
AN UPPER-BOUND ON SECOND-ORDER DEPENDENCY

Siwei Lyu

Computer Science Department
College of Computing and Information

University at Albany, State University of New York
slyu@albany.edu

ABSTRACT
In this work, we study the upper bound of second or-
der statistical correlation. We provide a condition for a
random variable reaching the upper-bound, and an algo-
rithm that transform any variable to have the maximum
second order statistical correlation.

Index Terms— Second order dependency, Upper-
bound, Information theory

1. INTRODUCTION

Statistical dependency is the pivotal subject in multivari-
ate statistics and signal processing. The complete sta-
tistical dependency in a d-dimensional random vector x
is measured by the multi-information (MI) [1], which
is also the Kulback-Leibler divergence [2] between the
joint distribution and the product of its marginals, as:

I(x) = DKL
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H(xk) � H(x),

where H(x) =
R

p(x) log p(x)dx is the entropy of x, and
H(xk) denotes the di↵erential entropy of the kth compo-
nent of x. When x is a multivariate Gaussian vector with
covariance matrix C, its multi-information, I(x), is given
by

J(x) =
dX

k=1

log ckk � log | det C|, (1)

where ckk is the kth diagonal of C. As a Gaussian ran-
dom variable only has second-order statistical depen-
dencies, Eq.(1) also measures second-order statistical
dependency in any random variable x.

It is known that the measure of second order statisti-
cal dependency J(x) is lower-bounded by zero, and the

lower-bound is achieved with x whose components are
de-correlated (equivalently, C is a diagonal matrix). For
any random vector x, we can transform it with the eigen-
decomposition of the covariance matrix C, a procedure
known as principal component analysis [3] to remove
second-order dependency. PCA is also an important pre-
processing step for methods aiming to remove higher-
order dependency such as ICA [4, 5]. On the other hand,
there is little previous work focusing on the upper-bound
of the second-order statistical dependencies of a random
variable x. On the one hand, recent work on comparing
dependency reduction methods often use second-order
dependency as a base [6, 7]. It is therefore important
to know the upper-bound of second-order dependency,
which will quantify the maximum reduction in depen-
dency achieved by PCA. On the other hand, in appli-
cation fields (e.g., neural sciences [8]) there is a practi-
cal need to generate random signals with varying degree
of second-order dependencies, where e�cient algorithm
that can turn a random variable with highest correlation
is useful.

Here, we first provide a theoretical analysis on the
upper-bound of the second-order dependencies, show-
ing that it is achieved with a random variable whose co-
variance matrix has constant diagonal. We further pro-
vide an e�cient algorithm that can transform any ran-
dom vector to reach its upper-bound of second order de-
pendencies using only orthonormal algorithms (i.e., ro-
tations). We provide pseudo code for our algorithm.

2. LOWER AND UPPER BOUNDS OF J(x)

Here, we study the range of J(x) with regards to an or-
thonormal transformation W of x, i.e., WT W = WWT =

Id, where Id is the d-dimensional identity matrix. Note



that Wx does not change the `2 norm of x, and corre-
sponds to a rotation of x in the d-dimensional space. The
main reason for focusing on the orthonormal transfor-
mations is to avoid the e↵ect of scaling on J(x).

It is a well-known fact that J(x) is lower bounded
from zero, i.e., for any orthonormal W, we have J(Wx) �
0 [2], which can also be shown with the Hadamard in-
equality for positive definite matrix C,

| det C| 
dY

k=1

ckk.

Furthermore, for a given random vector x, this lower
bound of J(x) can be achieved by an orthonormal trans-
formation of x using the eigenvectors of the covariance
matrix of x. Specifically, assuming cov(x) = C, by def-
inition, C is symmetric and positive definite, therefore
according to the spectral theorem, we have C = U⇤UT ,
where U is an orthonormal matrix corresponding to the
eigenvectors of C, and ⇤ is a diagonal matrix whose di-
agonal corresponding to the positive eigenvalues of C.

In this work, however, we are interested in the upper-
bound of J(Wx). We first give the upper-bound for
J(Wx) using the following theorem.

Theorem 1 For a full rank symmetric and positive defi-
nite matrix C, we have

dX

k=1

log ckk  d log
tr (C)

d
. (2)

The equality holds if and only if

ckk =
tr (C)

d
, for k = 1, · · · , d.

Proof (Theorem 1): First, we rewrite the left hand side
of (2) as:

dX

k=1

log ckk = log
dY

k=1

ckk.

Next, the arithmetic mean - geometric mean (AM-GM)
inequality [9] states that we have
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Raising to the dth power of both sides, we have
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Now we apply Theorem 1 to the the second-order

dependency J(x) of a random vector x with regards to or-
thonormal transformations. Assuming W is an orthonor-
mal transform and C is the covariance matrix of x, it is
not di�cult to see that C̃ = WTCW is the covariance
matrix of Wx. Then we have

J(Wx) =
dX

k=1

log c̃kk � log | det C̃|

 d log
tr

⇣
WTCW

⌘

d
� log | det WTCW |

 d log
tr

⇣
CWWT

⌘

d
� 2 log | det WT | � log | det C|

 d log
tr (C)

d
� log | det C|

The last step in the proof uses the fact that WT W = Id
and | det W | = | det WT | = 1. Furthermore, the upper
bound of J(Wx) is reached when the covariance matrix
of the transformed variable C̃ = WTCW has constant
diagonals.

