## CSI 436/536

# Introduction to Machine Learning 

## Online learning and Recursive LLSE

Professor Siwei Lyu<br>Computer Science<br>University at Albany, State University of New York

## Learning paradigms

- Batch vs. online learning
- batch learning: training data given at a batch
- online learning: training data given continuously



## Recursive LLSE

- So far we have assumed we get all the data $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ at the same time - this is known as the batch learning
- Many practical cases (e.g., predicting stock prices, user preferences, click through data, etc) we are not able to access all the training data because
- The total dataset is too large to load into the memory at the same time
- The data points are coming in a streaming manner, and we cannot have the whole dataset
- We need to consider a faster algorithm
- This is known as the recursive LLSE algorithm


## Matrix inversion lemma

- Woodsbury identity: when A and D are invertible $\left(A+B D C^{T}\right)^{-1}=A^{-1}-A^{-1} C\left(D^{-1}+C A^{-1} B^{T}\right)^{-1} B^{T} A^{-1}$
- Proof: multiply the matrix on both sides
- important special case
- $\mathrm{B}=\mathrm{C}=\mathrm{z}$, a vector, $\mathrm{D}=\mathrm{I}$

$$
\left(A+z z^{T}\right)^{-1}=A^{-1}-\left(A^{-1} z z^{T} A^{-1}\right) /\left(1+z^{T} A^{-1} z\right)
$$

- $\mathrm{B}=-\mathrm{C}=\mathrm{z}$, a vector, $\mathrm{D}=\mathrm{I}$

$$
\left(A-z z^{T}\right)^{-1}=A^{-1}+\left(A^{-1} z z^{T} A^{-1}\right) /\left(1-z^{T} A^{-1} z\right)
$$

- caching $\mathrm{A}^{-1}$ and computing the inversion recursively, typical inversion will take $\mathrm{O}\left(\mathrm{n}^{3}\right)$, while this special case it is $\mathrm{O}(\mathrm{n})$


## Correlation matrix

- Data matrix

$$
X=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
x_{1} & x_{2} & \cdots & x_{N} \\
\mid & \mid & & \mid
\end{array}\right)
$$

- Correlation matrix $X X^{T}=x_{1} x_{1}^{T}+x_{2} x_{2}^{T}+\cdots+x_{N} x_{N}^{T}$
- Inverse of correlation matrix when adding x

$$
\left(X X^{T}+x x^{T}\right)^{-1}=\left(X X^{T}\right)^{-1}-\frac{\left(X X^{T}\right)^{-1} x x^{T}\left(X X^{T}\right)^{-1}}{1+x^{T}\left(X X^{T}\right)^{-1} x}
$$

- Inverse of correlation matrix when removing x

$$
\left(X X^{T}-x x^{T}\right)^{-1}=\left(X X^{T}\right)^{-1}+\frac{\left(X X^{T}\right)^{-1} x x^{T}\left(X X^{T}\right)^{-1}}{1-x^{T}\left(X X^{T}\right)^{-1} x}
$$

## Review of over-complete LLSE

- LLSE objective $\min _{w}\left\|y-X^{T} w\right\|^{2}$
- Solution (over-complete) $w=\left(X X^{T}\right)^{-1} X y$
- LS Error at optimum $y^{T} y-(X y)^{T}\left(X X^{T}\right)^{-1} X y$
- To prove: the prediction $\left(I_{N}-X^{T}\left(X X^{T}\right)^{-1} X\right) y$ matrix $A=\left(I_{N}-X^{T}\left(X X^{T}\right)^{-1} X\right) y$ is idempotent, i.e., $\mathrm{AA}=\mathrm{A}$, so the LS error

$$
y^{T}\left(I_{N}-X^{T}\left(X X^{T}\right)^{-1} X\right)^{T}\left(I_{N}-X^{T}\left(X X^{T}\right)^{-1} X\right) y
$$

becomes $y^{T} y-(X y)^{T}\left(X X^{T}\right)^{-1} X y$

## Recursive LLSE

- Solving the same problem $\min _{p}\|y-X p\|^{2}$
- Batch LLSE focus on solving the normal equation

$$
X^{T} X p=X^{T} y, p=\left(X^{T} X\right)^{-1} X^{T} y
$$

- For the online setting, when a new datapoint $\left(\mathrm{x}_{\mathrm{t}}{ }^{\mathrm{T}}, \mathrm{y}_{\mathrm{t}}\right)$ is received, the normal equation becomes

$$
\binom{X}{x_{t}^{T}}^{T}\binom{X}{x_{t}^{T}} \hat{p}=\binom{X}{x_{t}^{T}}^{T}\binom{y}{y_{t}} \Rightarrow\left(X X^{T}+x_{t} x_{t}^{T}\right) \hat{p}=X^{T} y+y_{t} x_{t}
$$

- So we can get a solution to the updated parameter as

$$
\hat{p}=\left(X X^{T}+x_{t} x_{t}^{T}\right)^{-1}\left(X^{T} y+y_{t} x_{t}\right)
$$

- problem: we have to inverse a matrix every time


## Recursive LLSE

- Recursive normal equation

$$
\hat{w}=\left(X X^{T}+x_{t} x_{t}^{T}\right)^{-1}\left(X^{T} y+y_{t} x_{t}\right)
$$

