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When over-fitting always happens
• For an under-complete least squares problem 

• we have infinite number of optimal solutions 
• a similar situation: given two numbers a and b, and we 

know that a · b = 6, determine a,b 
• ill-posed problem has too many solutions, and 

overfitting always occurs in such problems 
• In the context of machine learning, this means that there 

are multiple (sometimes infinite number of) models that 
can fit the data
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Principle of Parsimony 
• When multiple model can fit the data equally well, 

choose the simplest model 
• Also known as Occam’s razor  

• Complexity is measured for different model 
• For linear models like , the complexity 

is related with the L2 norm of w based on the learning 
theory  

• Simpler model may also mean w has many zeros, i.e., 
it is sparse 

• The idea is to put a complexity term in the learning 
objective, together with the loss function 
          learning objective = loss + regularizer

fw(x) = wTg(x)



ridge regression
• Solution: augment the least squares problem with an extra 

term as  
                  
• this form of least squares problem is known as ridge 

regression 
• λ||w||2 is known as the Tikhonov regularizer 
• λ controls the trade-off between the error and the 

regularizer 
• solution given by linear equation  

                     

minw ∥y − XTw∥2 + λ∥w∥2

w = (XXT + λI)−1Xy



Regularization 
• Numerically, regularization stabilizes the solution to the 

normal equation XXTw = Xy 
• Recall that if X is not full ranked, then the correlation 

matrix XXT is not invertible 
• however, note that XXT + λI is always invertible for λ > 

0, so we get a stabilized solution to the normal equation 
• So this is also known as stabilization theory 

• Unlike penalty method, where the penalty has no direct 
relation with the model parameter, regularizer is directly 
implied on the model parameter w 

• We can also choose other types of regularizer, such as L1 
norm



• Consider the following optimization problem 
 

• This problem is equivalent with the ridge regression 
objective function, where ƛ is the corresponding 
Lagrangian multiplier 

• So regularization is essentially the same as putting 
constraints on the ill-posed problem 

• Geometric picture 
• A parabola intersecting with a unit 

ball w.r.t. L2 norm for w

minw ∥y − XTw∥2, s.t. ∥w∥2 = ρ

Equivalence with norm constraints



Choosing the weight on regularizer
• Small ƛ puts more weights on the error term, if ƛ = 0, 

reduces back to ordinary LLSE 
• Large ƛ penalizes larger regularizer term, if ƛ = ∞, what 

is the solution to the problem 

• In practice, it is a hyper-parameter that can be chosen 
with cross-validation 

• ƛ needs to be larger than the smallest negative eigenvalue 
to work

minw ∥y − XTw∥2 + λ∥w∥2



LASSO
• Sometimes out of the infinite number of possible 

solutions to an ill-posed problem we prefer sparse ones 
• Sparseness is related with the number of zero elements 

in a vector 
• L0 norm is defined as the number of non-zero 

elements in a vector (is it a norm?) 
• Sparsity is useful to identify a small set of factors that 

contribute to the observations 
• In practice, it is usually replaced with L1 norm 



sparsity regression (LASSO)
• we can also choose l1 norm as the regularizer 

• however, this objective function is not differentiable 
• we cannot use the previous method (differentiation 

based) to solve it 
• many methods have been proposed, a very active 

research area and we will focus on one simple and 
efficient method

`1 Regularized Least Squares Regression

`1 regularized regression:
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LASSO regression
• we can also choose l1 norm as the regularizer 

• using l1 norm encourages sparsity

`1 Regularized Least Squares Regression

`1 regularized regression:

min
x
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LASSO

Method of Multipliers

Original objective function:

min
x
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ky � Axk2

2 + �kxk1.

Introduce new variable:

minx
1

2
ky � Axk2

2 + �kzk1

s.t. x = z.

Augmented Lagrangian

New objective function:

min
x,z

1

2
ky � Axk2
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kz � xk2

2 + �kzk1.

As � ! 1, the solution to the objective function becomes the

solution to the original problem.

• the new term is known as the penalty function, i.e., it penalizes 
solutions that violate the equality constraint



block coordinate descent
• alternating between optimizing x and z 

• algorithm is guaranteed to converge 
• this is a convex problem so converge globally

Augmented Lagrangian

Optimize

min
x,z

1

2
ky� Axk22 +

�

2
kz� xk22 + �kzk1.

Repeat until convergence:

Iterate between two steps until convergence:

Optimize x: ridge regression.

Optimize z: soft-thresholding.

Increase �, e.g., �  2�.



Solving the sub-problems
• The x sub-problem 

• This can be solved with a ridge regression problem 
 
 
 
  where  

• The z sub-problem 
 
 
this problem separates in individual variables 
solve individual 1D problems
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x̃ = x − z, ỹ = y − Az
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soft thresholding
• solve 1D problem 

 

• z > 0, minimize 0.5β(z-x)2 + λz, z 
= max(x - λ/β,0) 

• z < 0,  minimize 0.5β(z-x)2 - λz, z 
= min(x+λ/β,0) 

• z = 0, do nothing 
• z = max(x - λ/β,0) + min(x+λ/β,0) 
• creating a “dead zone between -λ/β 

and λ/β 
• compare to hard thresholding

x

z

λ/β
-λ/β

min
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(z − x)2 + |z |



Overall algorithm
Augmented Lagrangian

Optimize

min
x,z

1

2
ky� Axk22 +

�

2
kz� xk22 + �kzk1.

Repeat until convergence:

Iterate between two steps until convergence:

Optimize x: ridge regression.

Optimize z: soft-thresholding.

Increase �, e.g., �  2�.
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