
Pixel Offset Regression (POR) for Single-shot Instance Segmentation

Yuezun Li1, Xiao Bian2, Ming-ching Chang1, Longyin Wen2 and Siwei Lyu1

1University at Albany, State University of New York, NY, USA
2GE Global Research Center, Niskayuna, NY, USA

Abstract

State-of-the-art instance segmentation methods includ-
ing Mask-RCNN and MNC are multi-shot, as multiple re-
gion of interest (ROI) forward passes are required to dis-
tinguish candidate regions. Multi-shot architectures usually
achieve good performance on public benchmarks. However,
hundreds of ROI forward passes in sequel limits their run-
ning efficiency, which is a critical point in several utilities
such as vehicle surveillance. As such, we arrange our focus
on seeking a well trade-off between performance and effi-
ciency. In this paper, we introduce a novel Pixel Offset Re-
gression (POR) scheme which can simply extend single-shot
object detector to single-shot instance segmentation system,
i.e., segmenting all instances in a single pass. Our frame-
work is based on VGG161 with following four parts: (1) a
single-shot detection branch to generate object detections,
(2) a segmentation branch to estimate foreground masks, (3)
a pixel offset regression branch to effectively estimate the
distance and orientation from each pixel to the respective
object center and (4) a merging process combining output
of each branch to obtain instances. Our framework is eval-
uated on Berkeley-BDD, KITTI and PASCAL VOC2012 val-
idation set, with comparison against several VGG16 based
multi-shot methods. Without whistles and bells, our frame-
work exhibits decent performance, which shows good po-
tential for fast speed required applications.

1. Introduction
Instance segmentation can be viewed as a joint task of

object detection and semantic segmentation. Given an in-
put image, it assigns a class (semantic) label as well as an
instance (identity) label for each pixel. Instance segmenta-
tion has recently achieved significant progress based on the
convolutional neural network (CNN). However, the prob-
lem remains challenging due to the large variability in ob-
ject categories, the amount of labeled data, and the preferred

1This paper aims to shed light on the generality of POR scheme for
instance segmentation. We leave advanced models integration (ResNet-
50, -101 and -152) for top performance to the future work.

running time. State-of-the-art methods including the Mask-
RCNN [14] and the Multi-task Network Cascades (MNC)
[6] generate candidate object proposals using the Region
Proposal Network (RPN) [21], and perform instance seg-
mentation in a “multi-shot” fashion. Shared features from
the given image are first extracted in a base network, and
then each region proposal is passed to a sub-network for re-
gion refinement. The drawback of this “multi-shot” archi-
tecture is that each region proposal must go through the sub-
network separately before the final segmentation can be ob-
tained. Their running efficiency can be reduced, since typi-
cally hundreds to thousands of region proposals are required
[21]. Notice that running efficiency of instance segmen-
tation is a critical point in several utilities such as vehicle
surveillance. Therefore, pursuing good running efficiency
is highly deserved and necessary. To this end, we propose
a novel Pixel Offset Regression (POR) scheme, which can
simply extend single-shot detector to single-shot instance
segmentation system, i.e., segmenting all objects using a
single forward pass. Our method exhibits well trade-off be-
tween performance and efficiency.

The recent Single-Shot Multibox Detector (SSD) [17]
exhibits great performance for real-time object detection us-
ing a fully convolutional network. SSD eliminates the need
of object region proposal generation. Instead, a set of an-
chor boxes over different scales and aspect ratios are used
in place of the region proposals. SSD calculates a matching
score for each anchor box regarding a candidate object, and
adjusts the box to match the object shape. The detection of
multiple objects of multiple classes can be completed within
a single network pass.

Our framework is based on VGG16 with following four
major parts as shown in Fig.1: (1) a single-shot detection
branch to generate object detection proposals, (2) a seg-
mentation branch to estimate object foreground masks, (3)
a pixel offset regression branch to achieve per-pixel object
center regression, and (4) a merging process combining the
output of each branch to infer the final instances. In our
single-shot pipeline, the base network extracts features that
are fed into a detection branch similar to the SSD work-
flow. The detection branch generates object localization as

1

(c) sheep

(a)

(b)

(e) (f) (g)

(c)

(d)