- Using matrix inversion lemma
$\left(X X^{T}\right)^{-1} X^{T} y-\frac{\left(X X^{T}\right)^{-1} x_{x} x_{t}^{T}\left(X X^{T}\right)^{-1} X^{T} y}{1+x_{t}^{T}\left(X X^{T}\right)^{-1} x_{t}}+y_{t}\left(X X^{T}\right)^{-1} x_{t}-\frac{y_{t}\left(X X^{T}\right)^{-1} x_{x_{1}} x_{t}^{T}\left(X X^{T}\right)^{-1} x_{t}}{1+x_{t}^{T}\left(X X^{T}\right)^{-1} x_{t}}$
- Simplifying the two terms we get

$$
\hat{w}=\left(I-\frac{\left(X X^{T}\right)^{-1} x_{x_{1}} x_{t}^{T}}{1+x_{t}^{T}\left(X X^{T}\right)^{-1} x_{t}}\right) w+\frac{y_{t}\left(X X^{T}\right)^{-1} x_{t}}{1+x_{t}^{T}\left(X X^{T}\right)^{-1} x_{t}}
$$

or further combining terms $\quad \hat{w}=w+\frac{y_{t}-x_{t}^{T} p}{1+x_{t}^{T}\left(X X^{T}\right)^{-1} x_{t}}\left(X X^{T}\right)^{-1} x_{t}$

- Term on top of the ratio is the prediction error for the newly come data point, if it is zero, no update
- $\mathrm{XX}^{\mathrm{T}}$ and w are precomputed


## Recursive LLSE

- Loss function update
- This will be useful for the derivation of the segmented LLSE in the following
- Original LLSE loss $e=y^{T} y-(X y)^{T}\left(X X^{T}\right)^{-1} X y$
- Recursive loss $\hat{e}=y^{T} y+y_{t}^{2}-\left(X y+y_{t} x_{t}\right)^{T}\left(X X^{T}+x_{t} x_{t}^{T}\right)^{-1}\left(X y+y_{t} x_{t}\right)$ use matrix inversion lemma to update without actually inverting the new correlation matrix


## Multi-line LLSE

- Fitting multiple lines (or polynomials) to 1D data
- Assuming $x_{1}<x_{2}<\cdots<x_{N}$ as inputs and $y_{1}, y_{2}, \cdots, y_{N}$ as the corresponding targets
- Goal: fit multiple lines to fit the dataset
- Each extra line introduce a penalty of p



## Segmented LLSE

- Also known as the Bellman algorithm
- Widely used in geography, computer graphics, and image processing
- Basic idea:
- Fit as many data point as possible using one line
- Each time a new line is introduced add penalty
- The algorithm is incremental using dynamic programming
- Balance between data fitting and model complexity


## Dynamic programming

- Define function OPT(i) as the cost at step i , as $\operatorname{OPT}(\mathrm{i})=\min _{\mathrm{j}=1 \mathrm{i}-1}\left\{\mathrm{e}_{\mathrm{ji}}+\mathrm{p}+\operatorname{OPT}(\mathrm{j}-1)\right\}$
- $\mathrm{e}_{\mathrm{j}, \mathrm{i}}$ is the LLSE error fitting a line for points $\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}\right)$, $\left(\mathrm{x}_{\mathrm{j}+1}, \mathrm{y}_{\mathrm{j}+1}\right), \ldots,\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$, which can be easily computed from $\mathrm{e}_{\mathrm{j}, \mathrm{i}-1}$ using the recursive LLSE algorithm
- p is the penalty of adding one extra line
- $\operatorname{OPT}(\mathrm{j}-1)$ is the cost of step $\mathrm{j}-1$
- $\operatorname{OPT}(0)=0$, and $\mathrm{e}_{1, \mathrm{i}}+\mathrm{p}+\mathrm{OPT}(0)=\mathrm{e}_{1, \mathrm{i}}+\mathrm{p}$ corresponds to fitting all data using one line
- Interpretation: the minimal cost at step i is obtained by trying each previous optimal solution, and adding one extra line into the system


## Algorithm

- $\operatorname{OPT}(0)=0$
- For $\mathrm{i}=1$ to N :
- For $\mathrm{j}=1$ to $\mathrm{i}-1$ :
- $\mathrm{e}_{\mathrm{j}, \mathrm{i}} \leftarrow$ LLSE error fitting a line for points ( $\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}$ ), $\left(\mathrm{x}_{\mathrm{j}+1}, \mathrm{y}_{\mathrm{j}+1}\right), \ldots,\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ from $\mathrm{e}_{\mathrm{j}, \mathrm{i}-1}$ using the recursive LLSE algorithm
- $\operatorname{OPT}(\mathrm{i})=\min _{\mathrm{j}=1 \mathrm{i} \mathrm{i}-1}\left\{\mathrm{e}_{\mathrm{ji}}+\mathrm{p}+\mathrm{OPT}(\mathrm{j}-1)\right\}$
- Back-tracking the line segment parameters
- Return OPT(N)


## Summary

- Difference between online and batch learning algorithms
- Scenarios when online learning is needed
- Online learning is related with stochastic gradient descent method

