
Evolvement Constrained Adversarial Learning
for Video Style Transfer

Wenbo Li1∗ Longyin Wen2∗ Xiao Bian3 Siwei Lyu1

1University at Albany, SUNY 2JD Finance AI Lab 3GE Global Research
{wli20,slyu}@albany.edu, lywen.cv.workbox@gmail.com, xiao.bian@ge.com

Abstract. Video style transfer is a useful component for applications
such as augmented reality, non-photorealistic rendering, and interactive
games. Many existing methods use optical flow to preserve the temporal
smoothness of the synthesized video. However, the estimation of optical
flow is sensitive to occlusions and rapid motions. Thus, in this work, we
introduce a novel evolve-sync loss computed by evolvements to replace
optical flow. Using this evolve-sync loss, we build an adversarial learning
framework, termed as Video Style Transfer Generative Adversarial Net-
work (VST-GAN), which improves upon the MGAN method for image
style transfer for more efficient video style transfer. We perform exten-
sive experimental evaluations of our method and show quantitative and
qualitative improvements over the state-of-the-art methods.

1 Introduction

Great artists in history can render scenes with their distinct styles. It is the
unique artistic style that differs Van Gogh from Picasso. We wonder if an algo-
rithm can also acquire such styles? For instance, would it be able to re-render
the scenes in The Avengers (2012) as if it were the oeuvre of Francis Picabi-
a? Such an interesting question can be formulated as the video style transfer
problem as shown in Fig. 1, i.e., given a style image (Francis Picabia’s Udnie)
and a source video (a clip from The Avengers), the “synthesizer” should auto-
matically produce a video combining both the style of Udnie and the content of
The Avengers. Such an algorithm can find applications in many areas, such as
augmented reality, computer games and nonphotorealistic rendering.

Many recent works in the computer vision and computer graphics communi-
ty have focused on the problem of image style transfer [8, 9, 14, 17, 25]. However,
these methods cannot be readily extended to videos, since independently gen-
erating each video frame leads to artifacts such as flickering and jagging in the
synthesized videos. To this end, existing video style transfer algorithms [1, 3,
24] rely on signals that are estimated by a given motion model such as optical
flows computed from adjacent frames to preserve temporal smoothness. We cal-
l such signals as model-driven signals. Although more visually pleasing results
are achieved with these methods, optical flow estimation methods are known to

* indicates equal contributions.

2 Li, Wenbo et al.

Fig. 1. Given a video and an image, our algorithm aims to synthesize a video combining
the style of the image and the content of the video. To preserve the temporal smoothness
of the synthesized video, we use evolvements derived from the source and synthesized
video, and further compute the evolve-sync loss as the replacement of the optical flow
constraints. This loss ensures that the textures at the same location in the image plane
of the source and synthesized video evolve synchronously. For the illustration purpose,
we only show the order two loss of the evolvements at one patch.

be sensitive to occlusions and rapid and abrupt motions [23, 27], and such lim-
itations affects the qualities of the synthesized videos. Two recent methods [3,
24] attempt to remedy these problems by introducing occlusion masks to filter
out low-confidence optical flow, but the generation of occlusion masks is also
error-prone and can lead to further artifacts.

In this work, we aim to exploit model-free signals (against the model-driven
ones) in the source video for video style transfer, and synthesize video to match
with such signals in the source video to preserve the temporal smoothness. To
this end, we introduce evolvements, a form of inter-frame variations, as such a
model-free signal, the acquisition of which is illustrated in Fig. 1. As the source
and synthesized videos are synchronous in time, it is natural to require that the
textures in the source and synthesized videos evolve synchronously, which we
term as the evolve-sync assumption. The evolve-sync assumption is incorporat-
ed in our method with the evolve-sync loss, which encourages the evolvements
from the source domain and those from the synthesized domain to be the same.
As we need to preserve the temporal smoothness at both the microscopic and
macroscopic levels, we extend the evolve-sync loss to be multi-level by regard-
ing the evolvements as distributions and employing encoders (e.g., a pre-trained
CNN) to extract samples from these probability distributions. Thus, the evolve-
sync loss encourages samples of different distributions at the corresponding level
to be the same. We use the maximum mean discrepancy (MMD) [11] as the
distance measure between probability distributions.

The evolve-sync loss can be combined with an image style transfer method
to form the basis of video style transfer algorithms. We choose a state-of-the-
art image style transfer method, i.e., Markovian Generative Adversarial Network
(MGAN) [17], and develop the Video Style Transfer Generative Adversarial Net-
work (VST-GAN). MGAN consists of two major components: (i) A Markovian
Deconvolutional Adversarial Network (MDAN) denoted by D, and (ii) a gen-

Evolvement Constrained Adversarial Learning 3

Fig. 2. Saturated vs. Desaturated. The desaturated color occurs in the synthesized
results for the unpaired frames.

erator that is a feed-forward convolutional neural network and denoted by G.
G synthesizes the frames of video according to the content of the source video
and the style of the style image, while D plays two roles: it creates real training
samples for G with a deconvolutional process driven by the adversarial training,
and acts as the adversary to G. Besidess the evolve-sync loss, our modifications
to MGAN are presented as follows.