Figure 1. Overview of our framework. (a) is the base-net using VGG16 without fc6 and fc7. (b)(c)(d) are detection branch, segmentation
branch and pixel offset regression branch respectively. (e) are predicted detection, foreground mask and regressed object center location of
pixels. (f) is the merging process. Pixels with regressed object center in orange area will be taken as instance. (g) are instance segmentation
results.

bounding boxes together with the class and instance labels.
Combining with foreground segmentation, a mask inside
bounding box can be cropped out. However, different ob-
jects in this mask can not be separated. To further segment
out object instances in a single-shot, we add a pixel offset
regression branch from the base network to distinguish mul-
tiple instances. Pixel offset regression scheme estimates a
per-pixel offset vector pointing from each pixel (within the
foreground mask) to the object center 2. Finally, we use a
merging process to combine the results from each branches
to generate the instance segmentation.

We highlight three contributions of our work:

• Inspired by bounding box regression, We propose
a dense regression scheme: pixel offset regression,
which adjust each foreground pixel pointing to corre-
sponding object center.

• With the aid of pixel offset regression scheme, we
can simply extend single-shot object detector to single-
shot instance segmentation system.

• The single-shot nature of our framework makes it fast
(∼8 FPS without code optimization on NVIDIA K40
GPU), which shows a good potential for high effi-
ciency required applications.

2. Related Work
Object Detection. The task is to predict a bounding
box around each object of interest with a class label. R-
CNN based methods [10, 9, 21] are the most predominant
deep networks for object detection in recent years. The
“vanilla” R-CNN [10] follows an object proposal genera-
tion paradigm: First, a large amount of region proposals are
generated using selective search [25], followed by a fixed-
size wrapping of each region of interest (ROI). Next each

2Our object center regression is analogical to the way SSD matches
anchor boxes to candidate objects, where the box centers and sizes are
estimated. In our method, the per-pixel offset vectors w.r.t. the object
center are estimated.

warped ROI is respectively passed into a CNN to obtain a
classification score. To eliminate the bottleneck of object
proposal generation, Faster-RCNN [21] uses a RPN to sub-
stitute selective search, where the feature maps are shared
across all object proposals. The ROI pooling layer warps
each ROI for sub-network feeding. R-CNN and Faster-
RCNN are multi-shot architectures. In comparison, the
Single-Shot Multibox Detector (SSD) [17] performs detec-
tion in a single network pass, which significantly increases
the speed. However, SSD yields detection boxes that can
only localize objects. Thus it is not suitable for applications
need fine-grain mask in scene parsing and segmentation.
Semantic Segmentation. The task is to assign a class la-
bel for each pixel of the input image. Recent methods
[27, 4, 18, 20, 3] are all based on the fully convolutional
network (FCN) [19], where the fully connected layers in
the CNN are replaced with fully convolutional layers. As
higher layers in the FCN contain more semantic informa-
tion but less spatial cues due to max-pooling, FCN adopts
a hierarchical training scheme that fuses the 32-stride, 16-
stride, and 8-stride layers in turns. Noh et al. [20] propose
a coarse-to-fine deconvolution network to enhance the se-
mantic features while retaining spatial contexts. Liu et al.
[18] combine global average pooling within the layers in
FCN to observe global contexts. To compensate the loss
of spatial cues in the pooling, The work of DeepLab [3]
introduces the dilated convolution to increase the receptive
field while maintaining the output resolution. Their scale-
awareness work [4] takes advantage of image-level scale
priors with the assistance of an attention model. Heng-
shuang et al. [27] propose a pooling pyramid on the lay-
ers to embed various scale semantic features in the FCN to
differentiate local and global contexts. Despite these meth-
ods perform well on pixelwise semantic segmentation, they
cannot distinguish individual instances of objects.
Instance Segmentation. Instance segmentation is a joint
task combining detection and segmentation, with an aim
to simultaneously assign both the class and instance labels
for object foreground pixels. Existing methods [14, 12, 13,
6] typically follow the R-CNN object detection pipeline,

Figure 2. Illustration of pixel offset regression. The triangles are
center location of respective objects. The black arrow denotes ad-
just each pixel inside object pointing to corresponding object cen-
ter.

