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Learning paradigms 
• Batch vs. online learning 

• batch learning: training data given at a batch 
• online learning: training data given continuously



Recursive LLSE
• So far we have assumed we get all the data (xi,yi) at the 

same time — this is known as the batch learning 
• Many practical cases (e.g., predicting stock prices, user 

preferences, click through data, etc) we are not able to 
access all the training data because 
• The total dataset is too large to load into the memory 

at the same time  
• The data points are coming in a streaming manner, and 

we cannot have the whole dataset 
• We need to consider a faster algorithm 

• This is known as the recursive LLSE algorithm



Matrix inversion lemma
• Woodsbury identity: when A and D are invertible 

• Proof: multiply the matrix on both sides 
• important special case  

• B=C=z, a vector, D=I 

• B=-C=z, a vector, D=I 

• caching A-1 and computing the inversion recursively, 
typical inversion will take O(n3), while this special 
case it is O(n)

(A + zzT)−1 = A−1 − (A−1zzT A−1)/(1 + zT A−1z)

(A − zzT)−1 = A−1 + (A−1zzT A−1)/(1 − zT A−1z)

(A + BDCT)−1 = A−1 − A−1C(D−1 + CA−1BT)−1BT A−1



Correlation matrix
• Data matrix 

• Correlation matrix 
• Inverse of correlation matrix when adding x  

• Inverse of correlation matrix when removing x

X =
| | |
x1 x2 ⋯ xN

| | |

XXT = x1xT
1 + x2xT

2 + ⋯ + xNxT
N

(XXT + xxT)−1 = (XXT)−1 −
(XXT)−1xxT(XXT)−1

1 + xT(XXT)−1x

(XXT − xxT)−1 = (XXT)−1 +
(XXT)−1xxT(XXT)−1

1 − xT(XXT)−1x



Review of over-complete LLSE
• LLSE objective  

• Solution (over-complete)   
• LS Error at optimum 

• To prove: the prediction  
matrix                                       
is idempotent, i.e., AA = A, so the LS error  
 
 
becomes    

(IN − XT(XXT)−1X)y
A = (IN − XT(XXT)−1X)y

yTy − (Xy)T(XXT)−1Xy

minw ∥y − XTw∥2

w = (XXT)−1Xy

yT(IN − XT(XXT)−1X)T(IN − XT(XXT)−1X)y

yT y − (Xy)T(XXT)−1Xy



Recursive LLSE
• Solving the same problem  
• Batch LLSE focus on solving the normal equation 

• For the online setting, when a new datapoint (xtT, yt) is 
received, the normal equation becomes 

• So we can get a solution to the updated parameter as
 

• problem: we have to inverse a matrix every time 

̂p = (XXT + xtxT
t )−1(XTy + ytxt)

minp ∥y − Xp∥2

XT Xp = XTy, p = (XT X)−1XTy

( X
xT

t )
T

( X
xT

t ) ̂p = ( X
xT

t )
T

(y
yt) ⇒ (XXT + xtxT

t ) ̂p = XTy + ytxt



Recursive LLSE
• Recursive normal equation 

• Using matrix inversion lemma 

• Simplifying the two terms we get 
 
 
 
or further combining terms 
• Term on top of the ratio is the prediction error for the 

newly come data point, if it is zero, no update 
• XXT and w are precomputed

ŵ = (XXT + xtxT
t )−1(XTy + ytxt)

(XXT)−1XTy −
(XXT)−1xtxT

t (XXT)−1XTy
1 + xT

t (XXT)−1xt
+yt(XXT)−1xt −

yt(XXT)−1xtxT
t (XXT)−1xt

1 + xT
t (XXT)−1xt

ŵ = (I −
(XXT)−1xtxT

t

1 + xT
t (XXT)−1xt ) w +

yt(XXT)−1xt

1 + xT
t (XXT)−1xt

ŵ = w +
yt − xT

t p
1 + xT

t (XXT)−1xt
(XXT)−1xt



Recursive LLSE
• Loss function update 

• This will be useful for the derivation of the segmented 
LLSE in the following 

• Original LLSE loss  
• Recursive loss  

 
use matrix inversion lemma to update without actually 
inverting the new correlation matrix

e = yTy − (Xy)T(XXT)−1Xy

̂e = yTy + y2
t − (Xy + ytxt)T(XXT + xtxT

t )−1(Xy + ytxt)



Multi-line LLSE
• Fitting multiple lines (or polynomials) to 1D data 
• Assuming  as inputs and  

as the corresponding targets 
• Goal: fit multiple lines to fit the dataset 

• Each extra line introduce a penalty of p

x1 < x2 < ⋯ < xN y1, y2, ⋯, yN



Segmented LLSE
• Also known as the Bellman algorithm 
• Widely used in geography, computer graphics, and image 

processing 
• Basic idea: 

• Fit as many data point as possible using one line 
• Each time a new line is introduced add penalty 
• The algorithm is incremental using dynamic 

programming 
• Balance between data fitting and model complexity



Dynamic programming
• Define function OPT(i) as the cost at step i, as 

         OPT(i) = minj=1:i-1{eji + p + OPT(j-1)} 
• ej,i is the LLSE error fitting a line for points (xj,yj), 

(xj+1,yj+1),…,(xi,yi), which can be easily computed 
from ej,i-1 using the recursive LLSE algorithm 

• p is the penalty of adding one extra line 
• OPT(j-1) is the cost of step j-1 
• OPT(0) = 0, and e1,i + p + OPT(0) = e1,i + p 

corresponds to fitting all data using one line 
• Interpretation: the minimal cost at step i is obtained by 

trying each previous optimal solution, and adding one 
extra line into the system         



Algorithm 
• OPT(0) = 0 
• For i = 1 to N: 

• For j = 1 to i-1: 
• ej,i  ←LLSE error fitting a line for points (xj,yj), 

(xj+1,yj+1),…,(xi,yi) from ej,i-1 using the recursive 
LLSE algorithm 

• OPT(i) = minj=1:i-1{eji + p + OPT(j-1)} 
• Back-tracking the line segment parameters 

• Return OPT(N)



Summary 
• Difference between online and batch learning algorithms 
• Scenarios when online learning is needed 

• Online learning is related with stochastic gradient 
descent method