As noted in [17], generating images using the MDAN model D can be slow,
and this becomes more problematic for video synthesis. Thus, we design an
accelerating training strategy for VST-GAN. Specifically, we only apply D to
every other frame to generate real training samples for G, leading to that the real
training samples are unpaired with the synthesized frames. We expect that G can
synthesize desirable textures for the unpaired frames. However, we observe the
desaturated color (similar problem arose in [31]) in the synthesized results of the
unpaired frames, which is illustrated in Fig. 2. We therefore modify G by adding
a convolutional recurrent layer as its final output layer, which alleviates the
desaturation problem, as the recurrent connection makes it possible to propagate
the saturation of the paired frames to the unpaired ones.

The main contributions of our work can be summarized as follows: we intro-
duce the evolve-sync loss, which is based on the evolvement that is more reliable
than the estimated optical flow in preserving the temporal smoothness of the
synthesized video. Applying the evolve-sync loss at both the microscopic and
microscopic levels, we develop VST-GAN, an adversarial learning framework for
video style transfer, by adapting the MGAN image style transfer method. Specif-
ically, we add a convolutional recurrent layer as the output layer to resolve the
desaturation problem in the synthesized video, which is caused by the trade-off
between the training speed and the sufficiency of the real samples. Experimental
results demonstrate the effectiveness of the evolve-sync loss and VST-GAN.

2 Related Works

Image and Video Style Transfer. There has been an extensive literature on
image style transfer methods, which synthesize images based on sampling low-
level features in the given source and style images. The extensions to video style
transfer [2, 12, 18, 32] rely on optical flow to maintain the temporal smoothness
of sampling. See [16] for a comprehensive survey.

Recently, deep neural networks have been proved effective for both image [4,
7–9, 13, 14, 17, 25] and video [1, 3, 24] style transfer. Gatys et al. [8, 9] used the

4 Li, Wenbo et al.

convolutional neural network (CNN) to model the patch statistics with a global
Gaussian model of the higher-level feature vectors (e.g., activations of CNN),
and transferred the style by minimizing the feature reconstruction loss in an
iterative deconvolutional process. Two follow-up works, i.e., Johnson et al. [14]
and Ulyanov et al. [25], proposed fast implementations of Gatys et al.’s method.
Both methods employed precomputed decoders trained with a perceptual style
loss and obtained significant runtime benefits. In contrast to these three works,
Li and Wand [17] argued that real-world contextually related patches do not
always comply with a Gaussian distribution, but a complex nonlinear manifold,
and proposed MGAN, where a feed-forward generator is adversarially learned to
project the contextually related patches to the manifold of patches.

Anderson et al. [1] extended Gatys et al.’s method to video style transfer.
To preserve the temporal smoothness of the synthesized video, they used optical
flow to initialize the style transfer optimization, and incorporated the flow ex-
plicitly into the loss function. To further reduce artifacts at the boundaries and
occluded regions, Ruder et al. [24] introduced masks to filter out optical flows
with low confidences in the loss function. Chen et al. [3, 5] extended Johnson et
al.’s method to a feed-forward network for video style transfer. To preserve the
temporal smoothness, this method first obtained the current result via a learned
flow, and then reduced the artifacts at the occluded regions by fusing the warped
result with the independently synthesized result via a learned occlusion mask.
In summary, all existing video style transfer methods rely on using optical to
preserve temporal smoothness, and use the occlusion mask to stabilize the re-
sults. As such, these methods suffer from the common problems in estimating
optical flow, i.e., the sensitivity to occlusion and abrupt motion in video.

Generative Adversarial Network (GAN). GANs [10] have achieved im-
pressive results for various tasks in image processing, such as style transfer [17],
generation [6], editing [33], representation learning [21], and translation [34],
etc. The key to GANs’ success is the idea of an adversarial loss that forces the
generated images/videos to be indistinguishable from the real ones. Only a few
works develop GANs for videos, i.e., generation [29, 28, 30] and prediction [20,
26]. The real samples of the existing GANs for video generation and prediction
are available. However, this is not the case for video style transfer. This is be-
cause the qualified real samples for this task should contain both the desirable
style and the required content. In VST-GAN, we generate such samples with the
deconvolutional model in MGAN constrained by the evolve-sync loss. However,
the iterative deconvolutional optimization for videos is slow. Thus, we design a
strategy to accelerate the training process of the GAN framework for video style
transfer while maintaining the quality of the synthesized videos.

3 Overview

We first formally define the video style transfer problem as following: given a
source video X = {X 1, · · · ,Xi, · · · } and a style image S, we aim to produce a
video Y = {Y1, · · · ,Yi, · · · } with the style of S, and the content of X .

Evolvement Constrained Adversarial Learning 5

Fig. 3. Pipeline. Our method first uses a MDAN model D to generate real samples
every other frame within an iterative deconvolutional process. Y ′ is initialized with the
downsampled source video X ′. The generated real samples are used to train G using a
GAN model. Then, G transfers the image style to the whole video. The numbers on the
arrows indicate the order of operations, which are explained in detail in § 3.