which is multi-shot in nature. Dai et al. [6] proposed a
multi-task network cascade (MNC) model that delineates
object masks, classifies objects, and distinguishes object in-
stances in three separated steps. The Mask-RCNN of Kaim-
ing et al. [14] adds a small FCN branch to the Faster-RCNN
to predict object masks. A ROI-align pooling keeps track of
pixel locations during the pooling to alleviate the loss of
spatial details. Another line of works adds a conditional
random field [2] or a metric similarity model [8] to the end
of the instance segmentation network to refine their results.
Such post-processing approaches are time-consuming and
not capable in handling complex scenes. The PFN [16] per-
forms instance segmentation by clustering without object
detection. FCIS [15] identifies instances using “position-
sensitive score maps”, where each channel of the map repre-
sents different positions of a ROI in a 3×3 grid, and obtains
object classification at the end. FCIS uses ResNet-101 as
the base network and many GPU resources are used in train-
ing. In this paper, we focus on highlighting the generality
of Pixel Offset Regression (POR) scheme, which can extend
single-shot object detector to single-shot instance segmen-
tation system. We leave advanced model integration for top
performance to the future work.

3. Method
Our single-shot instance segmentation pipeline consists

of five components as shown in Fig.1: a base network fol-
lowed by a detection branch, a segmentation branch and a
pixel offset regression branch, where the outputs are com-
bined in a merging process. Boosting top performance with
advanced models such as ResNet-101 is not our key in this
paper, as we focus on the generality of proposed Pixel Off-
set Regression (POR) scheme. Considering training cost
and stability, We adopt VGG16 network [24] pre-trained on
the ILSVRC CLS-LOC dataset [23] without the last two
fully connected layers fc6, fc7 to be our base network.
We describe the rest of the components in the following
subsections.

The performance of our method depends on how well the

object segmentation and the class/instance labels are. To
achieve the best single-shot performance after the feature
extraction from the base network, we use a fast detection
branch to determine the object bounding boxes with class /
instance labels, in parallel with segmentation branch and a
pixel offset branch.

Our detection branch follows the single-shot multi-class
object detection pipeline (e.g. SSD [17]) that effectively
generates object bounding boxes with class labels. Our
method can be reduced to SSD by keeping the base and de-
tection branch (with the segmentation branch, pixel offset
regression branch and merging process off).

Our segmentation branch determines foreground re-
gions. With the aid of detections, a mask inside detection
bounding box can be cropped out. However, it is challeng-
ing to distinguish different instance in this mask, thus per-
pixel instance labeling is non-trivial. The determination of
instance labels of segmented regions is the key problem in
instance segmentation. Our solution is to use a deconvo-
luted fully convolutional network (FCN) in our pixel offset
regression branch, inspired from the work of U-Net [22].
The architecture consists of concatenated convolutional and
deconvolutional layers. The advantage of such conv-deconv
FCN is that it can effectively explore the spatial and seman-
tic information within the image. This branch performs the
object center regression as shown in Fig.2.
§3.1 will describe our pixel offset regression, which as-

signs the class and instance labels for each foreground pixel.
This step is complementary to and works hand-in-hand with
our detection and segmentation branch to effectively deter-
mine object instances. As Fig.1(f) depicts, the per-pixel re-
gression vectors point to respective object center(s) in dense
clusters. §3.2 will describe how the merging of the detec-
tion, segmentation and pixel offset regression branches in
determining the final instance segmentation.

3.1. Pixel Offset Regression
Our per-pixel object center regression estimates a vector

pointing from each pixel to its respective object center. Let
P = {pi | i = 1, 2, ..., n} denotes all pixels in the input
image, and O = {oj | j = 1, 2, ...,m} denotes the set
of objects (instances) appeared in the given image. Let vi

denotes the location of pixel pi, and cj denotes the center
location of object oj . We enforce each pixel to belong to
exactly one object instance or the background. If pixel pi
is inside object oj , pi ∈ oj ; otherwise pi is a background
pixel, pi ∈ ∅, the case of an outlier for the regression. The
offset fi of pixel pi pointing to object center cj is then:

fi =

{
cj − vi, pi ∈ oj ,
0, pi ∈ ∅,

(1)

Fig.1(f) shows the accumulation of all center-pointing vec-
tors {fi} form dense clusters, where each indicates an ob-
ject instance. The next section describes how we determine

the object instances using a voting scheme in the merging
process.

