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ABSTRACT

We describe a Bayesian learning scheme for the hierarchal
Bayesian linear model, which is based on the Gaussian scale
mixture (GSM) modeling of the distribution of the latent vari-
able. The proposed method takes advantage of the hierarchal
Gaussian structure for a simple Monte-Carlo sampling algo-
rithm. Particularly, with a single hidden scale parameter con-
trolling the distribution of the latent variables, it leads to an
efficient algorithm without explicit matrix inversion.

Index Terms— Gaussian scale mixtures, Bayesian learn-
ing, latent variable models

1. INTRODUCTION

Hierarchal Bayesian modeling with latent variables has been
widely used in machine learning recently. For instance, Gaus-
sian latent variables were used for Bayesian learning in rele-
vant vector machines (RVM) [1], with different scales for in-
dependent Gaussian-distributed weights to control the sparse-
ness of the resulted solution. In [2], non-Gaussian latent vari-
ables with a Jeffery’s non-informative prior over scale param-
eters was used. In [3], a general Bayesian estimation frame-
work is described based on Gaussian scale mixture latent vari-
ables and variational EM algorithm. Common to most exist-
ing methods is the general methodology of first obtaining a
point estimation (maximum likelihood or maximum a poste-
rior) for the latent variables, and then plugging the estimated
variables to predict new function evaluations.

Treating the latent variables as unknown yet deterministic
entities, such point estimation methods do not take into ac-
count the variability of the estimators, which elicits several
drawbacks. First, such algorithms are usually iterative, which
renders the estimation biased and sensitive to the choice of
initial starting point. Furthermore, the prediction variance,
which is an important measurement of confidence or qual-
ity in the estimation, is computed approximately, and in the
case of RVM, wrong [4]. In this paper, a more complete
Bayesian view is taken by treating the latent variable stochas-
tically, and modeling the predictive posterior distribution of
function evaluations for arbitrary inputs. We take advantage

of scale mixture structure of the non-Gaussian latent variables
to achieve a simple Monte-Carlo sampling based algorithm.

2. GSM BAYESIAN LINEAR MODEL

We consider the generalized linear model, which assumes that
the observations yi, as

yi = f (xi,b) + wi,

for i = 1, · · · , n are function evaluations of

f (x,b) = h(x)′b,

corrupted by independent noise wi. We further denote the
dimensionality of b as m and assume m ≤ n. The general-
ized linear model is a flexible probabilistic model: different
choices of the mapping function h(·) and noise density result
in different types of learning problems, including linear, non-
linear and kernel-based regression and classification [5]. To
facilitate the subsequent description, we use the more concise
vector form:

y = Hb + w, (1)

where H is the n × m design matrix containing evaluations of
h(·) over n different inputs.

In Bayesian linear model (BLM), the parameter b in (1)
is treated as a random latent variable independent from the
input noise w. In the non-Gaussian hierarchal Bayesian linear
model [3], the distribution of b is further modeled as

p(b) =
∏

i

p(bi),

where p(bi) is a Gaussian scale mixture (GSM), whose den-
sity is an infinite mixture of zero-mean Gaussians of different
scales, as

p(bi) =

∫ ∞

0

1
√

2πs
exp

− b2
i

2si

 φ(si)dsi

=

∫ ∞

0
Nbi (0, si)φ(si)dsi.

We further denote s = (s1, · · · , sm)T as the vector containing
all independent scale variables. By choosing different scale



distribution φ(s), GSM can model a wide variety of symmetric
non-Gaussian densities [6], including the Student’s t, α-stable
and generalized Laplacians. In this paper, we consider two
special cases where (i) all si are independent samples from
one distribution φ(s) and (ii) each si is an identical copy of
a single sample from φ(s). The first is an example of what
known in statistics as the spherically invariant random pro-
cess (SIRP) [7], and the latter an example of the spherically
invariant random vectors (SIRV) [8].