We design VST-GAN, an adversarial learning framework based on MGAN
[17], to build a video style transfer algorithm incorporating the evolve-sync loss,
with an aim to preserve temporal smoothness of frames without using optical
flow. VST-GAN consists of a deconvolutional model D, and a feed-forward gener-
ator G. Both D and G are integrated with the evolve-sync loss. Fig. 3 illustrates
the overall pipeline of our method, which includes two steps:

Step (i) D generates real samples for G within a deconvolutional process that is
constrained by the evolve-sync loss and driven by the adversarial training. Con-
sidering the efficiency issue, we accelerate the generation process by applying it
to every other frame. In Fig. 3 (a), steps 1© and 2© correspond to the convolu-
tional forward pass, where D determines how real Y ′ is. Step 3© represents the
deconvolutional backward pass, where D acts as the generator and the losses are
back-propagated to pixels of Y ′.
Step (ii) Given the unpaired training samples, G is trained to transfer the style
of S to the generated video, using D as the adversary in the manner of GAN.
However, the original generator in MGAN suffers from the lack of real samples,
which can cause the desaturation effect (or grey image tone) in the generated
videos (see an example in Fig. 2). We therefore modify G by adding a convolu-
tional recurrent layer as its final output layer, which reduces the desaturation
issue effectively. In Fig. 3 (b), in the runtime of updating G, X is fed into G
(step 4©) to generate Y (step 5©). Then, D determines how real is the synthe-
sized video Y (step 6©), and the losses are back-propagated to update G (step
7©). During the updating of D, Y and Y ′ are used as real and fake samples1 to
train D (steps 6© and 8©), respectively.

The evolve-sync loss is based on a more reliable signal than the optical flow
estimated from the input video, thus it can better preserve the temporal smooth-
ness. Our accelerating training strategy and the added convolutional recurrent
structure effectively reduce the training complexity of VST-GAN.

1 The naming fashion of real and fake samples follow the convention of GAN: the
output Y of G is considered to be fake, while the precomputed Y ′ is real.

6 Li, Wenbo et al.

4 The Evolve-Sync Loss

One basic requirement of video style transfer is to preserve the temporal s-
moothness between generated frames, as human visual systems are sensitive to
the flickering artifacts. This means that the simple approach of generating each
frame independently using existing image style transfer algorithms is not effec-
tive, as it will lead to visually displeasing results due to two factors. First, as
many image style transfer methods (e.g., [8, 9]) are iterative, their results are af-
fected by different initializations and the local minima of the style loss function.
Second, a small perturbation in the source images may cause large variations in
the synthesized results that are not temporally smooth.

As such, in order to generate temporally smooth frames with spatially rich
style patterns, existing methods [1, 3, 24] modify the image style transfer algo-
rithms by incorporating optical flows estimated from the source video as super-
visory signals. The reliability of the estimated optical flow is often problematic
due to the problems related with the common optical flow algorithms, i.e., sen-
sitivity to occlusions and rapid motions. This motivates us to turn to a different
source of model-free signal directly acquired from the source video itself to cap-
ture inter-frame variations, which we term as evolvement. Given two frames Xi

and Xi−k ∈ Rh×w×3, we define the evolvement from Xi−k to Xi as a distribu-
tion E(Xi−k, Xi). Fig. 4 illustrates the sampling process from evolvements. We
compute an evolvement sample E(Xi−k, Xi)m ∼ E(Xi−k, Xi) as:

E(Xi−k, Xi)m = z(|g(Xi)m − g(Xi−k)m|), (1)

where g(·) denotes an encoder function that extracts samples from evolvements.
The standardization function is represented as z(x) = x−µ

σ , where the input x
is a 2D matrix, and µ and σ are the mean and standard deviation of elements
in x, respectively. Index m indicates the mth sample generated by g(·).

Our method is based on the evolve-sync assumption, which states that X
and the synthesized video Y are synchronous in time, so their evolvements,
E(Xi−k, Xi) and E(Yi−k, Yi), can be viewed as two synchronized signals. As seen
in Fig. 4, the brighter a pixel in an evolvement sample is, the more drastic varia-
tion occurs at that pixel. The rationality behind the evolve-sync assumption can
be understood by contradiction: if it does not hold for a certain pixel, it means
that the drastic variation occurs in E(Xi−k, Xi) while the mild variation occurs
in E(Yi−k, Yi), or vice versa. This suggests that the content at that location has
not been properly preserved, which contradicts the problem formulation in § 3.

Given X with a certain temporal smoothness degree, preserving the evolve-
sync is equivalent to forcing the temporal smoothness of Y to be the same as
that of X . Consequently, we introduce the evolve-sync loss Les to enforce the
evolve-sync assumption in Y that measures the distance between E(Xi−k, Xi)
and E(Yi−k, Yi). To this end, we employ the Maximum Mean Discrepancy [11]
as the metric between two probability distributions:

Les(F ,X ,Y) =
∑
|i−j|<δ

sup
f∈F

(Ex∼E(Xi,Xj)[f(x)]−Ey∼E(Yi,Yj)[f(y)]), (2)

Evolvement Constrained Adversarial Learning 7

Fig. 4. Illustration of the computation of evolvement and evolve-sync as-
sumption. g(·) represents an encoder, which splits the image in R, G and B color
channels herein. z(·) represents a standardization function meaning subtracting mean
and dividing by standard deviation. E(Xi−k, Xi) represents the evolvement from frame
Xi−k to Xi. The yellow/white boxes highlight a spot in the image plane where dras-
tic/mild variations occur.

where δ is a preset parameter determining the order of Les, F is a Gaussian
kernel and we set to δ = 3 in our experiments.

