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Abstract

In this paper, we described an efficient feature pursuit
scheme for boosting. The proposed method is based on
the infomax principle, which seeks optimal feature that
achieves maximal mutual information with class labels. Di-
rect feature pursuit with infomax is computationally pro-
hibitive, so an efficient gradient ascent algorithm is further
proposed, based on the quadratic mutual information, non-
parametric density estimation and fast Gauss transform.
The feature pursuit process is integrated into a boosting
framework as infomax boosting. The performance of a face
detector based on infomax boosting is reported.

1. Introduction

Many problems in computer vision rely on robust and effi-
cient classifiers. In practice, classifiers are built from a set
of labeled training data: {x1

1, · · · , x1
N1

, · · · , xC
1 , · · · , xC

NC
},

with xc
i denoting the i-th training datum of class c. Boost-

ing [13], with AdaBoost being the most prominent example,
has been proved an effective way to construct high perfor-
mance classifiers. The basic idea of boosting is to com-
bine simple base classifiers (any classifier with performance
better than random guesses) to form an ensemble. The de-
cision function is constructed as an optimal linear combi-
nation of the base classifiers. In one round of training, a
new base classifier is trained on weighted data, emphasiz-
ing on errors made in previous training rounds. With the
new base classifier being included into the ensemble, the
weights on training data are updated correspondingly and a
new training round starts. In practice, boosting classifiers
have shown remarkable performance and good generaliza-
tion ability. A widely accepted explanation is that boosted
classifiers achieve “large” classification margins [16].

As the base classifiers are the building blocks in boost-
ing, they should be carefully designed for optimal perfor-
mance. On high-dimensional input data, x ∈ R

d, the base
classifiers are usually constructed on features, which are
low-dimensional representations of input data. Formally,
a feature is the output of a feature map φ : R

d → R
d′

evaluated on input data x, with d′ � d. In this paper, we
will focus on linear projection features in the data space,

as φ(x) = φTx, with φ ∈ Rd and φT φ = 1. Besides
the computational benefits, using features may also help to
incorporate domain knowledge that is hard to learn with a
finite training set. Base classifiers built on a small set of
highly informative features can reduce the overall complex-
ity and increase the robustness of the boosting classifier. In-
tuitively, one should use the set of features that contain most
of the classification information. This intuition is formally
stated as the infomax principle [10], which recommends
the use of features that maximize their mutual information
with the class labels (the infomax features). However, di-
rect feature pursuit by optimizing mutual information re-
sults in computationally prohibitive algorithms. The main
contribution of this work is an efficient infomax feature pur-
suit for boosting. First, the class-dependent densities of
each data class are estimated non-parametrically from the
training data with kernel density estimations. These esti-
mated densities give rise to an integration-free evaluation of
quadratic mutual information, which is a measure of classi-
fication information. The gradient of the quadratic mutual
information in terms of the feature mapped data can be com-
puted analytically. Infomax feature pursuit then proceeds
as a gradient ascent. The computation required in each step
updating the gradient is further reduced from quadratic to
linear in the number of training data with the fast Gauss
transform approximation. The infomax feature pursuit is
incorporated into a boosting framework as infomax boost-
ing. Experimental results of applying infomax boosting to
appearance-based face detection are given to show its effi-
cacy in practice.

2. Infomax feature pursuit
A common measure of classification information in a pro-
jection feature is the mutual information [3] between the
mapped data and the class labels:

I(φTx; c) =
C∑

c=1

∫
x

p(φTx, c) log
p(φTx, c)

p(φTx)p(c)
dφTx, (1)

which quantifies how much information is gained about c
with the knowledge of φTx. The most informative feature
is naturally defined as the one having the maximal mutual
information with class labels:
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φ∗ = argmax
φ

I(φTx; c). (2)

The infomax principle suggests using such infomax features
to build efficient and parsimonious classifiers.

Though theoretically appealing, finding infomax fea-
tures with Equation (2) directly is computationally pro-
hibitive, especially for high-dimensional data. This is due
to two reasons:

• The functional form of the probability densities in
computing mutual information are usually not known
precisely.

• The computation of mutual information, Equation (1),
requires integration.

In this paper these problems are tackled by using non-
parametric density estimation and an alternative definition
of the mutual information.

