LIET AL.: AP FOR SSM IN OBJECT DETECTION 1

Exploring the Vulnerability of Single Shot
Module in Object Detectors via
Imperceptible Background Patches

Yuezun Li’ T University at Albany,
yli52@albany.edu State University of New York, USA
Xiao Bian® 2GE Global Research Center,
xiao.bian@ge.com Niskayuna, New York, USA
Ming-Ching Chang'
mchang2@albany.edu
Siwei Lyu’
slyu@albany.edu

Abstract

Recent works succeeded to generate adversarial perturbations on the entire image or
the object of interests to corrupt CNN based object detectors. In this paper, we focus on
exploring the vulnerability of the Single Shot Module (SSM) commonly used in recent
object detectors, by adding small perturbations to patches in the background outside
the object. The SSM is referred to the Region Proposal Network used in a two-stage
object detector or the single-stage object detector itself. The SSM is typically a fully
convolutional neural network which generates output in a single forward pass. Due to the
excessive convolutions used in SSM, the actual receptive field is larger than the object
itself. As such, we propose a novel method to corrupt object detectors by generating
imperceptible patches only in the background. Our method can find a few background
patches for perturbation, which can effectively decrease true positives and dramatically
increase false positives. Efficacy is demonstrated on 5 two-stage object detectors and
8 single-stage object detectors on the MS COCO 2014 dataset. Results indicate that
perturbations with small distortions outside the bounding box of object region can still
severely damage the detection performance.

1 Introduction

Convolutional Neural Networks (CNN) are shown to be vulnerable against adversarial per-
turbations [10], which are intentionally designed and imperceptible noise added to the input
that can drastically affect network performance. Many works [2, 6, 10, 14, 23, 24, 25, 26,
31, 34] have investigated this vulnerability and proposed various adversarial attack methods
to impair image classifiers.

Recently, adversarial perturbations are extended to networks for other computer vision
tasks such as the object detectors and semantic/instance segmentation networks [4, 7, 15, 21,
22, 33]. However, all existing methods focus on creating adversarial perturbations on either

(© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.


Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2015

Citation
Citation
{Baluja and Fischer} 2018

Citation
Citation
{Evtimov, Eykholt, Fernandes, Kohno, Li, Prakash, Rahmati, and Song} 2018

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2015

Citation
Citation
{Kurakin, Goodfellow, and Bengio} 2017

Citation
Citation
{Luo, Liu, Wei, and Xu} 2018

Citation
Citation
{Moosavi-Dezfooli, Fawzi, and Frossard} 2016

Citation
Citation
{Moosavi-Dezfooli, Fawzi, Fawzi, and Frossard} 2017

Citation
Citation
{Papernot, McDaniel, Jha, Fredrikson, Celik, and Swami} 2016

Citation
Citation
{Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus} 2013

Citation
Citation
{Zeng, Liu, Qiu, Xie, Tai, Tang, and Yuille} 2017

Citation
Citation
{Chen, Cornelius, Martin, and Chau} 2018

Citation
Citation
{Eykholt, Evtimov, Fernandes, Li, Rahmati, Tramer, Prakash, Kohno, and Song} 2018

Citation
Citation
{Li, Tian, Chang, Bian, and Lyu} 2018

Citation
Citation
{Lu, Sibai, and Fabry} 2017{}

Citation
Citation
{Lu, Sibai, Fabry, and Forsyth} 2017{}

Citation
Citation
{Xie, Wang, Zhang, Zhou, Xie, and Yuille} 2017


2 LIET AL.: AP FOR SSM IN OBJECT DETECTION

the entire image or the object itself. An intuitive question to ask is: can adversarial pertur-
bations be added solely on the background to achieve similar vulnerability? We will address
this very problem in this paper. Specifically, we explore the vulnerability of the single shot
feedforward network in the state-of-the-art two-stage [29] and single-stage object detectors
[16, 18, 19, 28] and show that the mechanism can be corrupted by adding imperceptible per-
turbations on a few small background patches, which can not only decrease true positives of
detected objects, but also increase false positives in the background. Figure 1 shows a visual
illustration of this approach. Looking forward, how to address the vulnerability of modern
object detectors explored in this work will be a critical open issue, as applications including
autonomous driving and Al medical image analysis demand highly reliable and trustworthy
object detectors [1].

