

CSI 436/536 Introduction to Machine Learning

LLSE Ranking

Professor Siwei Lyu Computer Science University at Albany, State University of New York

Pairwise ranking problem

- Based on paper "A graph interpretation of the least squares ranking method" by Laszalo Csato
- Problem of ranking
 - Get n items and we would like to rank them based on some pairwise comparisons, not all pairs are compared

CSRankings: Computer Science Rankings

Problem setting

- Objective function $\min_r \sum_{ij} m_{ij} (r_i r_j q_{ij})^2$
 - $q_{ij} = -q_{ji}$, for items i and j, as their comparative scores, we denote the set of all such pairs as S.
 - $m_{ij} = 1$ if $(i,j) \in S$, and 0 if $(i,j) \notin S$.
 - If there is no comparison, don't care the error
 - r_i is the rank of the ith item
 - We denote $M_{ij} = qij$ if $(i,j) \in S$, and 0 if $(i,j) \notin S$.
 - Matrix M is anti-symmetric, i.e, $M^T = -M$

Derivation

- Expand the objective function $\sum_{ij} m_{ij} (r_i - r_j - q_{ij})^2 = \sum_{ij} m_{ij} (r_i - r_j)^2 - 2 \sum_{ij} M_{ij} (r_i - r_j)$
 - First term

$$\sum_{i,j} m_{ij}(r_i - r_j)^2 = \sum_{ij} m_{ij}r_i^2 - 2\sum_{ij} m_{ij}r_ir_j + \sum_{ij} m_{ij}r_j^2 = 2\sum_i r_i^2 \sum_j m_{ij} - 2\sum_{ij} m_{ij}r_ir_j$$

- Introduce a diagonal matrix D with $D_{ii} = \sum_{i} m_{ij}$
- Matrix $A_{ij} = m_{ij}$
- Then this becomes $2r^T(D-A)r$
- The second term (using anti-symmetry of M) $2\sum_{ij} M_{ij}(r_i - r_j) = 2\sum_{ij} M_{ij}r_i - 2\sum_{ij} M_{ij}r_j = 2(1^T M^T r - 1^T M r) = 4 \cdot 1^T M^T r$
- The objective function becomes $2r^T(D-A)r 4 \cdot 1^T M^T r$

LLSE ranking algorithm

- Minimizing $2r^T(D A)r 4 \cdot 1^T M^T r$, ignoring constants, we get solution given by (D A)r M1 = 0
- The relative ranking vector r is given by solving (D A)r = M1
- We can derive a linear ranking function $f(x) = w^T x$, the corresponding problem becomes $\min_w \sum_{ij} m_{ij} (w^T x_i w^T x_j q_{ij})^2$
- The vector version of the objective is then $\min_{w} 2w^{T}X(D - A)X^{T}w - 4w^{T}XM1$, and the solution is given by $X(D - A)X^{T}w = XM1$
 - This is known as LLSE ranking solution

Graph interpretation

- Construct a graph G with each data point a node
- If there is a comparison between node (i,j) then we put a pair of directed edges between them
- The weights on the edges are given by q_{ij}
 - Matrix A is the **adjacency matrix** of this graph
 - Every weighted undirected graph is determined uniquely by a matrix 5
- Matrix L = D-A is the **graph Laplacian** of G
- There is an intimate relation between graph theory and linear algebra
 - We seem more of this for spectral clustering