We aim to preserve the temporal smoothness of Y at the microscopic level
where the synthesized textures are temporally continuous, and at the macroscop-
ic level where the synthesized textures and the video content are synchronized.
To this end, we use two encoders for each level (i) the microscopic encoder g1(·),
which splits the image in R, G and B color channels for the microscopic lev-
el, and (ii) the macroscopic encoder g2(·), which is a pretrained VGG network
(sampled from Relu3 1). As such, the overall evolve-sync loss is given as:

Les(G,F ,X ,Y) =

|G|∑
r=1

αr ·
∑
|i−j|<δ

sup
f∈F

(Exr∼E(Xi,Xj)[f(x)]−Eyr∼E(Yi,Yj)[f(y)]), (3)

where xr and yr are determined by gr(·), and we set α1 = 0.005 and α2 = 100.

5 Video Style Transfer GAN (VST-GAN)

In this section, we describe the architecture of VST-GAN in § 5.1 and the training
of VST-GAN in § 5.2.

5.1 Architecture

We build VST-GAN by adapting Markovian GAN (MGAN) [17], a state-of-the-
art image style transfer framework that does not rely on the implicit assumption
that the real-world textures comply with a Gaussian distribution. We show the
architecture of VST-GAN in Fig. 5, where grey blocks indicate the intrinsic

8 Li, Wenbo et al.

Fig. 5. Architecture of VST-GAN. Grey blocks indicate the intrinsic architecture
of MGAN, and blocks with other colors indicate the input and our modifications.

architecture of MGAN, and blocks with other colors indicate our modifications.
MGAN consists of two major components: (i) A Markovian Deconvolutional
Adversarial Network (MDAN) denoted by D, and (ii) a feed-forward generator
denoted by G. D plays two roles: it creates real training samples for G with a
deconvolutional process that is driven by the adversarial training, and acts as
the adversary to G.

MDAN D. As shown in Fig. 5, D has the style branch and the content branch.
The style branch learns to distinguish the feature patches extracted from the
feature maps output by VGG19 Relu3 1 of the source video from those of the
synthesized videos. D outputs a classification score s = 1 or 0 for each patch,
indicating how “real” the patch is (with s = 1 being sampled from the style
image S, or real patch). For each patch sampled from the synthesized frame, we
minimize its style loss (i.e., 1 − s). Like Radford et al.[22], we use batch nor-
malization (BN) and leaky ReLU (LReLU) to improve the training of D. The
content branch encourages the content of the synthesized image to be similar to
that of the source image, and is constructed from VGG19 features on the same
image from higher and more abstract layer Relu5 1. The content dissimilarity
is measured by a content loss given by the mean squared error between two
feature maps obtained from the source video and the synthesized one, respec-
tively. When using D to generate real samples for G, the deconvolution process
back-propagates both the style and content loss to pixels. When D acts as the
adversary to G, the style and content loss are back-propagated to train G.

The Generative Network G. D requires many iterations and a separate run
for each source image, so Li and Wand [17] further developed G, which consists
of a pre-trained VGG encoder and a decoder. The VGG encoder of G takes the
source image as input, and outputs a feature map from Relu4 1. The decoder
of G takes the output of the encoder, and decodes an image through a ordinary
convolution followed by a cascade of fractional-strided convolutions (FS Conv
in Fig. 5). Note that the content loss is used to measure the content dissimilar-
ity between the synthesized image and its corresponding real sample. Although

Evolvement Constrained Adversarial Learning 9

being trained with fixed-size input, G can be naturally extended to images of
arbitrary sizes. VGG encoders in MGAN are fixed during training.

When adapting MGAN to the video style transfer, we make two major mod-
ifications to its architecture. First, in order to preserve the temporal smoothness
at both the microscopic and macroscopic level, we integrate D with the proposed
evolve-sync loss at two levels, i.e., the synthesized video (microscopic) and the
VGG encoder of the style branch (macroscopic).

Unfortunately, D has a slow running time – it takes D nearly 4 hours to
synthesize a 50-frame video on a single Titan X GPU – which is problematic
to generate videos with more frames. Thus, we only apply D every other frame
to generate real samples for G, and train G with such unpaired samples. This
way, there will be a half of frames without the corresponding real samples, so
these frames will not be used to compute the content loss (inherited from s-
tandard regression problems). Since such a content loss encourages conservative
predictions, it makes G generate synthesized frames with desaturation artifacts
(Fig. 2). To alleviate the desaturation problem, we further modify MGAN by
adding a convolutional recurrent layer as the final output layer of G, as the
recurrent connection makes it possible to smooth the saturation of consecutive
frames.