Mainstream CNN based ob-
ject detectors call into two cate-
gories: two-stage and single-stage
object detectors. The Single Shot
Module (SSM) refers to the Re-
gion Proposal Network (RPN) in
the two-stage object detectors or
the single-stage object detector it-
self. Since the SSM makes use
of excessive convolutions in mul-
tiple layers, the receptive field is
often much larger than the object
size. This is precisely how con-
Figure 1: Visual illustration of the background patch attack on textual information outside the ob-
object detectors. (a) Original image. (b) Adversarial background jeCtS can be leveraged to imprOVe

patches, amplified by a factor of 30 for visualization. (c) Perturbed ~ detection. However, this prop-
image. (d, f) Detection results of (a, c) using Faster-RCNN [29] re- erty also makes SSM vulnerable
spectively. (e) Zoom-in of the false positives “person” and “TV” in .

for attacks coming from the back-

(d). Red boxes in (d) denote miss detections.
ground. If SSM was corrupted, no
correct object proposals or detections will be generated, therefore leading to large errors.

In this paper, we propose a novel method to generate adversarial background patches
to attack SSM. Our method finds effective locations and shape for background patches to
create adversarial perturbations inside, which not only decreases the true positives, but also
dramatically increases the false positives in the background. To the best of our knowledge,
most existing works focused on disrupting the true positives, and very few address the false
positives — which, in our view, is equally important regarding vulnerability in practical
use, see Figure 1(e). Our method can effectively corrupt the SSM output ranking, such that
false positives can be pushed ahead of true positives, see Figure 2(d-e). Our adversarial
background patch attack aims at achieving the following three aspects: (1) decreasing the
classification scores of correct detections, (2) corrupting the shape offset regression which
shifts the localization (shape and location) of the correct detections, and (3) increasing the
(non-background) object class scores that should not come up in the background. Our back-
ground patch attack generation can be cast as an optimization problem by minimizing the
combination of the following three loss terms: (1) True Positive Class (TPC) loss, which
characterizes the correct class scores of the true positives; (2) True Positive Shape (TPS)
loss, which represents the correctness of shape offset regression of the true positives; (3)
False Positive Class (FPC) loss, which characterizes the non-background class scores of
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Figure 2: Overview. (a) Original image. (b) Background patches generated by our method. (c) Base-network,
which is the RPN for two-stage object detectors or the single-stage object detector itself. (d) Output of SSM, where
the red box and black box denote a false positive and a true positive, respectively. Our attack can disrupt the
top ranked results by decreasing true positives and increasing false positives. (e) denotes the top ranked results,
which are the object proposals for two-stage object detectors or the detections for single-stage object detectors. (f)
Sub-network of two-stage object detectors for class labels prediction and shape refinements.

false positive arisen from the background. The combination of these three loss terms can be
minimized using iterative gradient descent, such that the desired quantities regarding adver-
sarial background patches (pixels, location and shape) can be calculated.

To demonstrate the efficacy of our method, we conduct experiments on the MS COCO
2014 dataset [17] by attacking 5 mainstream two-stage object detectors and 8 single-stage
object detectors. We conducted ablation studies investigating the vulnerability effects with
respect to the following factors, and show how they can affect the degraded performance: (1)
distance between generated background patches and the object of interest, (2) scale of the
object to be detected, and (3) distances between objects.

The contributions can be summarized as four-fold:

o To the best of our knowledge, we are the first to explore the vulnerability of two-stage and
single-stage object detectors by adding imperceptible adversarial perturbations on small
patches in background.

e Our background patch attack can effectively decrease true positives and increase false
positives in the background.

e We conduct comprehensive experiments on mainstream object detectors (5 two-stage and
and 8 single-stage ones) to expose their vulnerability.

e Our method can generate ‘targeted’ false positives of a given class in the background
(§4.2), which can cause serious vulnerability, e.g., to force a autonomous driving detector
to trigger false pedestrian detections.