We design an adaptive voting zone for each detection
center using a threshold scheme, as in Fig.1(f). Let kj de-
notes the diagonal length of detection box dj . The adap-
tive voting zone is a circle with radius rj = σ · kj . Let
φij = {0, 1} be an indicator denoting whether pixel pi be-
longs to object oj or not. Let Pf denote the set of pixels
from the object foreground mask. The thresholding scheme
in selecting object instance pixels is formulated by defining
φij as:

φij =

{
1, ĉi − bj <= rj and pi ∈ Pf ,
0, otherwise. (2)

Our merging process ensures that each pixel in the in-
put image (including object pixels and the background) is
assigned with the best estimated class and instance labels,
such that a sound instance segmentation is obtained.

3.2. Merging Process for Instance Estimation
The merging process combines results from each branch

to produce the instance segmentation. Ideally, object cen-
ters indicated by all {fi} should be dense and sharp, pro-
vided that: (1) each object is well localized from the de-
tection network, (2) the foreground mask is well obtained
from the segmentation network, and (3) the regression has
a good fit. In practice, the regressed center-pointing vec-
tors fi form a distribution around the center. We use a
simple effective thresholding scheme to robustly estimate
the true object center as well as determine the pixels be-
longing to each object instance. We assume each object oj
can be successfully detected in a bounding box dj , where
D = {dj | j = 1, 2, ...,m} is the set of object detections.
For each center-pointing vector fi, we recover its object cen-
ter ĉi using Eq.(1). Let bj denote the center of box dj . We
calculate the Euclidean distance between ĉi and bj to esti-
mate the probability if pixel pi belonging to object instance
oj .

3.3. Loss Functions
The loss L for training our network is the sum of the

detection loss Ldet, the segmentation loss Lseg and pixel
offset regression loss Lo. The detection loss Ldet is the
weighted sum of the localization loss Lloc and class confi-
dence loss Lcf from all matched anchor boxes: 3

Ldet =
1
N (Lcf + Lloc), (3)

where N is the number of matched anchor boxes. We cal-
culate Lseg using pixel-wise summation of cross entropy
terms. The predicted confidence map after softmax is a 2-
channel feature map, denoted asM.Ml

i is as the likelihood

3We make our network loss consistent with SSD [17], so our method
can be reduced to a SSD detector.

of the i-th pixel matching its ground truth class label l (0 or
1), and |M| is the number of pixels in M. The class loss
Lseg is defined as:

Lseg =
1

|M|

(
−
∑
i

log(Ml
i)

)
. (4)

We use an adaptive weighted sum of smooth L1 loss [9]
to define our pixel offset regression loss Lo. We denote the
center-pointing pixel offset map as N and the correspond-
ing ground truth map as N g . The loss Lo is defined as:

Lo =
1

|Pf |

(∑
i

γi · smoothL1
(Ni,N g

i)

)
, (5)

where the weight γi >= 0 controls the contribution of loss
from each foreground pixel, and |Pf | is the number of all
foreground pixels.

Existing methods including SSD [17] and Faster R-CNN
[21] calculate the smooth L1 loss without considering ob-
ject scales. In comparison, we propose an improvement by
calculating an adaptive weighting of our pixel-wise offset
loss Lo, with an aim to balance the scale variations from
large vs. small objects in the scene during the object cen-
ter regression. This design is important as it can prevent
the domination of large objects (and ignoring the small ob-
jects) that occurs in instance regression,which is due to two
reasons: (1) the greater amount of pixels in large objects
can dominate the regression, and (2) large objects contain
larger pixel-to-object-center offsets especially at the bound-
ary pixels. Our adaptive weighting scheme can effectively
balance loss contributions from all objects neglecting their
sizes. Let wj and hj be the width and height of the bound-
ing box of an object oj . The adaptive weight γi is defined
by:

γi =

{
(1
wj hj

)3/2, if pi ∈ oj ,
0, if pi ∈ ∅.

(6)

3.4. Implementation Details
Our detection network is based on the setting of SSD300

[17]. As shown in Fig.1, we use 6 conv layers after the
base network and 6 branching paths from these layers to
the end to generate multi-scale object detections. Our seg-
mentation branch and pixel offset regression branch shares
most layers of a deconvoluted FCN based on the U-Net
[22], where the original down sampling path of U-Net is
replaced by our base network. We upsample in each deconv
layer to match the resolution of the corresponding conv
layer. Outputs from the deconv layer and the correspond-
ing conv layer are concatenated as input to the next layer
during an up-sampling. Such up-sampling repeats until the
resolution of last layer matches the input image (300×300).
Then two paths at the last layer generate the semantic con-
fidence mapM (300×300×2) and the pixel offset mapN

Table 1. Instance segmentation performance (using the mAP met-
ric at 0.5 and 0.7) and running speed (FPS) of different VGG16
based methods on pascal VOC2012 validation set.