5.2 Training

The training process of VST-GAN includes two steps: (i) generating real training
samples for G using D on every other frame, and (ii) training G adversarilly
against D with the unpaired training samples.
Generate Real Samples via D. In order to train G adversarially, we need
qualified real samples that contain both the style of S and the content of X .
As such real samples are not accessible to us during training, we generate them
using D on every other frame of the videos as described in § 3. We denote
the downsampled source video as X ′ = {X1,X3, · · · ,Xi−2,Xi, · · · } and denote
its corresponding real samples as Y ′ = {Y ′1,Y ′3, · · · ,Y ′i−2,Y ′i , · · · }. Then, we
perform deconvolution with D iteratively to update Y ′ (initialized with X ′), so
that the following loss is minimized:

Ŷ ′ = argmin
Y′

∑
Y ′
i ∈Y

′

[Lt(Φt(Y
′
i), `real) + Lc(Φc(Xi), Φc(Y

′
i)) + ωΥ (Y ′i)]+

Les(G,F ,X ′,Y ′),
(4)

where Lt denotes the style loss. Lc denotes the content loss, which is a mean
squared error. Φt and Φc denote the VGG encoder in the style and content
branch, respectively. Les denotes the evolve-sync loss defined in (3). The regu-
larizer Υ is a smoothness prior for pixels [19]. We sample patches from Φt(Y

′
i),

and compute Lt as the hinge loss with their labels fixed to one, i.e., `real = 1:

Lt(Φt(Y
′
i), `real) =

1

N

N∑
j=1

max(0, 1− `real · sj), (5)

10 Li, Wenbo et al.

where sj denotes the score (output by D) of the jth patch, and N is the total
number of sampled patches in Φt(Y

′
i).

The model D is trained in tandem: its parameters are randomly initialized,
and then updated after each deconvolution, so it improves as Y ′ improves. The
objective of updating D is:

D̂ = argmin
D

Lt(Φt(S), `real) +
∑
Y ′
i ∈Y

′

Lt(Φt(Y
′
i), `fake). (6)

`real = 1 and `fake = 0. Like [17], we set ω = 0.00001 in (4), and minimize
(4) and (6) using back-propagation with ADAM [15] (learning rate 0.02, mo-
mentum 0.5). The optimization in (6) is memory intensive. To make it feasible
and efficient for a machine with a Titan X GPU with 12GB onboard memory,
we divide X ′ into multiple non-overlapped segments of 3 frames, and synthe-
size frames within one segment after another. In this way, Les in (4) will only
preserve the temporal smoothness within each segment. In order to preserve the
inter-segment smoothness, we use the last 2 frames of the previous segment to
compute Les, and leave these 2 frames unchanged during the optimization for
the current segment. The segment size can be adaptively enlarged with increased
GPU memory capacity.
Train G Against D with Unpaired Real Samples. Given the unpaired real
samples Y ′, we aim to train G against D in a GAN model. G takes X as input
and outputs the synthesized video Y = {Y1, · · · ,Yi, · · · }, with Yi = G(Xi).
Thus, our objective herein is as follows:

L(G,D,X ,Y,Y ′) =
∑
Yi∈Y

[Lt(Φt(Yi), `real) + ωΥ (Yi)] + Les(G,F ,X ,Y)+

∑
Y ′
i ∈Y

′

[Lt(Φt(Y
′
i), `real) + Lc(Φc(Yi), Φc(Y

′
i))].

(7)

We therefore aim to solve:

Ĝ = arg min
G

max
D

L(G,D,X ,Y,Y ′), (8)

where D and G are trained from scratch using back-propagation with ADAM
(learning rate 0.02, momentum 0.5). Same notations as those in (7) can be found
in (4), (5) and (6). Note that Lc is only valid for the paired frames.

6 Experiments

Implementation Details. We implement VST-GAN and MGAN using Ten-
sorflow, and conduct the experiments on a computer with an Intel Xeon X5570
CPU with 16 cores of 2.93GHz each, 94.4GB memory, and one NVIDIA TITAN
X GPU with 12GB onboard memory. For the real sample generation process, D
is trained for each segment (3 frames) for 3, 000 iterations. With a batch size of
3, G is trained for 20, 000 iterations. For a 50-frame video, it takes D approxi-
mately 2 hours to generate the real samples, and approximately a further 1 hour
to train G.

Evolvement Constrained Adversarial Learning 11

Fig. 6. Qualitative comparison with MGAN [17] The marked regions highlight
that the temporal smoothness of our results is higher. The dilated marked regions are
shown in (a) and (b). This figure is best viewed in color.

Datasets. We use 8 classical style images, i.e., starry night, the scream, udnie,
la muse, wave, composition vii, mosaic, and candy, several of which are used
in [3] or [24]. For the source videos, we choose 8 videos with diverse contents,
including natural scenes, action scenes, close-up portraits, etc. Lengths of these
videos vary from 40 to 300 frames, with 91 frames on average. All videos have
the image resolutions of 640×360 and were captured at 23 frame per second.
Compared Methods. We compare VST-GAN with ASTV [24], a state-of-the-
art neural network based video style transfer method. ASTV uses optical flow
and occlusion mask to preserve temporal smoothness in the synthesized video,
so it suffers from the common problems in estimating optical flow, i.e., the
sensitivity to occlusion and abrupt motion in video. We also create a baseline
method based on MGAN [17], which uses image style transfer method in [17] to
create individual frames independently. Comparison with these baseline methods
demonstrates the advantage of our method in preserving temporal smoothness.