2 Related Works

Object Detectors. The objects of interest in an image are detected by producing bounding
boxes and class labels. The state-of-the-art object detectors are deep neural network based,
where the network architecture consists of either a single-stage forward pass [16, 18, 19, 28]
or a two-stage pipeline [8, 9, 29]. The two-stage object detector first generates object pro-
posals, and then predict class labels and refine the shapes and locations of the proposals.
Faster-RCNN [29] is the very recent two-stage object detector, which improves the detection
efficiency by using a Region Proposal Network (RPN) to generate object proposals. The
RPN is essentially a fully convolutional neural network (FCN), which generates all object
proposals in a single forward pass. First a set of anchor boxes are identified, then object
proposals are generated by estimating the location and shape of each anchor box with con-
fidence scores. The top ranked object proposals will be selected for further classification
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and refinement. RPNs are effective and widely used in current two-stage object detectors.
In comparison, single-stage object detectors [16, 18, 19, 28] can be viewed as an upgraded
version of RPNs, where all detections are generated in a single forward pass (without gener-
ating proposals). Instead of predicting the confidence scores of the object proposals in RPN,
single-stage object detectors directly predict the classification score for each detection.

Adversarial Attacks for Image Classifiers. Adversarial perturbations are intentionally de-
signed noises that are imperceptible to human observers, yet can seriously reduce the deep
neural network performance if added to the input image. Many methods [2, 10, 14, 23, 24,
25, 26, 31, 34] have been proposed to impair image classifiers by adding adversarial pertur-
bations on the entire image. Recently, [3, 6] show that adversarial attacks can be generated
in the physical world, using printable “stickers” that can be put on the objects in the scene
to fool image classifiers. These stickers are clearly identifiable from human eyes but not the
machines. The work of [13] generates an artificial adversarial patch in the background that is
notable to human eyes but can cripple machine image classification. In contract, our method
provides more sophisticated attacks on object detection, and the perturbation is imperceptible
to human eyes.

Adversarial Attacks for Object Detectors. Recent research also explores the vulnerability
of object detectors with extended network architectures [4, 7, 15, 21, 33]. Object detection is
widely used in practical applications such as autonomous driving, thus the impact of attack
vs. vulnerability is greater. In [21], adversarial perturbations are added to the stop-sign
and face images that can cripple their detections. The dense adversary generation in [33]
iteratively impairs both object detection and semantic segmentation. A physical adversarial
perturbation method is proposed in [4] to attack Faster-RCNN based stop-sign detector. The
work [7] extends [4] to other detectors such as YOLO, in that a physical adversarial sticker
can cripple the stop-sign detection. The robust adversarial perturbations in [15] corrupts deep
proposal-based object detectors and instance segmentation methods by attacking the RPN,
thus only two-stage networks are attacked. All aforementioned methods focus on adding
adversarial perturbations on the entire image or the object itself. Moreover, these methods
have no intention to attack on the aspect of increasing false positives, their goal is solely
on decreasing the true positives. The work [20] generated a visible adversarial patch on the
left-top corner of image to fool Faster-RCNN and YOLO. In contrast, our adversarial attack
is more universal in that: (1) most modern object detectors including both single-stage and
two-stage ones are covered, (2) both the true and false positives of the detection are explicitly
impaired, and (3) the added perturbation is imperceptible and only on the small patches that
are optimally selected in background.

3 Methods

Our method can generate imperceptible background patches, which can effectively damage
mainstream CNN object detectors, by simultaneously decreasing true positives and increas-
ing false positives in background. The true positives will be corrupted with decreased clas-
sification score and largely shifted localization (shape and location). The false positives will
be exacerbated with increased (non-background) class scores that should not come up in
the background. Our approach can be formulated as the minimization of three loss terms:
True Positive Class (TPC) loss, True Positive Shape (TPS) loss and False Positive Class
(FPC) loss, which we will formally define in §3.2-3.4. The loss minimization can be com-
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puted using iterative gradient descent in §3.5, where the variables of unknown are the pixel
perturbations and localization (shape and location) of the background patches.

