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Abstract. We develop a robust multi-scale structure-aware neural net-
work for human pose estimation. This method improves the recent deep
conv-deconv hourglass models with four key improvements: (1) multi-
scale supervision to strengthen contextual feature learning in matching
body keypoints by combining feature heatmaps across scales, (2) multi-
scale regression network at the end to globally optimize the structural
matching of the multi-scale features, (3) structure-aware loss used in the
intermediate supervision and at the regression to improve the matching
of keypoints and respective neighbors to infer a higher-order matching
configurations, and (4) a keypoint masking training scheme that can ef-
fectively fine-tune our network to robustly localize occluded keypoints
via adjacent matches. Our method can effectively improve state-of-the-
art pose estimation methods that suffer from difficulties in scale varieties,
occlusions, and complex multi-person scenarios. This multi-scale super-
vision tightly integrates with the regression network to effectively (i)
localize keypoints using the ensemble of multi-scale features, and (ii)
infer global pose configuration by maximizing structural consistencies
across multiple keypoints and scales. The keypoint masking training en-
hances these advantages to focus learning on hard occlusion samples. Our
method achieves the leading position in the MPII challenge leaderboard
among the state-of-the-art methods.

Keywords: human pose estimation, conv-deconv network, multi-scale
supervision

1 Introduction

Human pose estimation refers to the task of recognizing postures by localizing
body keypoints (head, shoulders, elbows, wrists, knees, ankles, etc.) from images.
We focus on the problem of single-person pose estimation from a single RGB
image with the input of a rough bounding box of a person, while the pose and the
activity of the person can be arbitrary. The task is challenging due to the large
variability of human body appearances, lighting conditions, complex background
and occlusions, body physique and posture structures of the activities performed
by the subject. The inference is further sophisticated when the case extends to
multi-person scenarios.



Fig. 1. State-of-the-art pose estimation networks face difficulties in diverse activities
and complex scenes, which can be organized into three challenges: (top row) large scale
varieties of body keypoints in the scenes, (middle row) occluded body parts or keypoints,
(bottom row) ambiguities in matching multiple adjacent keypoints in crowded scenes.

Human pose estimation has been studied extensively [1]. Traditional meth-
ods rely on hand-craft features [2,3,4,5,6]. With the prosperity of Deep Neural
Networks (DNN), Convolutional Neural Networks (CNN) [7,8,9,10,11], in par-
ticular the hourglass models [12] and their variants [13,14] have demonstrated
remarkable performance in human pose estimation. The repeated bottom-up and
top-down processing within the hourglass modules can reliably extract posture
features across scales and viewing variabilities, and thus effectively localize body
keypoints for pose estimation.

Although great progress has been made, state-of-the-art DNN-based pose
estimation methods still suffer from several problems (Fig. 1):

(1) Scale instability: Slight perturbation of the input bounding box from the
person detector (such as the SSD [15]) can cause abrupt changes in the pose
estimation, due to the influence of such dominating scales. Such scale instabil-
ity causes unreliable pose estimations, and even the latest hourglass methods
([13,14]) tend to overfit body keypoints in a particular scale (out of all scales in
the deconv pyramid), which results in a domination of a single scale. Current
practice to handle this scale instability (e.g. widely used in the MPII pose esti-
mation challenge [16]), is to repeatedly performing pose estimations in multiple
trials of various scales, and output the result with the highest score. This clearly
shows the lack of a consistent scale representation in limitations of the existing
methods. This will be addressed in this work in § 3.1 and § 3.2.

(2) Insufficient structural priors: The second issue is how to effectively in-
corporate the structure of human body as priors in the deep network for pose
estimation. Such priors can provide key information to solve challenges of pose
estimation in real-world scenarios with complex multi-person activities and clut-



Fig. 2. The proposed network model consists of three components: (i) multi-scale su-
pervision network (MSS-net, § 3.1), (ii) multi-scare regression network (MSR-net, §
3.2), and (iii) intermediate supervision layers using the structure-aware loss (§ 3.3).
The whole network pipeline is fine-tuned using the keypoint masking training scheme
(§ 3.4).

tered backgrounds, where body keypoint occlusions and matching ambiguities
are the bottlenecks. In these challenge cases, accurate keypoint localization is
not the only factor for successful pose estimation, as there will be questions on
how best to associate the keypoints (invisible, or multiple visible ones among
possibilities) to infer the global pose configuration. Known body structural pri-
ors can provide valuable cues to infer the locations of the hidden body parts
from the visible ones. We propose to model the body structure with an interme-
diate structural loss (§ 3.3) and through the use of a global regression network
at the end (§ 3.2). We further develop a keypoint masking scheme to improve
the training of our network on challenging cases of severely occluded keypoints
(§ 3.4).