6.1 Qualitative Comparison

In Fig. 6, we show two consecutive frames from two synthesized videos produced
by VST-GAN and MGAN, respectively, with two highlighted regions in each
frame. The close-up regions demonstrate the effectiveness of evolve-sync loss
in preserving the temporal smoothness. As mentioned in the beginning of § 4,
the image style transfer methods (e.g., MGAN) are ineffective in preserving the
temporal smoothness, which is evident from comparing the two close-up regions.

We further compare the synthesis results using VST-GAN with ASTV [24]
in Fig. 7, with four video clips with a variety of challenging factors including
camera motions, rapid object motions, and occlusions, etc. Fig. 7 (a) shows an
epic natural scene with lateral camera motions. Note that artifacts emerge as the
new content enters the scene at the top right corner. Considering the contextual
information on the left side, the sky color within the marked region is supposed
to be either blue, white or yellow. However, the actual color is brownish-grey,
which is partially caused by optical flow’s intrinsic limitation. Specifically, since
the camera view moves from left to right, the estimated direction of the optical
flow is the opposite. This leads to an ill-posed problem that the new content
at the top right corner solely depends on the pixel values along image’s right

12 Li, Wenbo et al.

Fig. 7. Qualitative comparison of the results of VST-GAN with those of
ASTV [24] Row (a) corresponds to a scene with the rapid camera motion, and we
highlight the newly entering regions where the artifacts appear for ASTV’s result. Row
(b) displays a video associated with the rapid object motions and occlusions. The marked
regions show that the artifacts appear after rapid motions and occlusions for ASTV’s
result. Row (c) presents an example where the ghosting salient content exists in ASTV’s
result but not in X . Row (d) illustrates an example where the content of X is not
preserved properly by ASTV. This figure is best viewed in color.

border. Thus, colors for the sky region (blue, white and yellow) on the left side
have no effect on the synthesized video. Fig. 7 (b) displays a video in which the
arrow moves rapidly and its movement causes the occlusion. Artifacts arise in the
videos synthesized by ASTV due to the instability of the estimated optical flow
in the presence of rapid motions and occlusions. On the other hand, because we
introduce the evolve-sync loss to replace optical flow, VST-GAN is not affected
by problems of the optical flow estimation.

In Fig. 7 (c), we present an example where ASTV synthesized video contains
some “ghost” salient content that does not exist in the source video. The preser-
vation of the source video content is worse in the ASTV’s result in Fig. 7 (d),
e.g., the contextually related patches that constitute the grassland in X become
unrelated in Y. This is because ASTV [24] models textures in the style image
with a Gaussian distribution. As a result, the synthesized video does not further
improve once two distribution matches and the synthesis quality of local image
regions cannot be guaranteed. In contrast, VST-GAN preserves the content more
properly by relaxing the above assumption to that the textures follow a compli-
cated non-linear manifold. Furthermore, the adversarial training of VST-GAN
can recognize such a manifold with its discriminative network, and strengthen
its generative power with a projection on the manifold.

Evolvement Constrained Adversarial Learning 13

6.2 Quantitative Comparison

Evaluation Metrics. Existing methods [3, 24] measure the temporal smooth-
ness of the synthesized video using the ground-truth optical flow and occlu-
sion mask. Specifically, they warp the i-th frame in the synthesized video to be
synchronized with the ground truth flow and compute the difference with the
(i − 1)-th synthesized frame in non-occluded regions. Although this metric is
straightforward to compute, it has two drawbacks. First, it restricts the choice
of the evaluated videos to those with ground truth optical flow, which are very

Sequence Method
AESL

2-order 4-order 6-order 8-order 10-order 12-order

starry night

ASTV [24] 45.22 132.74 221.95 301.32 366.93 463.47
MGAN [17] 97.67 245.43 344.66 443.56 523.67 598.88
VST-GAN (ours) 60.42 143.62 220.32 289.87 344.98 412.83
VST-GAN w/o ESL 72.13 181.80 274.85 379.43 440.05 533.49
VST-GAN w/o RNN 65.36 175.23 271.84 347.59 375.17 422.74

the scream

ASTV [24] 32.45 105.31 178.48 237.00 308.06 368.63
MGAN [17] 91.83 220.06 292.33 362.17 420.37 478.57
VST-GAN (ours) 31.33 96.74 139.05 179.07 204.43 240.20
VST-GAN w/o ESL 65.65 143.11 197.96 249.81 293.99 348.53
VST-GAN w/o RNN 47.62 108.26 146.45 193.29 221.19 252.69