Our attack method works in a ‘white-box’ manner, i.e., we assume that it has access to
network parameter for back-propagation gradient computation.

3.1 Notations and Problem Formulation

Let Z denote the input image, {b; = (%, %;,W;,h;),i = 1,...,N} denote the N ground truth
bounding boxes {b;} for the objects of interest in image Z, where (%;,7;) are the box center
coordinates, (w;, ;) are their widths and heights, respectively. Let {0, ...,C} denote the set of
class labels, where 0 is the background class, and C+ 1 is the number of classes. Specifically,
for two-stage object detectors, C = 1 as the focus is to attack RPN, only the two classes of
background/object need to be considered. !

Let F denote the Single Shot Module (SSM) with fixed model parameters. Let F(Z) =

{(s$,0;),j = 1,...,M} denote the SSM results of either RPN object proposals or single-
stage detections on image Z 2 where s; denote the score of class ¢ after softmax, b; denote
the bounding box of the j-th detection, and M is the number of SSM proposals/detections.
Let bj = (xj,yj,w;,h;), where (x;,y;) are the box center coordinates, and (w;,h;) are their
widths and heights, respectively. Let Q = { (&, ¥, Wk, k), k = 1, ..., K} denote the adversarial
background patches, with locations specified by (%,7;) and shapes specified by (wy,7y); K
is the number of background patches that will be added for attack. Let Z® Q denote the
masked pixel regions on image Z specified by the background patches Q.

Our goal is to generate background patches with small pixel changes that can disrupt
SSM. The adversarial attack is then the search of both the background patch geometry (lo-
cation, size and shape) and pixel changes to be altered. We formulate this optimization as
the minimization of three loss terms: TPC denoted as Ly, TPS as Lgqpe, and FPC as Ly .
To maximize adversarial attack effects, while minimizing any distortion to the input image
Z, we control the amount of pixel change inside the background patches Q, by employing
the Peak Signal-to-Noise Ratio (PSNR), a widely used metric for human perception of im-
age quality. Smaller distortion leads to higher PSNR value. Specifically, the adversarial
background patch can be produced by minimizing the following loss function w.r.t. Z® Q,
considering the location and shape of the background patches Q and the included pixel value
7 ® Q as variables:

lII}’)lg {szc(z@ Q,]:) +L.shape(I® Q"F) +prc(I® Q,]:)} >

(1)
s.L. PSNR(ZG Q) > ¢,

where € is the lower bound of PSNR. Compared to a recent work [15] which creates ad-
versarial perturbations on the entire image to decrease true positives, our method creates
adversarial perturbations only in selected background patches and can largely increase false
positives as well.

3.2 True Positive Class (TPC) Loss

Our approach attacks detectors by only introducing changes in the background. Since the
sum of all class scores is 1, the attack of decreasing the score of the correct class ¢ can

! Note that our method does not require the original ground truth labeling (used for detector training). In practice,
we can use the first test detection results as the ground truth to compute the three loss terms.
2We denote object proposals as detections hereafter for simplicity.
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be alternatively achieved by increasing the score of another running up class ¢, such that
s¢ > s¢ invalidates a good detection. To make this attack most effective, we try to increase
the score of the running up class ¢ with the largest score s¢ among all classes except c, i.e.,
¢ €40,...,C}/{c}. This running up detection selection considers the following criteria: (1)
detection b; with IoU overlapping with its ground truth box greater than threshold 0.5, and
(2) class score s} greater than threshold 0.1. Let z; = 1 for the detection b; satisfying the
above two cr1ter1a and z; = 0 otherwise. The TPC loss L. sums up the cross entropy of
scores from the selected running up detections z; among all M detections:

Lipe(TOQF)= Z —1zjlog(s ) 2

Minimizing Eq.(2) increases score s from an incorrect class that can effectively invalidates
true positives.