2.1. Kernel density estimation
Probability densities can be estimated non-parametrically
from training data with the kernel density estimation
(KDE) [4] as a linear combination of kernel functions. A
commonly used kernel function is the isotropic multivariate
Gaussian:

Gσ(x − µ) = 1
(2π)d/2σd exp

(
− (x−µ)T (x−µ)

2σ2

)
,

(3)

with mean µ and variance σ2. As shown in [14], with suf-
ficient number of training data, a KDE with smooth ker-
nels (such as Gaussian) can approximate any density to any
degree of precision. In classification, the class-dependent
density for the c-th class can be estimated with KDE as:

p(x|c) =
Nc∑
i=1

wc

iGσ(x − xc

i), (4)

where wc

i is a non-negative weight associated with
each training training datum of class c, satisfying that∑Nc

i=1 wc

i = 1. In the case of searching infomax linear pro-
jections, it is the class-dependent densities of φTx that are of
interest to us. It is not hard to prove that the KDE of class-
dependent density for φTx is simply the 1-D marginalization
of the pdf given in Equation (4) as:

p(φTx|c) =
Nc∑
i=1

wc

iGσ(φTx − φTxc

i). (5)

2.2. Quadratic mutual information
Kernel density estimation obviates explicit functional form
of the class-dependent densities, yet the integration in the
definition of mutual information still exists as a barrier to
efficient computation. Using numerical integration results

in inefficient and inelegant algorithms. In face of that, an
alternative definition of mutual information is used whose
combination with the kernel density estimation results in an
evaluation without integration.

Note that the mutual information between the mapped
data φTx and class label c can be equivalently viewed as
the Kullback-Leibler (KL) divergence between their joint
distribution and the product of marginals as:

I(φTx; c) = D(p(φTx, c)‖p(φTx)p(c)). (6)

The KL divergence between a pair of densities p and q is

D(p‖q) =
∫

x

p(x) log p(x)
q(x)dx. (7)

As argued in [9], the KL divergence is not the only diver-
gence measure of densities. By relaxing some defining con-
ditions, other divergence measures can be used to satisfy
requirements such as computational efficiency. One such
measure is the quadratic divergence [9] defined as:

Q(p‖q) =
∫

x

(p(x) − q(x))2 dx. (8)

Q(p‖q) is nonnegative and is zero if and only if p(x) =
q(x) (a.e.). The use of quadratic divergence as a plausible
surrogate of the KL divergence is justified by the following
inequality:

D(p‖q) ≥ 1
2Q(p‖q)2, (9)

for which a proof is given in [12].
With the quadratic divergence, the quadratic mutual in-

formation [17] between the projected data and the class la-
bels can be defined in a similar fashion as:

IQ(φTx; c) =
C∑

c=1

∫
φTx

(
p(φTx, c) − p(φTx)p(c)

)2
dφTx. (10)

Denote the class prior of the c-th class as Pc and yc

i = φTxc

i ,
and plug in the KDEs of the class-dependent densities, the
quadratic mutual information is computed as:

IQ(φTx; c) =
C∑

c=1

P 2
c

Nc∑
i=1

Nc∑
j=1

wc

iw
c

jG
√

2σ(yc

i − yc

j)

+
C∑

c1=1

C∑
c2=1

Nc∑
i=1

Nc′∑
j=1

uc

iv
c′
j G√

2σ(yc

i − yc′
j ), (11)

where wc
i is the associated weight of xc

i in KDE, and

uc

i = Pc(
∑C

c′=1 P 2
c′ − 2Pc)wc

i

vc

i = Pcw
c

i (12)

A detailed derivation of Equation (11) and (12) is given
in [12]. Note that the integration in Equation (10) vanishes
as the result of using KDE with Gaussian kernels (see [12]
for more information).
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2.3. Optimization
Using the chain rule of differentiation and ignoring the con-
stant factors, the gradient of IQ with regards to φ is com-
puted from Equation (11) as:

∂IQ

∂φ
=

C∑
c=1

Nc∑
i=1

∂IQ

∂yc

i

∂yc

i

∂φ
=

C∑
c=1

Nc∑
i=1

∂IQ

∂yc

i

xc

i , (13)

with the individual derivatives computed as:

∂IQ

∂yc

i

= P 2
c

Nc∑
j=1

wc

iw
c

jH1

(
yc

i − yc

j

2σ

)

