
CSI 436/536
Introduction to Machine Learning

Professor Siwei Lyu
Computer Science

University at Albany, State University of New York

Online learning and Recursive LLSE

Learning paradigms
• Batch vs. online learning

• batch learning: training data given at a batch
• online learning: training data given continuously

Recursive LLSE
• So far we have assumed we get all the data (xi,yi) at the

same time — this is known as the batch learning
• Many practical cases (e.g., predicting stock prices, user

preferences, click through data, etc) we are not able to
access all the training data because
• The total dataset is too large to load into the memory

at the same time
• The data points are coming in a streaming manner, and

we cannot have the whole dataset
• We need to consider a faster algorithm

• This is known as the recursive LLSE algorithm

Matrix inversion lemma
• Woodsbury identity: when A and D are invertible

• Proof: multiply the matrix on both sides
• important special case

• B=C=z, a vector, D=I

• B=-C=z, a vector, D=I

• caching A-1 and computing the inversion recursively,
typical inversion will take O(n3), while this special
case it is O(n)

(A + zzT)−1 = A−1 − (A−1zzT A−1)/(1 + zT A−1z)

(A − zzT)−1 = A−1 + (A−1zzT A−1)/(1 − zT A−1z)

(A + BDCT)−1 = A−1 − A−1C(D−1 + CA−1BT)−1BT A−1

Correlation matrix
• Data matrix

• Correlation matrix
• Inverse of correlation matrix when adding x

• Inverse of correlation matrix when removing x

X =
| | |
x1 x2 ⋯ xN

| | |

XXT = x1xT
1 + x2xT

2 + ⋯ + xNxT
N

(XXT + xxT)−1 = (XXT)−1 −
(XXT)−1xxT(XXT)−1

1 + xT(XXT)−1x

(XXT − xxT)−1 = (XXT)−1 +
(XXT)−1xxT(XXT)−1

1 − xT(XXT)−1x

Review of over-complete LLSE
• LLSE objective

• Solution (over-complete)
• LS Error at optimum

• To prove: the prediction
matrix
is idempotent, i.e., AA = A, so the LS error

becomes

(IN − XT(XXT)−1X)y
A = (IN − XT(XXT)−1X)y

yTy − (Xy)T(XXT)−1Xy

minw ∥y − XTw∥2

w = (XXT)−1Xy

yT(IN − XT(XXT)−1X)T(IN − XT(XXT)−1X)y

yT y − (Xy)T(XXT)−1Xy

Recursive LLSE
• Solving the same problem
• Batch LLSE focus on solving the normal equation

• For the online setting, when a new datapoint (xtT, yt) is
received, the normal equation becomes

• So we can get a solution to the updated parameter as

• problem: we have to inverse a matrix every time

̂p = (XXT + xtxT
t)−1(XTy + ytxt)

minp ∥y − Xp∥2

XT Xp = XTy, p = (XT X)−1XTy

(X
xT

t)
T

(X
xT

t) ̂p = (X
xT

t)
T

(y
yt) ⇒ (XXT + xtxT

t) ̂p = XTy + ytxt

Recursive LLSE
• Recursive normal equation

• Using matrix inversion lemma

• Simplifying the two terms we get

or further combining terms
• Term on top of the ratio is the prediction error for the

newly come data point, if it is zero, no update
• XXT and w are precomputed

ŵ = (XXT + xtxT
t)−1(XTy + ytxt)

(XXT)−1XTy −
(XXT)−1xtxT

t (XXT)−1XTy
1 + xT

t (XXT)−1xt
+yt(XXT)−1xt −

yt(XXT)−1xtxT
t (XXT)−1xt

1 + xT
t (XXT)−1xt

ŵ = (I −
(XXT)−1xtxT

t

1 + xT
t (XXT)−1xt) w +

yt(XXT)−1xt

1 + xT
t (XXT)−1xt

ŵ = w +
yt − xT

t p
1 + xT

t (XXT)−1xt
(XXT)−1xt

Recursive LLSE
• Loss function update

• This will be useful for the derivation of the segmented
LLSE in the following

• Original LLSE loss
• Recursive loss

use matrix inversion lemma to update without actually
inverting the new correlation matrix

e = yTy − (Xy)T(XXT)−1Xy

̂e = yTy + y2
t − (Xy + ytxt)T(XXT + xtxT

t)−1(Xy + ytxt)

Multi-line LLSE
• Fitting multiple lines (or polynomials) to 1D data
• Assuming as inputs and

as the corresponding targets
• Goal: fit multiple lines to fit the dataset

• Each extra line introduce a penalty of p

x1 < x2 < ⋯ < xN y1, y2, ⋯, yN

Segmented LLSE
• Also known as the Bellman algorithm
• Widely used in geography, computer graphics, and image

processing
• Basic idea:

• Fit as many data point as possible using one line
• Each time a new line is introduced add penalty
• The algorithm is incremental using dynamic

programming
• Balance between data fitting and model complexity

Dynamic programming
• Define function OPT(i) as the cost at step i, as

 OPT(i) = minj=1:i-1{eji + p + OPT(j-1)}
• ej,i is the LLSE error fitting a line for points (xj,yj),

(xj+1,yj+1),…,(xi,yi), which can be easily computed
from ej,i-1 using the recursive LLSE algorithm

• p is the penalty of adding one extra line
• OPT(j-1) is the cost of step j-1
• OPT(0) = 0, and e1,i + p + OPT(0) = e1,i + p

corresponds to fitting all data using one line
• Interpretation: the minimal cost at step i is obtained by

trying each previous optimal solution, and adding one
extra line into the system

Algorithm
• OPT(0) = 0
• For i = 1 to N:

• For j = 1 to i-1:
• ej,i ←LLSE error fitting a line for points (xj,yj),

(xj+1,yj+1),…,(xi,yi) from ej,i-1 using the recursive
LLSE algorithm

• OPT(i) = minj=1:i-1{eji + p + OPT(j-1)}
• Back-tracking the line segment parameters

• Return OPT(N)

Summary
• Difference between online and batch learning algorithms
• Scenarios when online learning is needed

• Online learning is related with stochastic gradient
descent method