3.3 True Positive Shape (TPS) Loss

Shape regression is an important step to refine the localization of detections (or proposals),
where the locations and shapes of anchor boxes are adjusted to match the corresponding
ground truth boxes, by expressing the localization in terms of offsets. In general, CNN
object detectors are vulnerable under attack at the shape regression step, even when the clas-
sification is functioning perfectly, as good detections will be pushed away from their desired
locations. The TPS loss is designed to push away the predicted localization from the correct
ones. Let Ax;,Ay;,Aw;,Ah; denote the predicted offset in terms of object center and bound-
ing box size. Let A%, A¥;, AW ;,Ah; denote the true offset between the corresponding anchor
boxes and ground truth boxes. The TPS loss Lyjqp. sums up the squared offset differences of
selected true positives under the criteria z; defined in § 3.2 among all M detections:

Lshape(IQ Q’]:) = exp{_zl}/lzl zj
[(Ax; — A%))* + (Ay; — Ay;)° 3)
+(Aw; —Aw))* + (Ah; — AR;j)?]}.

Minimizing Eq.(3) encourages pushing the predicted offsets Ax;,Ay;,Aw;,Ah; away
from the true offsets Ax;,Ay;,Aw;,Ah;, to corrupt the predicted localization of b;. Note
that in contrast to [15] which disrupts the shape offset regression by pushing the localization
toward a large constant value, here we directly optimize against known ground truth values,
which should be more effective.

3.4 False Positive Class (FPC) Loss

We introduce FPC as a novel loss term to strengthen the attack that can corrupt detectors
by increasing false positives in the background. In the case without attack, the background
should only contain detections (or proposals) with high scores belonging to the background
class. To make detectors generate false positives, the attack should make the score of an
object class ¢’ € {1,...,C} greater than that of the background class 0, (i.e., s > so), to
push the incorrect detections ahead to the top. The red box in Figure 2 (d-e) shows one
such example. To make such attack most effective, we propose to try pushing forward the
class instance ¢’ with the largest score among {1, ...,C} in the FPC loss design. Specifically,
since the goal is to create false positives in the background, only detections b; satisfying the
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following conditions need to be considered: (1) detection b; without overlapping with any
ground truth box (i.e., fully in the background), and (2) detection b; with IoU overlapping
with the generated background patches Q greater than threshold 0.1. Let r; = 1 for the
detection b; satisfying the above criteria, and r; = 0 otherwise. The FPC loss Ls,. sums up
the cross entropy of the selected ; scores among all M detections:

Lipe(TOQF) = — Y% rilog(sS). 4)

Minimizing Eq.(4) encourages to increase the score s?l of some incorrect object class in
the background, which thereby creates false positives.

3.5 Background Patches Generation

Our method generates and refines the adversarial background patches in the overall loss
optimization iterations. We describes how the background patches are initialized, and how
they can be expanded and refined, according to the framework in Eq.(1) incorporating the
three loss terms. Direct minimization of the loss function in Eq.(1) with respect to Z® Q is
difficult. Thus, we employ a standard iterative optimization scheme using gradient descent.

In general, an object detector finds multiple objects, and the closer the objects are, the
greater their receptive fields overlap. This suggests that a single adversarial background
patch can corrupt the detection of multiple objects, as long as the background patch are close
enough to them. To select where best to put in background patches for most effective adver-
sarial attack, we consider the spatial distribution of the objects and the potential locations,
shapes, and sizes of background patches. We start with clustering the objects of interest into
groups based on their spatial distances within the image. For each group, we empirically
generate n, = 3 background patches as initialization.

Algorithm 1 lists the pseudo code of our adversarial image generation procedure. We
first compute the gradient of the overall loss term w.r.t. Z; as

gt = VI, [Ltpc(l-f;]:) +L‘vlmpe(Zt;]:) +prc(It;]:)] (5)

where ¢ denote the iteration number. > We next describe how the background patches Q are
initialized and updated.

Initial background patches: We consider candidates of background patches for each tar-
geted object, with size initialized to 0.2 of the object size, and aspect ratios (1, 0.67, 0.75,
1.5, 1.33). Sliding windows are used to select, for each object group, the best location and
shape of the background patches Qy, according the the following criteria: (1) The distance
between background patch and objects should not be less than a threshold, as 0.2 of the
largest object box side. (2) The patch with largest sum of G, gradient intensities is preferred.
(3) No selected patches should overlap. Such patch selection repeats until n;, background
patches are obtained for each group.