In prediction with the BLM, a point estimation of b is
irrelevant, as one needs the predictive posterior distribution
for a new input h = h(x) evaluated over all possible b, which,
when marginalized over scale variables s, is

p(h′b|y; H) =

∫
s

p(s|y; H)p(h′b|s, y; H),

to perform optimal prediction. Bayesian regression proceeds
from the predictive posterior distribution and prechosen loss
function for h′b. Specifically, a commonly used loss function
is the l2 loss, which results in Bayesian least square estima-
tion (BLS). The optimal solution to the BLS is the conditional
mean, E(h′b|y; H), with the prediction variance (or the con-
fidence in the estimation) given by the conditional variance
var(h′b | y; H).

2.1. SIRP model with Gaussian noise

To obtain the predictive distribution p(h′b|y; H), we start with
the posterior distribution of b given the latent variable s and
observation y, which is

p(b|s, y; H) = p(y|Hb)p(b|s)/p(y, s; H).

Note that the denominator this is the product of two Gaus-
sians. As the product of two Gaussians is another unnormal-
ized Gaussian [9], and p(y, s; H) providing the normalizing
constant, p(b|s, y; H) is also a Gaussian Nb(µ(s),C(s)). As-
suming independent Gaussian noise,

w ∼ Nw(0, σ2
wI),

it yields
C(s) =

(
σ−2

w H′H + diag(s)−1
)
−1

and
µ(s) = σ−2

w C(s)H′y.

Here we introduce operator diag(·) that extends a vector to a
corresponding diagonal matrix. Summarizing these results,
and using the fact that the projection of a multivariate Gaus-
sian variable on a fixed direction is a 1-D Gaussian [9], we
have

p(h′b|s, y; H) = Nh′b

(
h′µ(s),h′C(s)h

)
. (2)

One can use Bayes’ theorem to yield:

p(s|y; H) =
p(y|s; H)φ(s)∫

s p(y|s; H)φ(s)ds
, (3)

where the first term in the numerator is the likelihood of ob-
served data y given the hidden scale variable s, which is, con-
veniently, another Gaussian:

p(y|s; H) = Ny
(
0,Cy(s)

)
and Cy(s) = H diag(s)H′

+ σ2
wI.

(4)
With all these results, we can compute the predictive posterior
distribution of h′b as:

p(h′b|y; H) =

∫
s p(h′b|s, y; H)p(y|s; H)φ(s)∫

s p(y|s; H)φ(s)
. (5)

Generally p(h′b|y; H) is a non-Gaussian distribution. How-
ever, for BLS prediction of h′b, it suffices to know the condi-
tional mean of h′b given observation y and design matrix H,
where

E(h′b|y; H) =

∫
s

p(s|y; H)
∫

h′b
h′b · p(h′b|y, s; H).

The inner integral computes the mean of a Gaussian p(h′b|y, s; H),
which is

E(h′b|y; H) =

∫
s h′µ(s) · p(y|s; H)φ(s)∫

s p(y|s; H)φ(s)
(6)

The conditional variance is computed as

var(h′b|y; H) = E(
(
h′b

)2
|y,H) −

(
E(h′b|y,H)

)2
,

where the first term is the second-order moment of a Gaussian
p(h′b|y, s,H), which, from Eq.(2), is computed as

h′C(s)h +
(
h′µ(s)

)2
= h′

(
C(s) + µ(s)µ(s)′

)
h.

Therefore, we have

var(h′b|y; H) =∫
s h′

(
C(s) + µ(s)µ(s)′

)
h · p(y|s; H)φ(s)∫

s p(y|s; H)φ(s)
−

(
E(h′b|y,H)

)2
. (7)

Eq.(6) and (7) are both stochastic integrals. If N independent
samples of s are obtained, the stochastic integral in Eq.(6) and
(7) can be approximated with corresponding averages of the
functions over these samples. These Monte-Carlo approxi-
mations give unbiased estimation of the actual stochastic in-
tegrals in Eq.(6) and (7), with the estimation variances de-
creasing proportionally to the number of samples drawn. In
general, one can draw independent samples from φ(s) with
Monte-Carlo Markov chain (MCMC) sampling. In the case
where the BLM is modeled as SIRV, a simple Monte-Carlo
sampling can be performed on the jointly independent scale
distribution. More conveniently, a large class of nonnegative
latent variables s can be generated by passing a Gaussian ran-
dom variable v through an appropriate non-linear mapping
g : R → R+ ([10], Proposition 2). Thus, the distribution



of s can be constructed from a non-linearly mapped Gaus-
sian variable, and efficient sampling from Gaussians is a well-
established procedure in statistics. We can then sample s by
first sampling from a Gaussian distribution and then nonlin-
early transform the Gaussian samples.

