, which can be
solved similarly as recursive LLSE using dynamic
programming and matrix inverse lemma



Incremental LLSE

« Old data matrix X and correlation matrix XXT

X

)’ZT

1 corresponding to the evaluation of additional degree
monomial

_ New data matrix X = < > , where the new vector 1s N x

- New correlation matrix
~ o X Xx' Xx
XX = T %)=

- We need to compute (XX")~!, can we use the result we
already have for (XX7)~1?



Block matrix inversion lemma

A B
C D

define D’s Schur complement as D =A — BD™!C, then
we can show that

=g ") (5 5) (o 1)

» Then 1t 1s easy to show that

M—1: 1 O l/j_l O i —BD_l
—D7C 1 o D!/ \0 I

+ Special case, when D =d, B =x, C =xT, we have

M_1=< I 0> <(A—xxT/d)-1 0\ (I —x/d
—x'ld 1 0 1/d) \O 1

. (G1ven a block matrix M = < > , 1 D 1s 1nvertible,



Block matrix inversion lemma
- Using matrix inversion lemma,

1T A—1
A—xxl/d)y = Al 4 A XA
d—xTA-1x
then

—1 A lxxTA!
et < ! o> (A pAAL g ) <1 —x/d)

—1,...T -1
A—l + A" xx"A O

d—xTA-lx <I —)C/d)
AT /4| \0 1

(d—xTA1lx)
A + A xxTAl —A~lx
—xTA-1x  (d—xTA lx)
N —xTAl 1

(d—xTA1lx) d—xTA-1x



Incremental LLSE

- Computing

_1 . XD hx(xx)™! —(XX"H)~1x
R (XX ) T d—xT(XXT)1x (d — xT(XXT)~1x) Xy
W =
—xT(Xx7)"! ! iy
(d — xT(XXT)~1x) d—xT(XXT)1x
T\—1v=
. After simplification we have W = (W T wo(XX7) Xx> :
Wo

T XTw - y)
Iy =T XT(XX)-1Xx
- 1nterpretation: wo = 0 1f XTw - y =0, 1.¢., the previous

model 1s enough to get perfect prediction on the data,
so no need to add any further new components

where wy =



Cross-validation

» Cross-validation 1s used to avoid
any potential bias in the training- 2
validation segmentation :

- k-fold cross-validation: equally 20%
segment training dataset to k S - .

parts, then train on any k-1 parts and _

test the error on the remaining part 5-fold cross-validation

» For training single model, choose the best model out of the
k-fold estimates

- For model selection, find a model family that gives the
smallest average k-fold training losses

+ Special case: k = N, known as the leave-one-out (LOO)
cross-validation

* In the case of LLSE, LOO can be computed in closed form



Matrix inversion lemma

- Woodsbury 1dentity: when A and D are invertible
(A+BDCH ' =A"1—-A-lc(D~ '+ cA~'BT)~"1BTA~!
* Proof: multiply the matrix on both sides
- 1mportant special case
- B=C=z, a vector, D=I
A+zzD) T =A@ 2zTADH /(1 +2TA 1)
- B=-C=z, a vector, D=1
A-zzH)T=A"T+@A@2Z"A /(1 -7"A 1y
- caching A-! and computing the imnversion recursively,

typical inversion will take O(n3), while this special
case 1t 1s O(n)



Correlation matrix

« Data matriX | | |

X=|x x - xy
| |

. : ' T _ T T T
Correlation matrix  xx7 = XX 4 X0+ e+ XXy

- Inverse of correlation matrix when adding x
XX~ et (xx)!
1 +xT(XXT)~1x

- Inverse of correlation matrix when removing x

XXT 4+ xxDH= = (xxH~! -

XX xxT(xxh)=!
1 —xIT(XXT)~1x

XXT —xxD)=l = (XX~ +



Review of over-complete LLSE

- LLSE objective min,, ||y — X w||?
+ Solution (over-complete) w = (XX7)~'Xy
+ LS Error at optimum y’y — Xy)'(XX)) "Xy

- To prove: the prediction (IlN — XT(XXDH)~1X)y
matrix A = (Iy — X (XX")~1X)y
1s idempotent, 1.e., AA=A, so the LS error

vy - XTxxH 1) a1, - Xx'(xx")~1x)y
becomes y'y— Xy)(XXH)~ Xy



LOO for LLSE

- Each LOOQO pass corresponds to the removal of a
particular data point from the data matrix, so
correspondingly we can compute the updated parameter
and error using matrix inversion lemma

- Parameter
W= XX" - xixiT ~1(Xy — ViX;)

XX (Xx")!
<(XXT)—1 + ( 1 _)XZT)zl;;;((T)_lx)i >(Xy — yi'xi)

T
XiW—=Y;

+ XxXH=1y.
1—xl-T(XXT)—1xl-( )



LOO for LLSE

+ The prediction on the single data point that 1s left out 1s

T
Xiw—y:

T A T I I T\—1
—xw=y.—x | w+ XX") x;
TR WE AT ( | T XXy, ) >

xiTW — ) 1
=y, — xIw — x (XX,
1 — xT(XXT)~1x,
Yi— xiTW

T — AT (XXT) 1,

- So LSE loss on the single data point that is left out 1s
(v = % w)*

(1 = x/(XXT)~1x)?




Overall computation complexity

- Instead of inverting N matrices of dimension m x m,
which will have a time complexity of O(Nm3), the LOO
algorithm can compute the imnverse of the overall
correlation matrix once and reuse it for all LOO objective
computation, which leaves a time complexity of
O(Nm+m3)

- Averaging LOO LSE loss can be used to choose from
different model families, e.g., when fitting data, this will
be polynomials of different degrees



Summary

- Incremental LLSE model selection based on LOO error
- Foreachdegreed=1, ..., D:

- Compute optimal parameter using incremental
LLSE wq

+ Compute LOO error using wqg

- Select the optimal model with the minimum LOO error