Expanding background patches: In the subsequent iterations > 0, Q; expends from Q;_
with a small stride (0.02 of the shorter side of Z) in one of the 4 possible directions (left, right,
top, down). The extension direction is determined by the one where G; gradient intensity in
Q; increases the most. In our method the background patch only expands (no shrinking) in
the iterations until termination.

3 Note that we omit the Q term from Eq.(1) in this gradient formula, as Z; implies the Z ® Q masking has
already been performed in the iterations.
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Algorithm 1 Background Patch Generation The adversarial image perturba-
Require: SSM model F; input image Z; maximal iteration 7 tions at iteration 7 is denoted as 7,
1: Zo=Z,t=0 which can be calculated as the inter-
2: whiler < T and £ z; # 0 do section of the gradient image G, of the
ii gfr = Y)Izh[Lrpc (Z; F) + Lonape(Zi3 F) + Lype(Zi: F)] - overall loss and the current background
: if = 0 then .
5: Qp < initial background patches patches' Q. e, Py - g’AQ Q AlL2
6:  else normalized perturbation 7 is then cal-
7: Q; + expanded background patches culated to update the adversarial image
8  Pr= gz? & 7, using scale parameter A = 30. The
% Pi=mn P . adversarial perturbed image Z; is then
10: Zpy = clip(Z, —71) clipped into [0,255].
11: if PSNR(Z,11 ©® Q;) < € then L. . . .
12: break The optimization iteration contin-
13: t=t+1 ues until any of the following condi-
Ensure: Adversarial perturbed image Z; tion is reached: (1) maximal iteration

T = 250 is reached, (2) no true posi-
tive selection are available for TPS and TPS, i.e., 1}4:1 zj=0o0r (3) the RSNR(Z® Q) is less
than a maximal image distortion threshold €. Since the PSNR in lossy image compression
is typically between 30 to 50 dB [32], we empirically set € = 35 dB for two-stage object
detectors and € = 30 dB for single-stage ones.

4 Experiments

We perform experimental evaluations of the proposed adversarial attacks on mainstream ob-
ject detectors. §4.1 describes details on attacking 5 two-stage object detectors and 8 single-
stage ones. §4.2 describes the ‘targeted’ false positives attack as a novel attacking scheme,
where the user can specify a desired class be produced by the attacked detector. §4.3 eval-
uates the transferring ability of the proposed attack method among common network archi-
tectures. §4.4 performs three ablation studies on major factors that can affect performance.
§4.5 shows the visual examples of attacking performance. (§4.4 and §4.5 are described in
Supplementary Material).

4.1 Experimental Setup

MS COCO 2014 dataset [17] is used to evaluate the performance of the background patch
attack. It contains 80 object class and a background class. We randomly select 2000 images
from MS COCO 2014 validation set for experiments. The detection performance is evaluated
using “mean average precision” (mAP) metric [5] at Intersection-over-Union (IoU) threshold
0.5 and 0.7.

Experiments are conducted for 5 two-stage object detectors and 8 single-stage ones. For
simplicity, we denote the base networks of these object detectors as: vggle6 (v16) [30]
, mobilenet (mn) [12], resnet50 (rn50), resnet101 (rn101) and resnet152
(rn152) [11]. For two-stage object detectors, we tested Faster-RCNN (FR) [29] based on
5 different RPNs: ¢ FR-v16, FR-mn, FR-rn50, FR-rn101 and FR-rn152. For single-stage
object detectors, we tested SSD [19], YOLO2 [28], YOLO3 [27], RFB [18] and FSSD

4As the RPNs use the same base network with detectors, we use the name of base network to denote different
RPNs
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Table 1: Performance of background patches attack on 5 two-stage object detectors with 5 different Region
Proposal Networks (RPNs) and 8 single-stage object detectors at mAP 0.5 and 0.7. No Noise denotes the original
performance without adding noise. Random denotes the performance of adding random noises on patches. TPC,
TPS, TPC+TPS, FPC and TPC+TPS+FPC denote the performance using corresponding loss terms respectively.
Lower value denotes better attacking performance.