2.2. SIRV model with Gaussian noise

Modeling hidden scale variables as mutually independent
simplifies the computation of E(h′b|y,H) and var(h′b|y; H),
yet for each sample, we need to compute the inversion of C(s)
and Cy(s). With the SIRV formulation, where s is modeled
as a single random variable with distribution φ(s), a more
efficient algorithm can be obtained. Specifically, with such a
setting, Eq.(4) is simplified into:

C(s) = sσ2
w

(
sH′H + σ2

wI
)
−1

(8)

µ(s) = s
(
sH′H + σ2

wI
)
−1

H′y,

Cy(s)−1 =
(
sHH′

+ σ2
wI

)
−1

(9)

= σ−2
w I − σ−4

w HC(s)H′

. (10)

Let {U,Λ} be the eigenvector/eigenvalue decomposition of
H′H, then C(s) can be simplified with a double diagonaliza-
tion as C(s) = sσ2

wU
(
sΛ + σ2

wI
)
−1

U ′ . Subsequently, we can
compute

h′µ(s) = sh′U(sΛ + σ2
wI)−1U ′H′y =

m∑
i=1

sviui

sλi + σ2
w

(11)

where v = U ′h, u = U ′H′y and λ1 · · · λm are diagonal entries
of matrix Λ, and

h′C(s)h = sσ2
wh′U(sΛ + σ2

wI)−1U ′h =

m∑
i=1

sσ2
wv2

i

sλi + σ2
w

(12)

Note that

p(y|s; H) ∝
√
|C−1

y | exp
(
−

1
2

y′C−1
y y

)
.

With Eq.(10), the exponential part is simplified to

exp
(
−

1
2

y′Cy(s)−1y
)
∝ exp

 1
2σ2

w

m∑
i=1

su2
i

sλi + σ2
w

 .
Furthermore, let {V,Γ} be the eigenvector/eigenvalue decom-
position of matrix HH′ . Note that matrices HH′ and H′H
share the same set of positive eigenvalues. Therefore, we have

|Cy(s)−1| = |V(sΛ + σ2
w)−1V ′

| ∝

m∏
i=1

1
sλi + σ2

w
.

Simplifying by removing all constants with regards to s, we
have

p(y|s; H) ∝
m∏

i=1

1√
sλi + σ2

w

exp

 1
2σ2

w

m∑
i=1

su2
i

sλi + σ2
w

 . (13)

The major advantage of this algorithm, compared to the more
general algorithm in the previous section, is that the diago-
nalization of H′H and the computation of u and v does not
depend on the value of s, thus need only be computed once
for all samples. Similar diagonalization techniques have been
used in [11]. Note that there is no matrix inversion used in
Eq.(11), (12) and (13), which replace the essential computa-
tions steps in the algorithm in Section 2.1. Sampling from a 1-
D distribution φ(s) is relatively easy and can be implemented
numerically. The choice of φ(s) affects the performance of
the Bayesian predictor, and in this paper, we use the lognor-
mal distribution, which has been proposed as a flexible form
for priors in GSM [11], defined as

φ(s) =
1√

2πσ2
s s

exp
(
−

(log s − µs)2

2σ2
s

)
, (14)

with parameters µs and σ2
s being the mean and variance, re-

spectively. With this explicit functional form of φ(s), (6) and
(7) can also be directly computed with numerical integration
(e.g., Gaussian quadratures). Note also that we can truncate
the eigendecomposition of H′H to obtain sparse approxima-
tion to the full-blown solution to the problem, which will fa-
cilitate inference on large training data sets.

2.3. Learning hyperparameters

In the Bayesian least square estimation of the hierarchal
BLM, (1), as the latent variables b, s and t are integrated out,
the only parameters needs to be determined are those in the
scale distribution φ(s) and ψ(t), if there is any. One choice is
to use a parameter-free Jeffery’s non-informative prior over
the scale parameters [2]. However, Jeffery’s prior, though ob-
viate the estimation of hyper-parameters, is not normalizable,
and thus does not give rise a proper predictive distribution.
Another viable approach is to use the variational EM method
to estimate the hyperparameters, as in [3].