In this paper, we propose a holistic framework to effectively address the
drawbacks in the existing state-of-art hourglass networks. Our method is based
on two neural networks: the multi-scale supervision network (MSS-net) and
the multi-scale regression network (MSR-net).

In MSS-net, a layer-wise loss term is added at each deconv layer to allow ex-
plicit supervision of scale-specific features in each layer of the network. This
multi-scale supervision enables effective learning of multi-scale features that
can better capture local contextual features of the body keypoints. In addi-
tion, coarse-to-fine deconvolution along the resolution pyramid also follows a
paradigm similar to the attention mechanism to focus on and refine keypoint
matches. The MSR-net takes output from multiple stacks of MSS-nets to per-
form a global keypoint regression by fusing multiple scales of keypoint heatmaps
to determine the pose output.

In addition to the MSS-net and MSR-net which can jointly learn to match
keypoints across multiple scales of features, we explicitly match connected key-



point pairs based on the connectivity and structure of human body parts. For
example, the connectivity from the elbow to the lower-arm and to the wrist can
be leveraged in the inference of an occluded wrist, when the elbow and lower-arm
are visible. Hence, we add a structure-aware loss aims to improve the capacities
of the current deep networks in modeling structural priors for pose estimation.
This structure loss improves the estimations of occluded keypoints in complex or
crowded scenarios. Lastly, our keypoint masking training scheme serves as an ef-
fective data augmentation approach to enhance the learning of the MSS-net and
MSR-net all together, to better recognize occluded poses from difficult training
samples.

The main contributions of this paper can be summarized as follows:

– We introduce the multi-scale supervision network (MSS-net) together
with the multi-scale regression network (MSR-net) to combine the rich
multi-scale features to improve the robustness in keypoint localization by
matching features across all scales.

– Both the MSS-net and MSR-net are designed using a structure-aware loss
to explicitly learn the human skeletal structures from multi-scale features
that can serve a strong prior in recovering occlusions in complex scenes.

– We propose a keypoint masking training scheme that can fine-tune our
network pipeline by generating effective training samples to focus the train-
ing on difficult cases with keypoint occlusions and cluttered scenes. Fig. 2
summarizes our multi-scale structure-aware network pipeline.

Experimental evaluations show that our method achieves state-of-the-art results
on the MPII pose challenge benchmark.

2 Related Work

Image-based human pose estimation has many applications, for a comprehen-
sive survey, see [1]. Early approaches such as the histogram of oriented gradients
(HOG) and deformable parts model (DPM) rely on hand-craft features and
graphical models [2,17,3,4,5,6]. These methods suffer from the limited represen-
tation capabilities and are not extensible to complex scenarios.

Pose estimation using deep neural networks (DNN) [7,8,9,10,11] has shown
superior performance in recent years, due to the availability of larger training
datasets and powerful GPUs. DeepPose developed by Toshev et al. [4] was an
early attempt to directly estimate the postural keypoint positions from the ob-
served image. Tompson et al. [9] adopted the heatmap representation of body
keypoints to improve their localization during training. A Markov random field
(MRF) inspired spatial model was used to estimate keypoint relationship. Chu
et al. [18] proposed a transform kernel method to learn the inter-relationships
between highly correlated keypoints using a bi-directional tree.

Recently, Wei et al. [11] used very deep sequential conv-deconv architecture
with large receptive fields to directly perform pose matching on the heatmaps.



They also enforced intermediate supervision between conv-deconv pairs to pre-
vent gradient vanish, thus a very deep network became feasible, and the deeper
network can learn the keypoints relationship with lager receptive field. The hour-
glass module proposed by Newell et al. [12] is an extension of Wei et al. with
the addition of residual connections between the conv-deconv sub-modules. The
hourglass module can effectively capture and combine features across scales. Chu
et al. [13] adopted stacked hourglass networks to generate attention maps from
features at multiple resolutions with various semantics. Yang et al. [14] designed
a pyramid residual module (PRM) to enhance the deep CNN invariance across
scales, by learning the convolutional filters on various feature scales.

State-of-the-art DNNs for pose estimation are still limited in the capability
of modeling human body structural for effective keypoint matching. Existing
methods rely on a brute-force approach by increasing network depth to implic-
itly enrich the keypoint relationship modeling capability. A major weakness in
this regard is the ambiguities arising from the occlusions, clutter backgrounds,
or multiple body parts in the scene. In the MPII pose benchmark [16], many
methods [10,11,12,13,14] rely on repeating their pose estimation pipeline multi-
ple times in various scales, in order to improve performance by a small margin
using averaging of results. This indicates the lack of an effective solution to
handle scale and structural priors in the modeling.