It should be point out that this upper bound cannot
be achieved is x is whitened, i.e., its covariance matrix
is a multiple of the identity matrix as C = �Id. Under
this case, for any orthonormal W, we have WTCW =

�WT W = �Id. In other words, no rotation will be able
to change its second-order dependencies.

3. ACHIEVING THE UPPER-BOUND

While the previous result shows the upper bound of the
second order dependency measure J(x). In this section,
we further show that this upper bound can be achieved
for any non-whitened random vector x with an orthonor-
mal transformation W. Our proof is constructive, in the
sense that it also provides the algorithm that recovers
such an orthonormal transform.

Our main result is summarized in the following the-
orem.

Theorem 2 For a full rank symmetric and positive def-
inite matrix C, there exists an orthonormal matrix W
such that WTCW has constant diagonal.



Proof (Theorem 2): We prove the theorem by an induc-
tion on the dimension of matrix C.

We first consider the case of d = 2. Because C is a
2⇥2 symmetric and positive definite matrix, based on the
spectral theorem, we can decompose it as C = U1⇤UT

1 ,
where

⇤ =

 
�1 0
0 �2

!

is a diagonal matrix with the eigenvalues of C on the di-
agonal, and U1 denotes the orthonormal matrix with the
eigenvectors of C. Next, note that we can use orthonor-
mal matrix

U2 =

0
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and transform ⇤ to have constant diagonal as

UT
2⇤U2 =

 1
2 (�1 + �2) 1

2 (�1 � �2)
1
2 (�1 � �2) 1

2 (�1 + �2)

!
.

We can then multiply the two orthonormal matrices to
form another orthonormal matrix U = U1U2, which can
transform

UTCU = UT
2 UT

1 CU1U2 =

 1
2 (�1 + �2) 1

2 (�1 � �2)
1
2 (�1 � �2) 1

2 (�1 + �2)

!
.

Next, consider a general d⇥d (d � 2) symmetric and
positive definite matrix C that has eigen-decomposition
as C = U1⇤UT

1 , where

⇤ =

0
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�1 0 · · · 0
0 �2 · · · 0
...
...
. . .

...
0 0 · · · �d

1
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contains its eigenvalues and U1 is the orthonormal ma-
trix containing its eigenvectors.

Denote 1 = (1, · · · , 1)T as the d dimensional vec-
tor with all components being one. We consider the d-
dimensional vector 1p

d
1, and denote U = (u1, · · · ,ud�1)

as the matrix that contains d � 1 orthogonal unit vectors
that span the quotient space of 1p

d
1. In other words,

1p
d
1T ui = 0, and uT

i ui = 1 for any i = 1, · · · , d �
1. These can be obtained using, for instance, a Gram-
Schmidt orthogonalization procedure [10].

Note that the matrix formed by combining all the
vectors

Ũ =
 

1p
d

1 U
!

is an orthonormal matrix, and

1p
d

1T⇤
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d

1 = 1
d

tr (C) .

The last step uses the fact that the sum of eigenvalues of
a matrix equals to its trace.

Putting together, we have

ŨT⇤Ũ =

0
BBBBB@

1p
d
1T⇤ 1p

d
1 1p

d
1T⇤U

UT⇤ 1p
d
1 UT⇤U

1
CCCCCA

=

0
BBBBB@

tr(C)
d

1p
d
1T⇤U

1p
d
UT⇤1 UT⇤U

1
CCCCCA ,

from which, we can see that
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Next, using the induction assumption that for any
(d�1)⇥(d�1) symmetric and positive definite matrix, we
can find an orthonormal matrix that can transform it to
have constant diagonal. Assume that for matrix UT⇤U,
such an orthonormal matrix is V , such that VT UT⇤UV
has constant diagonal, whose diagonal elements all have
value 1

d�1 tr
⇣
UT⇤U

⌘
= 1

d�1
d�1

d tr (C) = tr(C)
d . Therefore,

we can form a matrix U2 =
✓

1p
d
1 UV

◆
, which is an

orthonormal matrix as

UT
2 U2 =

0
BBBB@

1p
d
1T

VT UT

1
CCCCA
 

1p
d

1 UV
!
= I,

and

U2UT
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Furthermore, we have

UT
2⇤U2 =
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which has constant diagonal of value 1
d tr (C). Finally,

we form another orthonormal matrix W = U1U2, and
it is straightforward to see that WTCW = UT

2⇤U2 has
constant diagonal. ⌅

Based on the proof of Theorem 1, we obtain the fol-
lowing algorithm, which is given in MATLAB code in
Fig.1.



function [U] = equalDiag(A)

D = size(A,1);

[V,e] = eig(A);

if D == 2

U = [1 -1;1 1]/sqrt(2);

U = V*U;

else

v = ones(D,1)/sqrt(D);

B = eye(D);

B(:,1) = v;

B = grams(B); % Gram-Schmidt

U = B(:,2:end);

U = V*[v U*equalDiag(U’*e*U)];

end

return

Fig. 1. MATLAB code for finding the orthonormal trans-
form making a p.d. matrix to have constant diagonal.

4. CONCLUSION

In this work, we study the upper bound of second or-
der statistical correlation. We provide a condition for a
random variable reaching the upper-bound, and an algo-
rithm that transform any variable to have the maximum
second order statistical correlation.
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