In this work, assuming φ(s) and ψ(t) being lognormal,
we take a direct maximum likelihood estimation of the hy-
perparameters in the prior distributions. To be more spe-
cific, we rewrite as φ(s;α) and ψ(t; β) with α = (µs, σ

2
s) and

β = (µt, σ
2
t ) being the corresponding hyperparameters. Then

the likelihood of observation data y is given as

p(y|α, β; H) =

∫
s,t

Ny(0,Cy(s, t))φ(s;α)ψ(t; β)dsdt. (15)

We can then compute the gradient of the data likelihood with
regards to α and β as

∂p(y|α, β; H)
∂α

=

∫
s,t

Ny(0,Cy(s, t))
∂φ(s;α)
∂α

ψ(t; β)dsdt

∂p(y|α, β; H)
∂β

=

∫
s,t

Ny(0,Cy(s, t))φ(s;α)
∂ψ(t; β)
∂β

dsdt



Note this gradient can be computed from numerical integra-
tion, and we take a general gradient ascent algorithm to search
the best set of hyperparameters.

3. EXPERIMENTS

We start with the synthetic examples used in [1], where train-
ing data were generated by adding noise to the evaluation of
the sinc function sin(x)/x. Two types of noises were used in
the experiments: independent Gaussian and the non-Gaussian
t-noise. We randomly chose 100 points in the range [−10, 10]
and their function evaluation as training data and use the same
spline kernel as in [1]. For comparisions, an RVM and an
adaptive sparsity Bayesian regressor [2] were also trained and
tested on the same set of data. To reduce the random fluctu-
ations in computing the stochastic integrals, results are aver-
aged over runnings of 100 random splitting of training and
testing data. In Table 1, we compared the effects of differ-
ent modeling considerations to the prediction performance in
terms of rms, with the SIRV Bayesian predictor as the base
line. Specifically, we compared the performances of SIRP
Bayesian prediction, i.e., using independent lognormal scale
variables for each observation, using a fixed prior without ex-
plicitly learning the hyperparameters, (a log normal prior with
mean zero and variance 1), and truncating in the eigenval-
ues/vectors of H′H in forming the predictor. With the more
flexible SIRP Bayesian prediction, the performance is signifi-
cantly improved, but the improvement is levied by longer run-
ning time and higher prediction variance (not shown) due to
the more complicated sampling process and use of matrix in-
version in each step. On the other hand, we found that perfor-
mance is relatively less affected by using a generic lognormal
prior without a searching for best set of parameter. Finally,
truncating the eigenvalues/vectors of H′H have varying im-
pacts on the prediction performance. Specifically, keeping
only top 10% of eigenvalues/vectors of H′H severely reduces
the performance, despite the signifiant improvement in the
running time of the final predictor, while a truncation of 50%
tailing eigenvalues/vectors introduce relatively small perfor-
mance degradation. The performance of the proposed method
is also compared with RVM and adaptive sparse Bayesian on
some benchmarking data sets, including the Friedman data
sets [12] and the Boston housing data sets [13] (100 random
partitions of the full data set into 420 training samples and 86
testing samples), and the results are listed in Table 2. In these
tests, the SIRV Bayesian prediction achieved overall com-
parable performance to other state-of-the-art methods, while
able to outperform them on some of the benchmark data sets.

4. DISCUSSION

In this paper, we discuss a Bayesian learning scheme for the
hierarchal Bayesian linear model. This is based on the Gaus-
sian scale mixture (GSM) modeling of the distribution of the

latent variable. The proposed work is a Bayesian least square
implementation of the prediction problem in the hierarchal
Bayesian linear model, Eq.(1). The Bayesian learning takes
advantage of the hierarchal Gaussian structure for a simple
Monte-Carlo sampling algorithm. Particularly, with a sin-
gle hidden scale parameter controlling the distribution of the
latent variables, there is a more efficient algorithm without
explicit matrix inversion. The same framework can also be
extended to classification problems, which is under investiga-
tion currently. Important future works include investigation of
the relation with non-parametric Bayesian learning schemes
such as Gaussian processes, and efficient algorithms for larger
training sets or higher data dimensions.
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