3 Method

Our multi-scale structure-aware network consists of two types of subnetworks:
the multi-scale supervision network (MSS-net), which can be repeated for multi-
ple stack, and the multi-scale regression network (MSR-net) at the end, see Fig. 2.
Specifically, MSS-net is based on the conv-deconv hourglass module [12] trained
with multi-scale loss supervision. The MSR-net performs a final pose structural
regression by matching multi-scale keypoint heatmaps and their high-order asso-
ciations. Both the MSS-net and the MSR-net share a common structure-aware
loss function, which is designed to ensure effective multi-scale structural fea-
ture learning. The training of the whole pipeline is fine-tuned using the keypoint
masking training scheme to focus on learning hard samples.

We describe two key observations that motivates the design of our method.
First, the conv-deconv hourglass stacks capture rich features for keypoint detec-
tion across large variability in appearances and scales. However, such capability
is very sensitive to a particular scale in the multi-scale pyramid, and lacks of a
robust and consistent response across scales. This leads us to add explicit layer-
wise supervisions to each of the deconv layer in the training of our MSS-net.

Secondly, the output of the MSS-net hourglass model is a set of heatmaps,
and each heatmap corresponds to the location likelihood of each body keypoint
(elbows, wrists, ankles, knees, etc). To train the MSS-net, the heatmaps are su-
pervised against the ground-truth body keypoint heatmaps that are typically
generated using 2D Gaussian blurring. At the testing of the MSS-net for pose
estimation, the obtained heatmaps are mostly non-Gaussian, which variate ac-



Fig. 3. In the multi-scale supervision network, the refinement of keypoint localization in
up-sampling resolution works in analogy to the ‘attention’ mechanism used in the con-
ventional resolution pyramid search. (a) shows the multi-scale heatmaps of the keypoint
of the thorax. (b) shows the refinement of the keypoint heatmaps during the deconv up-
sampling, where the location of the thorax is refined with increased accuracy. (c) shows
our human skeletal graph with the visualization of keypoint connectivity links.

cording to the gesture of the subject. A key deficiency in the original hourglass
model [12] is that each keypoint heatmap is estimated independently, such that
the relationship between the keypoints are not considered. In other words, struc-
tural consistency among detected keypoints are not optimized.

To ensure structural consistency in the pose estimation pipeline, we intro-
duce the structure-aware loss in between the MSS-net hourglass modules that
serve as the purpose of intermediate supervision, to better capture the adja-
cency and associations among the body keypoints. The structure-aware loss is
also used in the MSR-net at the end of the pipeline, to globally oversee all
keypoint heatmaps across all scales. This way a globally consistent pose config-
uration can be inferred as the final output. The MSR-net regression not only
matches individual body keypoints (first-order consistency), but also matches
pairwise consistencies among adjacent keypoints (second-order consistency). To
illustrate, the co-occurrence of a matching pair between a hand/leg w.r.t. the
head/torso with high confidence should provide stronger hypothesis, in compari-
son to the separated, uncorrelated individual matches for the final pose inference.
The MSR-net is trained to perform such optimization across all body keypoints,
all scales of features, and all pairwise correlations in a joint regression.

3.1 Multi-Scale Supervision Network

The multi-scale supervision network (MSS-net) is designed to learn deep features
across multiple scales. We perform multiple layer-wise supervision at each of the
deconv layers of the MSS-net, where each layer corresponds to a certain scale.
The gray box at the bottom of Fig. 2 depicts the MSS-net architecture.

Multi-scale supervision is performed by calculating the residual at each de-
conv layer using the corresponding down-sampled ground-truth heatmaps in the
matching scale (e.g., 1/2, 1/4, 1/8 down-sampling). Specifically, to make equal
the feature map dimensions in order to compute the residual at the corresponding
scale, we use an 1-by-1 convolutional kernel for dimension reduction, to convert
the high-dimensional deconv feature maps into the desired number of features,
where the number of reduced dimension matches the number of body keypoints



Fig. 4.Muti-scale keypoint regression to disambiguate multiple peaks in the keypoint
heatmaps. (a-b) shows an example of (a) keypoint prediction and (b) heatmap from the
MSS-net hourglass stacks, which will be fed into the MSR-net for regression. (c-d)
shows (c) the output keypoint locations and (d) heatmap after regression. Observe that
the heatmap peaks in (d) are more focused compared to (b).

(which is also the number of heatmaps). On the other hand, the ground-truth
keypoint feature map is down-sampled to match the corresponding extracted
keypoint heatmap at each scale to compute the residual.