+
C∑

c′=1

Nc′∑
j=1

uc

iv
c′
j H1

(
yc

i − yc′
j

2σ

)
, (14)

where H1(x) = −2x exp(−x2) is the first degree Her-
mite function defined as Hn(x) = (−1)n dn

dxn exp(−x2).
The optimal φ maximizing the quadratic mutual informa-
tion can then be searched with a gradient ascent procedure:
starting from an initial estimate φ0, iteratively we compute

φk+1 = φk + η
∂IQ

∂φ

∣∣∣
φ=φk

until convergence, with the pa-

rameter η > 0 controlling the step size. Convergence to a
local maximum is guaranteed by the fact that the quadratic
divergence is bounded [9].

2.4. Fast Gauss transform acceleration
However, in the straightforward gradient ascent presented
in previous section, with N =

∑C
c=1 Nc training data, each

update step runs O(N2) in time. When N is large, such
computation is prohibitively expensive. The core computa-
tion in Equation (14) are examples of the “N-body” prob-
lem, where a potential function composed of a sum of pair-
wise interaction terms (in this case, the first degree Hermite
functions) from N points is evaluated at an equally large
number of locations.

The “N-body” problems can be approximated with a
computation linear in the the size of training data in both
time and space to a pre-specified precision. This is achieved
with a variant of the fast Gauss transform (FGT) [7], which
is a special case of the wider class of fast multipole meth-
ods. The basic idea is to group evaluation of interaction
terms of farther apart points together and approximate them
with a finite degree polynomial from the Taylor expansion
of the Hermite function. Due to the limit of space, the de-
tails of the algorithm is given in [12]. The overall running
complexity of the algorithm is linear in the total number of
training data N 1. The precision of the FGT approximation
is controlled by the cut-off degree p, with the error between

1The complexity also depends on the dimension of data, the degree of
approximating polynomial p, the size of the neighborhood r and the width
of the kernel σ - all are constants for a given problem.

FGT approximation and the actual value upper-bounded by

O
(√

1
p! (

1
2 )(p+1)

)
. In our case, setting p = 10 results in a

relative error of less than 10−6.
Algorithm 1 Infomax boosting

Given: training data {x−
1 , · · · , x−

N+
, x−

1 , · · · , x−
N−},

class priors P+ and P− and width parameter of Gaussian
kernels σ2;
Initiate: w+

i,1 = 1
N+

, for i = 1, · · · , N+, and w−
i,1 = 1

N− ,
for i = 1, · · · , N−;
for t = 1 to T do

Choose the infomax feature φt with w+
i,t, w−

i,t and σ2,
Section 2.3-2.4;
Construct KDE of class-dependent densities with
Equation (16);
Build base classifier ft(x, c), Equation (15);
Update weights with Equation (17);

end for
Output decision function tanh

(∑T
t=1 ft(x)

)

3. Infomax boosting
Infomax feature pursuit is incorporated into the boost-
ing framework as infomax boosting. We chose to base
our implementation on a variant of AdaBoost, “real Ad-
aBoost” [5]. Following the conventions, the class labels are
from {−1, +1} and denote P+ and P− as the priors of the
two classes.

The training of an infomax boosting classifier is an iter-
ative process of incorporating base classifiers. At the t-th
iteration, an infomax feature φt is obtained as described in
the previous section. The t-th base classifier is trained on
the weighted training data, projected on φt as:

ft(x) = log
p
(t)
+ (φT

tx)P+

p
(t)
− (φT

tx)P−
(15)

with

p
(t)
+ (φT

tx) =
N+∑
i=1

w+
i,tGσ(φT

tx − φT
tx

+
i ),

p
(t)
− (φT

tx) =
N−∑
i=1

w−
i,tGσ(φT

tx − φT
tx

−
i ) (16)

being the KDEs of the two class dependent densities. The
weight on each training datum is then adjusted according to
the training error in the current step as:

w+
i,t+1 = 1

Z+
t+1

w+
i,t exp(−ft(x+

i )),

w−
i,t+1 = 1

Z−
t+1

w−
i,t exp(ft(x−

i )), (17)

where Z+
t+1 and Z−

t+1 are normalizing constants ensuring

that
∑N+

i=1 w+
i,t+1 = 1 and

∑N−
i=1 w−

i,t+1 = 1. At the com-
pletion of training, the algorithm outputs a soft-threshold
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decision function f(x) = tanh
(∑T

t=1 ft(x)
)

, from which

a hard-threshold decision function is constructed as F (x) =
sgn(f(x) − τ). Threshold τ is pre-chosen and is used to
control the desired false positive/negative rates of the hard-
threshold classifier. The overall training process is summa-
rized in Algorithm 1.