Type Methods 0.5 0.7 GPU Platform FPS
- PFN [16] 58.7 42.5 Titan C++ 1.0

M
MNC [6] 63.5 41.5 K40 C++ 2.4
SDS [12] 43.8 21.3 - C++ <1.0
Chen [5] 46.3 27.0 - C++ <1.0

S Ours-300 49.1 27.8 K40 Python 7.7
Ours-512 54.7 28.1 K40 Python 4.0

(300 × 300 × 2). We set voting scale parameter σ = 0.17
in merging process.

Training. We conduct experiments on a workstation
equipped with dual Intel Xeon X5570 2.93 GHz 4 Core
CPU and a NVIDIA Tesla K40 GPU. We use adadelta opti-
mization with training batch size 8. Learning rate is initially
0.01, decreased by a factor of 10 after every 20 epochs.
To improve training stability, we start with the training of
the entire network for 100 epochs (considering the overall
losses L = Ldet + Lseg + Lo), and then alternatively train
individual branches. To ensure accurate object detection for
the training of the segmentation network, we first fine-tune
the detection branch with learning rate starting from 0.001
for 50 epochs. We then fine-tune the segmentation branch
with fixed detection parameters for 50 epochs. These two
steps iterate until the epoch reaches 200.

4. Experiments
In this section, we describe the evaluation experiments

in detail on three datasets: PASCAL VOC 2012, KITTI and
Berkeley-BDD. Fig.3 illustrates a few of our instance seg-
mentation examples.

4.1. PASCAL VOC 2012

The PASCAL VOC2012 instance segmentation bench-
mark [7] consists of 20 object categories, 1464 training im-
ages, 1449 validation images, and 1456 testing images. Fol-
lowing the [6, 15] protocol, we use the VOC2012 train-
ing set with additional instance annotations provided by
[11] as our training set. Experiments are performed on
the VOC2012 validation set using the mean average pre-
cision (mAP) [12] as the evaluation metric. We use the
intersection-over-union (IoU) thresholds at 0.5 and 0.7
to compare the resulting segmentation mask against the
groundtruth for each object.
Main Results. Table 1 compares our method with recent
VGG16 based instance segmentation methods on the PAS-
CAL VOC2012 validation set at mAP0.5 and mAP0.7. The
“-” in PFN [16] architecture denotes it is neither multi-
shot nor single-shot, as it uses clustering algorithm as post-
process to generate instance. Ours-300 is our framework

Table 2. Instance segmentation performance at mAP 0.5 of car,
person and bus on KITTI and Berkeley-BBD.

Category KITTI Berkeley-BBD
car 50.0 41.7

person 13.4 9.6
bus 37.6 23.5

with input size 300×300, which outperforms the multi-shot
methods SDS [12] and Chen et al. [5] at mAP0.5 by 4.9%
and 2.4%, respectively. It also outperforms them at mAP0.7

by 6.4% and 0.7%. Despite the PFN [16] and multi-shot
method MNC [6] can achieve better performance, the run-
ning time efficiency limits their potential in many applica-
tions such as vehicle surveillance.

Ablation study. Ours-512 in Table 1 is the framework with
input size 512×512. We detached the shared layers in each
branch of this framework into three independent branches.
We modify segmentation branch to predict semantic mask
of image. The results show the performance at mAP0.5 and
mAP0.7 are increased by 5.6%, 0.3% compared to Ours-
300, yet FPS is affected by input size increasing and shared
layers reducing.

Run time efficiency. Since SDS [12] and Chen et al. [5]
utilizes time consuming bottom-up proposal generation, we
do not involve them in running efficiency comparison (de-
note as< 1.0). Despite we do not highly optimize our code,
our method shows well trade-off between performance and
running efficiency, thus shows the potential for fast speed
needed applications.

