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When over-fitting always happens

+ For an under-complete least squares problem
2

Mminw || N8 =

- we have infinite number of optimal solutions

- a similar situation: given two numbers a and b, and we
know that a - b = 6, determine a,b

- 1ll-posed problem has too many solutions, and
overfitting always occurs in such problems

- In the context of machine learning, this means that there
are multiple (sometimes infinite number of) models that
can fit the data



Principle of Parsimony

+  When multiple model can fit the data equally well,
choose the model

« Also known as Occam’s razor
- Complexity 1s measured for different model

- For linear models like f, (x) = w’ g(x), the complexity

1s related with the L2 norm of w based on the learning
theory

- Simpler model may also mean w has many zeros, 1.¢.,
1t 1S sparse

+ The 1dea 1s to put a complexity term in the learning

objective, together with the loss function
= +



ridge regression

+ Solution: augment the least squares problem with an extra
term as
- T, 112 2
min,,, ||y — X" wl|* + A[|wl|

- this form of least squares problem is known as ridge
regression

« M|w||21s known as the Tikhonov regularizer

- A controls the trade-off between the error and the
regularizer

- solution given by linear equation
w=XX"+ D)Xy



Regularization

- Numerically, regularization stabilizes the solution to the
normal equation XXTw = Xy

- Recall that 1f X 1s not full ranked, then the correlation
matrix XXT1s not invertible

- however, note that XXT+ Al is always invertible for A >
0, so we get a stabilized solution to the normal equation

» So this 1s also known as stabilization theory

- Unlike penalty method, where the penalty has no direct
relation with the model parameter, regularizer 1s directly
implied on the model parameter w

* We can also choose other types of regularizer, such as L1
norm



Equivalence with norm constraints

+ Consider the following optimization problem
min,, [ly = X"wll%, st [wl®=p

« This problem 1s equivalent with the ridge regression
objective function, where 4 1s the corresponding
Lagrangian multiplier

- So regularization 1s essentially the same as putting
constraints on the 1ll-posed problem

- Geometric picture

A parabola intersecting with a unit A
ball w.r.t. L2 norm for w




Choosing the weight on regularizer

+ Small A puts more weights on the error term, 1f A = 0,
reduces back to ordinary LLSE

- Large A penalizes larger regularizer term, 1f A = oo, what
is the solution to the problem

min,, [y = X" wl|* + || w||*
- In practice, it 1s a hyper-parameter that can be chosen

with cross-validation

- A needs to be larger than the smallest negative eigenvalue
to work



LASSO

Sometimes out of the infinite number of possible
solutions to an 1ll-posed problem we prefer ones

- Sparseness 1s related with the number of zero elements
In a vector

* L0 norm 1s defined as the number of non-zero
clements 1n a vector (is 1t a norm?)

Sparsity 1s useful to 1dentify a small set of factors that
contribute to the observations

- In practice, it is usually replaced with L1 norm



sparsity regression (LASSO)

+ we can also choose /1 norm as the regularizer
.1 5
min 2 ly — AX[ + A[X]

- however, this objective function 1s

- we cannot use the previous method (differentiation
based) to solve 1t

- many methods have been proposed, a very active
research area and we will focus on one simple and
efficient method



LASSO regression

+ we can also choose /1 norm as the regularizer

.1
min 5 ly — Ax||3 + Al x|}

* using /1 norm encourages sparsity




LASSO

Original objective function:
o1 5
min 2 [ly — Ax|}3 + x|l
Introduce new variable:

. 1
ming 5[y — Ax|I3 + A1z
st. XxX=z.
New objective function:

] 2 b 2
min Sy — Ax|lz + 511z — x|z + Azl

As 3 — oo, the solution to the objective function becomes the
solution to the original problem.

 the new term 1s known as the , 1.e., 1t penalizes
solutions that violate the equality constraint



block coordinate descent

- alternating between optimizing X and z
Optimize
min 2 ly — Ax|3 + 21z — x| + Alz]
X,Z 279 2 1

- algorithm 1s guaranteed to converge

- this 1s a convex problem so converge globally
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Solving the sub-problems
* The x sub-problem

min—||y — Ax||? + =||x — z||?
zh | 2” |

X

» This can be solved with a ridge regression problem

. N P .
min—||y — AX|? + =||%||?
! JW | 2HH

where ¥ =x—z7=y—Az
» The z sub-problem

Imm?k—xw+lkm
<
this problem separates 1n individual variables

solve individual 1D problems | ,
mma(z—x) + 4| z]



soft thresholding

» solve 1D problem

miné(z—x)2+ | z|
z 2

« z> 0, minimize 0.5p(z-x)? + Az, z
= max(x - A/B,0)

+ <0, minimize 0.5B(z-x)? - Az, z z |
= min(x+\/3,0)

- z=0, do nothing

+ 7 =max(x - MB,0) + min(x+\/B,0) B |

- creating a “dead zone between -A/P3 M
and A/fB

- compare to hard thresholding




Overall algorithm

Optimize

1 I5;
min o ly — AX[3 + 12— x| + Az]

X,z

Repeat until convergence:

@ lterate between two steps until convergence:

e Optimize Xx: ridge regression. jasso

o Optimize z: soft-thresholding. ™[
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