4. Face detection

Infomax boosting is applied to the appearance-based face
detection [20], whose goal is to determine if there is any
face in an image and if so, locate the positions and extents
of the faces. The face detector is constructed as a cascade
of infomax boosting classifiers, each of which individually
determines if a sub-image contains a face pattern or not.

4.1. Experimental setup

The training set of the face detector were constructed from
a set of face and non-face patterns. The face patterns
were collected from 2, 000 frontal facial images in the
FERET database [15]. By incorporating slightly rotated,
scaled and mirrored variants, the image set was further
enlarged to 20, 000. Each face image was then scaled
and aligned to generate patches with a base resolution of
20 × 20 pixels, which was further normalized to [0, 255]
to compensate variance in illumination. The non-face pat-
terns were generated from 11, 320 images downloaded from
www.freefoto.com. These images contain no human
faces and spread a wide range of natural and man-made
scenes. Subsequently, 10, 000, 000 non-face patterns of size
20 × 20 pixels were generated from these images.

Similar to [11], infomax features were formed from lin-
ear combinations of an over-complete wavelet bank, which
consisted of 72 oriented and scaled Gaussian and Gaus-
sian derivative filters of first and second order (Figure 1).
Specifically, each training pattern was convolved with each
of the 72 filters, yielding a total 72 vectors of 400 dimen-
sion, which were treated as 28, 800 individual local fea-
tures. More global image features were captured by another
set of 72 similar filters with a larger width. The inner 10×10
region of each image patch was convolved with this set of
filters, providing another set of 7, 200 features, yielding a
total 36, 000 features for each image. The infomax features
were built as the linear combinations of the top 1, 000 ele-
mentary features in the 36, 000 feature repertoire, ordered
by their quadratic mutual information with the class labels,
Equation (10). To avoid over-emphasizing any position in
the image patch, at most two features of the same spatial lo-
cation were included as elementary features. Infomax fea-
tures are searched using the gradient ascent procedure (Sec-
tion 2.3) with the fast Gauss transform accelerations (Sec-

Figure 1: Filter bank used in our experiment.

tion 2.4)2. The initial values for φ were the outputs of a
linear discriminant analysis [4] on all training data. In find-
ing the infomax feature, we set the cut of degree of the Her-
mite expansion to 10 and neighborhood size to 7. The width
of the Gaussian is chosen empirically for best performance.
Individual classifier is then trained with Algorithm 1.

Following the method proposed in [19], our face detector
was constructed as a cascade of boosting classifiers. Each
classifier in the cascade has a fixed false negative rate (mis-
classifying a face pattern as a non-face pattern), while the
false positive rate (misclassifying a non-face pattern as a
face pattern) and the number of base classifiers are con-
trolled to be under pre-given thresholds. A 20 × 20 sub-
window is classified to contain a face pattern only if it
passes all classifiers in the cascade. Besides the infomax
boosting method, a face detector based on a cascade of Ad-
aBoost classifiers was also trained with the same training
data. The base classifiers in the AdaBoost detector were
constructed on randomly chosen elementary features. Its
performance was used to compare with that of the infomax
boosting detector.

The training of the classifier cascade was done in a boot-
strapping way. All training data were first split into a train-
ing set and a validation set. The initial classifier was trained
on the whole training set. Features were added into the
classifier until either of the following conditions became
true: (i) the total number of features exceeded 20; (ii) the
false negative rate exceeded 0.01%; (iii) the false positive
rate was over 30%. The training set of the next classifier
consisted of all face patterns and the false-positives in the
current training set. The overall classifier cascade had 30
classifiers, with 423 features in total.