4.2. KITTI and Berkeley-BDD

KITTI instance-level dataset [1] consists of 200 semanti-
cally annotated train as well as 200 test images with 34 cat-
egories. Berkeley-BDD dataset [26] for segmentation con-
tains 3333 images in training set, 745 images in validation
set and 1483 images in testing set, with 40 categories.

We evaluate our framework on three categories car, per-
son and bus on training set of KITTI and validation set of
Berkeley-BDD using pre-trained model on PASCAL VOC
2012 at mAP 0.5, which is shown in Table 2.

5. Conclusions
We present a novel Pixel Offset Regression (POR)

scheme to extend single-shot object detector to single-shot
instance segmentation system. The POR scheme can effec-
tively cluster foreground pixels w.r.t. their object centers
and solve the instance segmentation problem using a sin-
gle forward pass. Our framework is based on VGG16 and
compared favorably with VGG16 based multi-shot meth-
ods, and exhibits potential for use in high efficiency appli-
cations such as vehicle surveillance. Future work includes

Figure 3. Visual illustration of performing our framework on PAS-
CAL VOC2012 (first three rows), KITTI (4th row) and Berkeley-
BDD (last row).

the use of more powerful models (e.g. ResNet) and inte-
gration of feature pyramid network into our segmentation
branch for improved performance.
Acknowledgement. This work is supported by the United
States Air Force Research Laboratory (AFRL) under Con-
tract No. FA8750-16-C-0166.

References

[1] H. A. Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger,
and C. Rother. Augmented reality meets deep learning for
car instance segmentation in urban scenes. In BMVC, 2017.

[2] A. Arnab and P. H. Torr. Pixelwise instance segmentation
with a dynamically instantiated network. In CVPR, 2017.

[3] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Semantic image segmentation with deep con-
volutional nets and fully connected crfs. In ICLR, 2015.

[4] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. At-
tention to scale: Scale-aware semantic image segmentation.
In CVPR, 2016.

[5] Y.-T. Chen, X. Liu, and M.-H. Yang. Multi-instance object
segmentation with occlusion handling. In CVPR, 2015.

[6] J. Dai, K. He, and J. Sun. Instance-aware semantic segmen-
tation via multi-task network cascades. In CVPR, 2016.

[7] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman. The Pascal Visual Object Vlasses (VOC) chal-
lenge. IJCV, 2010.

[8] A. Fathi, Z. Wojna, V. Rathod, P. Wang, H. O. Song,
S. Guadarrama, and K. P. Murphy. Semantic instance seg-
mentation via deep metric learning. arXiv:1703.10277,
2017.

[9] R. Girshick. Fast R-CNN. In ICCV, 2015.
[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic
segmentation. In CVPR, 2014.

[11] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik.
Semantic contours from inverse detectors. In ICCV, 2011.

[12] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simul-
taneous detection and segmentation. In ECCV, 2014.

[13] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-
columns for object segmentation and fine-grained localiza-
tion. In CVPR, 2015.

[14] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-
CNN. In ICCV, 2017.

[15] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei. Fully convolutional
instance-aware semantic segmentation. In CVPR, 2017.

[16] X. Liang, Y. Wei, X. Shen, J. Yang, L. Lin, and S. Yan.
Proposal-free network for instance-level object segmenta-
tion. TPAMI, 2017.

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.
Fu, and A. C. Berg. SSD: Single shot multibox detector. In
ECCV, 2016.

[18] W. Liu, A. Rabinovich, and A. C. Berg. Parsenet: Looking
wider to see better. In ICLR, 2016.

[19] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015.

[20] H. Noh, S. Hong, and B. Han. Learning deconvolution net-
work for semantic segmentation. In ICCV, 2015.

[21] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-
wards real-time object detection with region proposal net-
works. TPAMI, 2017.

[22] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolu-
tional networks for biomedical image segmentation. In MIC-
CAI, 2015.

[23] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. ImageNet Large Scale Visual Recognition Challenge.
IJCV, 2015.

[24] K. Simonyan and A. Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv:1409.1556, 2014.

[25] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and
A. W. M. Smeulders. Selective search for object recognition.
IJCV, 2013.

[26] H. Xu, Y. Gao, F. Yu, and T. Darrell. End-to-end learning
of driving models from large-scale video datasets. In CVPR,
pages 3530–3538, 2017.

[27] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene
parsing network. In CVPR, 2017.