No Noise | Random TPC TPS FPC TPC+TPS+FPC
FR-v16 62.4/48.7 | 62.5/48.9 | 50.7/38.8 | 51.2/38.0 | 50.7/38.3 41.9/32.7
FR-mn 46.1/32.9 | 46.4/32.9 | 31.6/22.5 | 34.6/21.2 | 36.0/26.4 26.6/19.3
FR-rn50 64.7/52.7 | 64.7/52.2 | 47.7/40.1 | 47.2/35.1 | 52.2/43.9 39.8/33.4
FR-rn101 66.0/56.0 | 65.8/55.7 | 39.9/32.4 | 42.0/29.8 | 53.9/48.5 36.2/31.2
FR-rn152 70.0/60.0 | 69.1/58.9 | 38.3/30.1 | 42.3/27.2 | 56.0/48.3 36.8/31.7
SSD-rn50 46.6/37.2 | 47.2/37.1 | 39.7/30.0 | 37.4/25.4 | 33.9/28.8 27.9/20.9
SSD-v16 48.3/37.0 | 47.8/37.1 | 36.9/26.4 | 31.0/18.0 | 26.2/21.9 24.5/17.4
RFB-rn50 48.9/40.3 | 48.7/41.2 | 36.2/27.4 | 43.7/38.4 | 31.6/27.7 26.1/20.5
RFB-v16 48.3/37.9 | 46.5/37.3 | 32.9/23.8 | 32.3/19.2 | 30.2/25.1 26.0/19.4
YOLO2-mn | 46.6/30.4 | 45.4/29.9 | 35.7/23.1 | 26.9/15.4 | 23.6/17.5 22.3/15.3
YOLO3-mn | 49.0/36.0 | 49.6/36.5 | 40.0/28.5 | 33.9/20.7 | 32.7/25.5 33.3/21.8
FSSD-rn50 51.2/41.5 | 51.4/42.2 | 39.8/29.7 | 38.3/27.2 | 31.7/31.3 28.8/20.8
FSSD-v16 54.0/44.2 | 53.9/43.5 | 38.5/28.4 | 31.8/19.8 | 35.4/31.0 33.5/24.1

[16] on different base networks: SSD-v16, SSD-rn50, RFB-v16, RFB-rn50, YOLO2-mn,
YOLO3-mn, FSSD-v16 and FSSD-rn50.

We evaluated four combinations of loss functions: (1) TPC, (2) TPS, (3) FPC and (4)
TPC+TPS+FPC. We added a Random baseline experiment for comparison, where random
noise under normal distribution with the same distortion as in our method is added to the
background patches. Table 1 shows the detection performances under attack. Random noise
barely affects the performance of object detectors. The performance decreases notably under
the adversarial attacks. TPS is less effective in two-stage object detectors than the single-
stage ones, as the shape offset attack can be mitigated by the later shape refinement in the
sub-network of two-stage detectors. FPC largely reduces the performance of both kinds
of detectors, due to the increased false positives. The combined loss of TPC+TPS+FPC
achieves the best performance, which decreases the performance by ~ 42% at mAP 0.5 and
~ 40% at mAP 0.7 for two-stage object detectors, ~ 42% at mAP 0.5 and ~ 47% at mAP 0.7
for single-stage detectors. More visual examples are illustrated in Supplementary Material
at §4.5.

4.2 Targeted False Positives

The ‘targeted’ false positives is an important adversarial attack scheme in practice, with the
goal to force a detector to mistakenly generate a false positive having specific given class. For
example, to corrupt a traffic monitoring detectors to generate false positives of pedestrians
in the background, that can greatly weaken the trustworthiness of the detector.

Our method can generate targeted false positives using Eq.(4) with a specified class, e.g.,
“person”. Figure 3 illustrates an example of the “person” targeted false positives attack,
where many “person” detections appear in the background. Table 2 shows the performance
of the “person” targeted false positives attack on 8 single-stage object detectors, where the
detection performance decreases by ~ 8% at mAP 0.5 and ~ 9% at mAP 0.7. This indicates
that targeted false positive attack is more challenging than an ‘untargeted’ attack, where the
performance largely drops by ~ 38% at mAP 0.5 and ~ 32% at mAP 0.7, as shown in Table
1.
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Table 2: Performance of “person”
false positives attack on the 8 single-
stage object detectors at mAP 0.5 and
0.7.