udnie

ASTV [24] 48.38 84.83 120.23 154.45 187.89 220.71
MGAN [17] 81.14 121.00 149.36 173.43 226.53 252.21
VST-GAN (ours) 48.69 72.36 93.31 112.74 131.06 148.46
VST-GAN w/o ESL 81.00 116.75 148.03 177.20 204.52 230.32
VST-GAN w/o RNN 54.60 89.00 119.84 148.73 176.09 202.08

la muse

ASTV [24] 84.18 266.25 459.09 650.63 838.49 1021.58
MGAN [17] 193.32 493.94 737.08 940.96 1120.69 1282.29
VST-GAN (ours) 79.40 234.34 322.61 396.55 480.32 541.78
VST-GAN w/o ESL 131.70 309.85 460.34 595.70 721.95 841.39
VST-GAN w/o RNN 96.43 247.61 325.74 413.65 493.38 568.11

wave

ASTV [24] 59.97 147.53 233.54 321.63 413.23 506.86
MGAN [17] 180.76 434.75 636.53 813.08 978.61 1134.02
VST-GAN (ours) 58.21 138.57 193.25 254.14 306.07 361.79
VST-GAN w/o ESL 130.35 314.50 466.62 603.03 732.35 855.11
VST-GAN w/o RNN 123.84 294.62 429.18 546.39 656.17 759.13

comp. vii

ASTV [24] 32.92 99.67 172.53 234.40 305.62 345.03
MGAN [17] 94.61 222.30 304.92 357.22 417.04 456.96
VST-GAN (ours) 39.23 104.42 157.65 208.61 254.18 293.65
VST-GAN w/o ESL 92.03 245.12 373.81 470.22 578.90 642.62
VST-GAN w/o RNN 65.00 159.93 239.70 303.14 354.22 413.45

mosaic

ASTV [24] 30.44 103.48 187.32 275.91 364.91 451.67
MGAN [17] 99.35 260.26 400.07 528.03 645.29 751.34
VST-GAN (ours) 36.84 98.88 157.79 214.84 253.38 301.66
VST-GAN w/o ESL 63.13 179.14 289.34 395.64 497.12 591.47
VST-GAN w/o RNN 53.84 144.03 225.46 301.84 374.40 442.21

candy

ASTV [24] 29.98 90.81 148.01 200.58 249.69 296.37
MGAN [17] 33.88 84.39 126.82 164.90 200.51 233.95
VST-GAN (ours) 19.26 52.34 87.74 110.95 144.60 170.47
VST-GAN w/o ESL 31.07 76.31 114.84 149.95 182.66 213.52
VST-GAN w/o RNN 23.67 67.95 107.51 143.22 175.31 203.78

Table 1. Comparison on temporal smoothness for synthetic videos using ours and
state-of-the-art video style transfer methods.

difficult to generate and scarce in number. Second, it does not allow for the e-
valuation of long-term temporal smoothness due to the lack of long-term ground

14 Li, Wenbo et al.

truth optical flow. To this end, we use the averaging evolve-sync loss (AESL)
(averaged by the video length) as a new metric that is free of the optical flow, oc-
clusion mask and the short-term restrictions. We compute the multi-order AESL
to evaluate the temporal smoothness for short (order 2 and 4)/medium (order 6
and 8)/long-term (order 10 and 12).
Comparing with the State-of-the-art Methods. The comparison results
are presented in Table 1. These result show that VST-GAN outperforms MGAN
significantly in terms of the temporal smoothness of the synthesized videos. The
comparison between VST-GAN and ASTV based on AESL of order 2 and 4 sug-
gests comparable performance of our method using the evolve-sync loss to those
based on optical flow and occlusion mask in preserving the short-term temporal
smoothness. In addition, the evolve-sync loss is more effective than optical flow
in preserving medium/long-term temporal smoothness, which is demonstrated
by the comparison based on AESL of order 6, 8, 10 and 12. This is due the lack of
long-term optical flows, which cannot be reliably estimated using current meth-
ods. In contrast, the high-order evolve-sync loss can be more easily computed
and compared.
Effects of the Evolve-sync Loss. To investigate the impact of the evolve-sync
loss on preserving the temporal smoothness, we remove it from the objective
of training G (7). As a result, we observe significant increase in AESL of all
orders, which indicates the retrogression on the preservation of the temporal
smoothness. Nonetheless, VST-GAN still preserves the temporal smoothness
better than MGAN even without the use of the evolve-sync loss. This is because
we maintain the evolve-sync loss in D for generating real training samples, which
further demonstrates the effectiveness of the evolve-sync loss.
Effects of the Recurrent Structure. We remove the convolutional recurrent
layer from VST-GAN to study its impact on preserving the temporal smoothness.
Consequently, the AESL increases slightly, but the increment is much smaller
compared to that after removing the evolve-sync loss. This indicates that the
recurrent structure is also useful for preserving the temporal smoothness, but its
impact is less prominent than that of the evolve-sync loss.
Runtime Efficiency. The runtime speed of our VST-GAN in synthesizing
videos is 18.18 fps, which is comparable to the image style transfer method M-
GAN (19.33 fps), and much efficient than the deconvolutional video style transfer
method ASTV (0.03 fps).

