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Learning paradigms

- Batch vs. online learning

- batch learning: training data given at a batch

- online learning: training data given continuously
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Recursive LLSE

So far we have assumed we get all the data (xi,yi) at the
same time — this 1s known as the batch learning

Many practical cases (e.g., predicting stock prices, user
preferences, click through data, etc) we are not able to
access all the training data because

- The total dataset 1s too large to load into the memory
at the same time

» The data points are coming in a streaming manner, and
we cannot have the whole dataset

- We need to consider a faster algorithm

» This 1s known as the recursive LLSE algorithm



Matrix inversion lemma

- Woodsbury 1dentity: when A and D are invertible
(A+BDCH ' =A"1—-A-lc(D~ '+ cA~'BT)~"1BTA~!
* Proof: multiply the matrix on both sides
- 1mportant special case
- B=C=z, a vector, D=I
A+zzD) T =A@ 2zTADH /(1 +2TA 1)
- B=-C=z, a vector, D=1
A-zzH)T=A"T+@A@2Z"A /(1 -7"A 1y
- caching A-! and computing the imnversion recursively,

typical inversion will take O(n3), while this special
case 1t 1s O(n)



Correlation matrix

« Data matriX | | |

X=|x x - xy
| |

. : ' T _ T T T
Correlation matrix  xx7 = XX 4 X0+ e+ XXy

- Inverse of correlation matrix when adding x
XX~ et (xx)!
1 +xT(XXT)~1x

- Inverse of correlation matrix when removing x

XXT 4+ xxDH= = (xxH~! -

XX xxT(xxh)=!
1 —xIT(XXT)~1x

XXT —xxD)=l = (XX~ +



Review of over-complete LLSE

- LLSE objective min,, ||y — X w||?
+ Solution (over-complete) w = (XX7)~'Xy
+ LS Error at optimum y’y — Xy)'(XX)) "Xy

- To prove: the prediction (I, — X TxxhH=1X)y
matrix A = (Iy — X' (XXT")~1X)y
1s idempotent, 1.e., AA=A, so the LS error

vy - XTxxH 1) a1, - Xx'(xx")~1x)y
becomes y'y — (Xy) (XX ~1Xy



Recursive LLSE

- Solving the same problem  min, ||y — Xp||*
- Batch LLSE focus on solving the normal equation
X'Xxp =X"y,p=X"X)"'Xx"y

» For the online setting, when a new datapoint (xT, yt) 1s
received, the normal equation becomes

X\ /x\ X\ /y . o
) ) p = o7 v, > XX +xx )p=X'y+yx,
t 4 4

- So we can get a solution to the updated parameter as
p= (XXT + xtxtT)_l(XTy + VX))

- problem: we have to inverse a matrix every time



Recursive LLSE

Recursive normal equation
W= XX +xxDH) 1(XTy + yx)

- Using matrix inversion lemma
XX xxl (xxT)~1xTy
1+ xI(XXT)~1x,
Simplifying the two terms we get

A ( XXT)"LxxT > y,(XXT)~1x,
w=1|1 w +

B y(XX T) - 1xtxtT(XX T) - 1xt

xxT)~'xTy —
1 + xI(XXT)~lx,

+y(XXT)~1x,

1+ aT(XXT) 1y, 1 + xT(XXT)~1x,

+ Vi — szp

o L+ (XXT) "y,

+ Term on top of the ratio is the prediction error for the
newly come data point, 1f it 1s zero, no update

or further combining terms Wo=w XX Ix,

- XXT and w are precomputed



Recursive LLSE

- Loss function update

» This will be useful for the derivation of the segmented
LLSE 1n the following

+ Original LLSE loss e = y'y — (Xy)/(XX")~'Xy

- Recursive loss
e =vyly+y>— Xy +yx)!XXT + xx) 1 (Xy + y,x)
use matrix iversion lemma to update without actually
inverting the new correlation matrix



Multi-line LLSE

- Fitting multiple lines (or polynomials) to 1D data

+ Assuming x; < x, < -+ < xy as mputs and yy, y, =+, Yy
as the corresponding targets

» Goal: fit multiple lines to fit the dataset

- Each extra line introduce a penalty of p
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Segmented LLSE

- Also known as the

- Widely used 1n geography, computer graphics, and image
processing

- Basic idea:
- Fit as many data point as possible using one line
-+ Each time a new line 1s introduced add penalty

» The algorithm 1s incremental using dynamic
programming

- Balance between data fitting and model complexity



Dynamic programming
+  Define function OPT(1) as the cost at step 1, as
OPT(i) = minj-r:i-1{eji + p + OPT(-1)}

» ¢j,i1s the LLSE error fitting a line for points (X;,y;),
(Xj+1,¥j+1),- . .,(Xi,yi), which can be easily computed
from e;ji-1 using the recursive LLSE algorithm

» p 1s the penalty of adding one extra line
« OPT(3-1) 1s the cost of step j-1

* OPT(0)=0, and e1,i +p + OPT(0) =e1i +p
corresponds to fitting all data using one line
- Interpretation: the minimal cost at step 1 1s obtained by

trying each previous optimal solution, and adding one
extra line into the system



Algorithm

- OPT(0)=0
- Fori1=1toN:
» Forj=1to1-1:

» ¢ji «—LLSE error fitting a line for points (X;,y;),
(Xj+1,¥j+1),. . .,(Xi,yi) from e;i.1 using the recursive
LLSE algorithm

- OPT(1) = minj=r:i-1{eji + p + OPT(-1)}
- Back-tracking the line segment parameters
+ Return OPT(N)




Summary

- Difference between online and batch learning algorithms
* Scenarios when online learning 1s needed

* Online learning 1s related with stochastic gradient
descent method