Targeted FPC
SSD-rn50 44.7/35.0
SSD-v16 46.4/35.1
RFB-rn50 45.9/38.8
RFB-v16 43.9/34.2 .
YOLO2-mn 38.7/26.0 Figure 3: Visual example of “person” targeted false positives on SSD-
YOLO3-mn 44.8/323 v16. (a) Background patches generated using FPC loss function. (b) De-
FSSD-rn50 28.9/38.9 tect{'o.n result by adding (a). (c) Zoom-in illustration of “person” false
FSSD-v16 475380 posttives.

Table 3: Performance of transferring attacks between 8 object detectors (4 two-stage and 4 single-stage) at mAP
0.5 and 0.7. The row denotes where the background patches are generated from, and the column denotes each
object detectors.

FR- FR- FR- FR- SSD- SSD- YOLO2- | YOLO3-

v16 rn50 rnl01 rnl52 v16 rn50 mn mn
No Noise 62.4/48.7 | 64.7/52.7 | 66.0/56.0 | 70.0/60.0 48.3/37.0 | 46.6/37.2 | 46.6/30.4 | 49.0/36.0
FR-v16 41.9/32.7 | 61.6/49.8 | 63.0/54.3 | 67.8/57.9 46.7/35.6 | 46.2/36.7 | 44.5/30.4 | 48.7/35.1
FR-rn50 60.3/47.4 | 39.8/33.4 | 62.0/53.6 | 67.6/57.1 47.8/36.0 | 46.4/36.5 | 45.5/30.2 | 48.5/35.2

FR-rn101 62.2/48.0 | 60.7/49.6 | 36.2/31.2 | 66.3/55.4 47.7/36.3 | 46.5/36.8 | 47.1/30.8 | 48.3/35.1
FR-rn152 61.9/46.3 | 60.0/48.3 | 59.5/61.0 | 36.8/31.7 47.6/36.1 | 46.8/36.8 | 44.8/30.3 | 48.8/35.3

SSD-v16 60.3/48.3 | 64.2/52.3 | 65.1/56.1 | 69.5/59.7 24.5/17.4 | 454/36.4 | 46.5/30.5 | 48.3/36.2
SSD-rn50 61.4/48.1 | 64.3/52.8 | 65.4/56.2 | 70.4/60.4 47.5/354 | 27.9/20.9 | 46.5/30.4 | 49.1/36.1
YOLO2-mn | 61.6/48.8 | 64.4/52.4 | 65.6/56.7 | 69.7/59.6 47.8/35.8 | 46.6/36.9 | 22.3/15.3 | 45.6/32.9
YOLO3-mn | 61.7/48.9 | 64.5/51.8 | 64.7/56.3 | 70.0/59.6 47.8/36.6 | 46.5/36.0 | 39.9/27.7 | 33.3/21.3

4.3 Transferring Study

We study the transferring ability (how adversarial attacks generated on one detector can be
used to attack another detector), to further explore the properties of vulnerability among
common network architectures. Table 3 reports the attack on 4 two-stage detectors and 4
single-stage ones. Our attack can transfer to similar network architectures. Background
patches generated from FR-rn50 and FR-152 are more effective to FR-101 than FR-v16.
Background patches generated from YOLO3-mn can also be effective to YOLO2-mn. The
transferring ability between different base networks are weaker. Also, two-stage and single-
stage object detectors can barely transfer attack from each other.

5 Conclusion

In this paper, we explore the vulnerability of Single Shot Module (SSM) in mainstream
object detectors, by adding imperceptible adversarial perturbations on small background
patches outside the object. Our background patches attack can largely decrease the true
positives and increase false positives in the background. Experiments on MS COCO 2014
dataset by attacking 5 two-stage object detectors and 8 single-stage ones demonstrate the
efficacy. Future work includes the improvement of the optimization process and extension
to attack black-box models.
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