7 Conclusion

In this work, we propose VST-GAN as an adversarial learning framework for
video style transfer based on the evolve-sync loss. We show that the evolve-sync
loss is able to preserve the temporal smoothness effectively without using op-
tical flow. Our accelerating training strategy and the convolutional recurrent
structure significantly reduce the training complexity of VST-GAN. Experimen-
tal evaluations show that VST-GAN outperforms the state-of-the-art methods
based on optical flow in both running time efficiency and visual quality.

Evolvement Constrained Adversarial Learning 15

References

1. Anderson, A.G., Berg, C.P., Mossing, D.P., Olshausen, B.A.: Deepmovie: Using
optical flow and deep neural networks to stylize movies. CoRR abs/1605.08153
(2016)

2. Bousseau, A., Neyret, F., Thollot, J., Salesin, D.: Video watercolorization using
bidirectional texture advection. TOG 26(3), 104 (2007)

3. Chen, D., Liao, J., Yuan, L., Yu, N., Hua, G.: Coherent online video style transfer.
In: ICCV (2017)

4. Chen, D., Yuan, L., Liao, J., Yu, N., Hua, G.: Stylebank: An explicit representation
for neural image style transfer. In: CVPR. pp. 1897–1906 (2017)

5. Chen, D., Yuan, L., Liao, J., Yu, N., Hua, G.: Stereoscopic neural style transfer.
In: CVPR. pp. 1–9 (2018)

6. Denton, E.L., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models
using a laplacian pyramid of adversarial networks. In: NIPS. pp. 1486–1494 (2015)

7. Fan, Q., Chen, D., Yuan, L., Hua, G., Yu, N., Chen, B.: Decouple learning for
parameterized image operators. In: ECCV. pp. 455–471 (2018)

8. Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural
networks. In: NIPS. pp. 262–270 (2015)

9. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional
neural networks. In: CVPR. pp. 2414–2423 (2016)

10. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A.C., Bengio, Y.: Generative adversarial nets. In: NIPS. pp. 2672–2680
(2014)

11. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.J.: A kernel
two-sample test. JMLR 13, 723–773 (2012)

12. Hays, J., Essa, I.A.: Image and video based painterly animation. In: NPAR. pp.
113–120 (2004)

13. He, M., Chen, D., Liao, J., Sander, P.V., Yuan, L.: Deep exemplar-based coloriza-
tion. TOG 37(4), 47:1–47:16 (2018)

14. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution. In: ECCV. pp. 694–711 (2016)

15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR ab-
s/1412.6980 (2014)

16. Kyprianidis, J.E., Collomosse, J.P., Wang, T., Isenberg, T.: State of the ”art”: A
taxonomy of artistic stylization techniques for images and video. TVCG 19(5),
866–885 (2013)

17. Li, C., Wand, M.: Precomputed real-time texture synthesis with markovian gener-
ative adversarial networks. In: ECCV. pp. 702–716 (2016)

18. Lu, J., Sander, P.V., Finkelstein, A.: Interactive painterly stylization of images,
videos and 3d animations. In: SI3D. pp. 127–134 (2010)

19. Mahendran, A., Vedaldi, A.: Understanding deep image representations by invert-
ing them. In: CVPR. pp. 5188–5196 (2015)

20. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond
mean square error pp. 1–14 (2016)

21. Mathieu, M., Zhao, J.J., Sprechmann, P., Ramesh, A., LeCun, Y.: Disentangling
factors of variation in deep representation using adversarial training. In: NIPS. pp.
5041–5049 (2016)

22. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. CoRR abs/1511.06434 (2015)

16 Li, Wenbo et al.

23. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Epicflow: Edge-preserving
interpolation of correspondences for optical flow. In: CVPR. pp. 1164–1172 (2015)

24. Ruder, M., Dosovitskiy, A., Brox, T.: Artistic style transfer for videos. In: GCPR.
pp. 26–36 (2016)

25. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.S.: Texture networks: Feed-
forward synthesis of textures and stylized images. In: ICML. pp. 1349–1357 (2016)

26. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics.
In: NIPS. pp. 613–621 (2016)

27. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: Deepflow: Large displace-
ment optical flow with deep matching. In: ICCV. pp. 1385–1392 (2013)

28. Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X., He, X.: Attngan:
Fine-grained text to image generation with attentional generative adversarial net-
works pp. 1–9 (2018)

29. Zhang, H., Xu, T., Li, H.: Stackgan: Text to photo-realistic image synthesis with
stacked generative adversarial networks. In: ICCV. pp. 5908–5916 (2017)

30. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., Metaxas, D.N.: Stack-
gan++: Realistic image synthesis with stacked generative adversarial networks.
CoRR abs/1710.10916 (2017)

31. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: ECCV. pp. 649–
666 (2016)

32. Zhang, S., Li, X., Hu, S., Martin, R.R.: Online video stream abstraction and styl-
ization. TMM 13(6), 1286–1294 (2011)

33. Zhu, J., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipula-
tion on the natural image manifold. In: ECCV. pp. 597–613 (2016)

34. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using
cycle-consistent adversarial networks. In: ICCV

