CSI 436/536
 Introduction to Machine Learning

LLSE Ranking

Professor Siwei Lyu
Computer Science
University at Albany, State University of New York

Pairwise ranking problem

－Based on paper＂A graph interpretation of the least squares ranking method＂by Laszalo Csato
－Problem of ranking
－Get n items and we would like to rank them based on some pairwise comparisons，not all pairs are compared

CSRankings：Computer Science Rankings

```
CSRankings is a metrics-based ranking of top computer science institutions around the world. Click on a triangle ( ) to expand areas or institutions. Click on a name to go t
faculty member's home page. Click on a pie (the O after a name or institution) to see their publication profile as a pie chart. Click on a Google Scholar icon ($) to see
publications, and click on the DBLP logo ( ) to go to a DBLP entry.
Applying to grad school? Read this first.
Rank institutions in the USA 全 by publications from 2010 甾 to 2020 人
\begin{tabular}{|c|c|c|c|c|c|}
\hline All Areas［offlon］ & & 2 & －Massachusetts Institute of Technology 0 & 12.3 & 88 \\
\hline Al［off I on］ & & 3 & －Univ．of Illinois at Urbana－Champaign 0 & 11.2 & 96 \\
\hline －Artificial intelligence & \(\checkmark\) & 4 & －Stanford University 0 & 10.5 & 63 \\
\hline －Computer vision & \(\nabla\) & 5 & －University of California－Berkeley 0 & 9.5 & 84 \\
\hline －Natural language processing & \(\stackrel{\square}{*}\) & 6 & －University of Washington \(\bigcirc\) & 9.2 & 66 \\
\hline －The Web \＆information retrieval & \(\nabla\) & 7 & －Cornell University 0 & 9.0 & 74 \\
\hline Systems［off I on］ & & 8 & －University of Michigan 0 & 8.8 & 76 \\
\hline －Computer architecture & \(\nabla\) & 9 & －University of California－San Diego 0 & 8.3 & 67 \\
\hline －Computer networks & 0 & 10 & －University of Maryland－College Park O & 7.4 & 67 \\
\hline \begin{tabular}{l}
－Computer security \\
－Databases
\end{tabular} & \(\stackrel{\rightharpoonup}{*}\) & 11 & －Georgia Institute of Technology 0 & 7.2 & 87 \\
\hline －Design automation & 0 & 12 & －University of Wisconsin－Madison \(\bigcirc\) & 6.5 & 52 \\
\hline －Embedded \＆real－time systems & \(\nabla\) & 13 & －Columbia University O & 6.3 & 49 \\
\hline \begin{tabular}{l}
－High－performance computing \\
－Mobile computing
\end{tabular} & 0 & 14 & －Northeastern University 0 & 6.1 & 66 \\
\hline
\end{tabular}
```


Problem setting

- Objective function $\min _{r} \sum_{i j} m_{i j}\left(r_{i}-r_{j}-q_{i j}\right)^{2}$
- $q_{i j}=-q_{j i}$, for items i and j, as their comparative scores, we denote the set of all such pairs as S.
- $\mathrm{m}_{\mathrm{ij}}=1$ if $(\mathrm{i}, \mathrm{j}) \in \mathrm{S}$, and 0 if $(\mathrm{i}, \mathrm{j}) \notin \mathrm{S}$.
- If there is no comparison, don't care the error
- r_{i} is the rank of the ith item
- We denote $\mathrm{M}_{\mathrm{ij}}=\mathrm{qij}$ if $(\mathrm{i}, \mathrm{j}) \in \mathrm{S}$, and 0 if $(\mathrm{i}, \mathrm{j}) \notin \mathrm{S}$.
- Matrix M is anti-symmetric, i.e, $\mathrm{M}^{\mathrm{T}}=-\mathrm{M}$

Derivation

- Expand the objective function

$$
\sum_{i j} m_{i j}\left(r_{i}-r_{j}-q_{i j}\right)^{2}=\sum_{i j} m_{i j}\left(r_{i}-r_{j}\right)^{2}-2 \sum_{i j} M_{i j}\left(r_{i}-r_{j}\right)
$$

- First term

$$
\sum_{i, j} m_{i j}\left(r_{i}-r_{j}\right)^{2}=\sum_{i j} m_{i j} r_{i}^{2}-2 \sum_{i j} m_{i j} r_{i} r_{j}+\sum_{i j} m_{i j} r_{j}^{2}=2 \sum_{i} r_{i}^{2} \sum_{j} m_{i j}-2 \sum_{i j} m_{i j} r_{i} r_{j}
$$

- Introduce a diagonal matrix D with $D_{i i}=\sum_{j} m_{i j}$
- Matrix $\mathrm{A}_{\mathrm{ij}}=\mathrm{m}_{\mathrm{ij}}$
- Then this becomes $2 r^{T}(D-A) r$
- The second term (using anti-symmetry of M)

$$
2 \sum_{i j} M_{i j}\left(r_{i}-r_{j}\right)=2 \sum_{i j} M_{i j} r_{i}-2 \sum_{i j} M_{i j} r_{j}=2\left(1^{T} M^{T} r-1^{T} M r\right)=4 \cdot 1^{T} M^{T} r
$$

- The objective function becomes $2 r^{T}(D-A) r-4 \cdot 1^{T} M^{T} r$

LLSE ranking algorithm

- Minimizing $2 r^{T}(D-A) r-4 \cdot 1^{T} M^{T} r$, ignoring constants, we get solution given by $(D-A) r-M 1=0$
- The relative ranking vector r is given by solving $(D-A) r=M 1$
- We can derive a linear ranking function $\mathrm{f}(\mathrm{x})=\mathrm{w}^{\mathrm{T}} \mathrm{x}$, the corresponding problem becomes $\min _{w} \sum_{i j} m_{i j}\left(w^{T} x_{i}-w^{T} x_{j}-q_{i j}\right)^{2}$
- The vector version of the objective is then $\min 2 w^{T} X(D-A) X^{T} w-4 w^{T} X M 1$, and the solution is w
given by $X(D-A) X^{T} w=X M 1$
- This is known as LLSE ranking solution

Graph interpretation

- Construct a graph G with each data point a node
- If there is a comparison between node (i, j) then we put a pair of directed edges between them
- The weights on the edges are given by q_{ij}
- Matrix A is the adjacency matrix of this graph
- Every weighted undirected graph is determined uniquely by a matrix
- Matrix L = D-A is the graph Laplacian of G
- There is an intimate relation between graph theory and linear algebra

- We seem more of this for spectral clustering