The infomax boosting face detector was tested on the
MIT+CMU face detection database, which contains 130 im-
ages and 507 labeled faces. To find all possible face pat-
terns in a test image, the detector scanned over all 20 × 20
sub-windows in the images. Face patterns may also occur
at different scales, so the detector also scanned a series of
up-scaled and down-scaled copies of the test images. The

2The fast Gauss transform on Hermite kernels is imple-
mented based on the FGT implementation downloaded from
http://www.cs.cornell.edu/aflorenc/research/fgt.

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 

1063-6919/05 $20.00 © 2005 IEEE 



scaling was achieved by interpolating the original image
with bi-cubic splines followed by up-sampling or down-
sampling. We used a set of scaling factors 1.1 apart as it
led to the best performance in our experiments. These op-
erations resulted in a total 84, 638, 740 sub-windows being
scanned from the MIT+CMU test set.

To merge multiple detections of the same face in differ-
ent positions and scales, we employed a simple clustering
of the detected face patterns similar to [19]. Specifically,
the centers of all detected face patterns in an image of dif-
ferent spatial locations and scales were subject to k-means
clusterings with varying k values. The number of distinct
face patterns in the image was determined by the k value
that resulted in a clustering where the maximal within clus-
ter distance was less than 3 pixels and the minimal between
cluster distance was larger than 12 pixels. Each detected
face was then attribute to the closest cluster center. The lo-
cations of the final detected faces were the averages of all
sub-windows in each individual cluster.

4.2. Results

Shown in Figure 2 is the plot of the testing false positive rate
versus the number of features included in the face detec-
tor for both infomax boosting and AdaBoost. The infomax
boosting detector tended to outperformed the AdaBoost de-
tector: it takes 50 features to achieve a lower than 1% false
positive rate in the infomax detector, while to have a simi-
lar false positive rate, the AdaBoost detector needs around
300 features. Shown in Figure 3 are the ROC curves on
the testing set of both the infomax boosting detector and the
AdaBoost detector. With a 10−6 false positive rate, it had
a detection rate of 96.3%, while the AdaBoost detector had
a detection rate of 85.1%. This result is also slightly better
than that of [11], but such comparison is not conclusive, as
the numbers do not reflect significant difference in training
sets, parameters and other important aspects of the detec-
tors. Finally, shown in Figure 4 are outputs of the infomax
face detector on some of the test images in the MIT+CMU
test set, where the white and black boxes are the maximal
and minimal bounding boxes of of the same face detected.

We also compared the gradient update in searching the
infomax features with and without fast Gauss transform ac-
celeration. With a 10−9 relative error, the FGT achieved
a speed up of more than 200 fold for each updating step,
drastically improving the efficiency of the training process.

5. Related work

Selection of optimal features in a binary boosting classi-
fier was first studied in [19] in the context of face detec-
tion. Features with best classification performance were
chosen from a repertoire of an over-complete Haar wavelet
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Figure 2: Curves of false alarm rate vs. the number of fea-
tures included in the boosting detectors.
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Figure 3: ROC curves of boosting face detectors on the
MIT+CMU test set.
bank. Instead of choosing features from a given set opti-
mal projection feature pursuit was combined with boosting
in the framework of Kullback-Leibler (KL) boosting [11].
The discriminant ability of a feature is measured by the
Kullback-Leibler divergence between the histograms of
projected data, with the optimal projection found with a grid
search. The KL divergence is a special case of mutual in-
formation for binary classification with equal class priors,
while the mutual information criterion has no constraints
on the number of classes. Moreover, the gradient ascent op-
timization as presented in this work is more flexible than a
grid search.

The infomax principle was first proposed as a model of
neural organization by Linsker [10] and has hence received
much attention in pattern recognition and machine learn-
ing. Its application includes independent component anal-
ysis [1], blind source separation [2], nonlinear discriminant
analysis [17], feature selection [18] and neural network [8].
The use of quadratic mutual information and KDE to com-
pute mutual information was first proposed in [6] and fur-
ther developed in [17].

6. Discussion and future work

We have discussed a new feature pursuit scheme for boost-
ing driven by the infomax principle. One advantage of in-
fomax feature pursuit is that there is no built-in constraint
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Figure 4: Outputs of infomax face detector on some images in the MIT+CMU test set.

on the number of classes in the mutual information crite-
rion, suggesting its use in a multi-class classification. One
of our future works then is to design a multi-class boosting
framework to fully take this advantage.
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