The multi-scale supervision network localizes body keypoints in a way similar
to the ‘attention model’ [19] used in the conventional resolution pyramid for
image search. The activation areas in the low-res heatmap can provide guidance
of the location refinement in the subsequent high-res layers, see Fig. 3.

We describe the loss function LMS to train the multi-scale supervision net-
work. The loss LMS is defined by summing the L2 loss from the heatmaps of
all keypoints across all scales, similar to the multi-scale loss function in [11,12].
To detect the N = 16 keypoints (head, neck, pelvis, thorax, shoulders, elbows,
wrists, knees, ankles, and hips), N heatmaps are generated after each conv-
deconv stack. The loss at the i-th scale compares the predicted heatmaps of all
keypoints against the ground-truth heatmaps at the matching scale:

Li
MS =

1

N

N∑
n=1

∑
x,y

||Pn(x, y)−Gn(x, y)||2, (1)

where Pn(x, y) and Gn(x, y) represent the predicted and the ground-truth con-
fidence maps at the pixel location (x, y) for the n-th keypoint, respectively.

In standard dataset the ground-truth poses are provided as the keypoint lo-
cations. We follow the common practice for ground-truth heatmap generation as
in Tompson et al. [20], where the n-th keypoint ground-truth heatmap Gn(x, y)
is generated using a 2D Gaussian centered at the keypoint location (x, y), with
standard deviation of 1 pixel. Fig. 2 (bottom left, first row) shows a few examples
of the ground-truth heatmaps for a certain keypoints.

3.2 Multi-Scale Regression Network

We use a fully convolutional multi-scale regression network (MSR-net) after the
MSS-net conv-deconv stacks to globally refine the multi-scale keypoint heatmaps
to improve the structural consistency of the estimated poses. The intuition is that
the relative positions of arms and legs w.r.t. the head/torso provide useful action



Fig. 5. Keypoint masking to simulate the hard training samples. (a) is a common
case in human pose estimation, the keypoint (left-wrist) is occluded by an object, but it
can be estimated from the limbs. (c) is another difficult case, where the nearby persons’
keypoint can be mismatched to the target person. Thus there are two kind of keypoint
masking, (b) is the background keypoint masking which crop a background patch and
paste on a keypoint to simulate the keypoint invisible, (d) is the keypoint duplicate
masking which crop a keypoint patch and paste on another keypoint to simulate multi-
person or multi-peak keypoint heatmap.

priors, which can be learned from the regression network by considering feature
maps across all scales for pose refinement. The MSR-net takes the multi-scale
heatmaps as input, and match them to the ground-truth keypoints at respective
scales. This way the regression network can effectively combine heatmaps across
all scales to refine the estimated poses.

The multi-scale regression network jointly optimizes the global body struc-
ture configuration via determining connectivity among body keypoints based
on the mutli-scale features. This can be viewed as an extension to the work of
the Convolutional Part Heatmap Regression [21], which only considers keypoint
heatmap regression at the scale of the input image. The input image with the
keypoint heatmaps can be seen as an attention method and provide larger resolu-
tion. In this case, the multi-scale regression network learns a scale-invariant and
attention based structure model, thus provide better performance. Moreover, our
multi-scale regression network optimizes the structure-aware loss, which matches
individual keypoints as well as the higher-order association (pairs and triplets
of keypoints) in estimating pose. The output from the multi-scale regression
network is a comprehensive pose estimation that considers pose configurations
across multiple feature scales, multiple keypoint associations, and high-order
keypoint associations.

Fig. 4 shows the efficacy of the multi-scale, high-order keypoint regression
performed in the MSR-net. The MSR-net works hand-in-hand with the MSS-
net to explicitly model the high-order relationship among body parts, such that
posture structural consistency can be maintained and refined.

3.3 Structure-Aware Loss

It has been observed that deeper hourglass stacks lead to better pose estima-
tion results [12]. As the depth of hourglass stacks increases, gradient vanishing
becomes a critical issue in training the network, where intermediate supervision
[11,12,13,14] is a common practice to alleviate gradient vanishing.



To this end, we design a structure-aware loss function following a graph to
model the human skeletal structure. Specifically we introduced a human skeletal
graph S (See Fig. 3(c) for a visualization of the human skeletal graph.) to define
the structure-aware loss. Each node Sn ∈ S represent a body keypoint of the
human skeleton and its connected keypoints, n ∈ {1, ..., N}. The structure-aware
loss at the i-th scale is formally defined as:

Li
SA =

1

N

N∑
n=1

||P i
n −Gi

n||2 + α

N∑
i=1

||P i
Sn
−Gi

Sn
||2. (2)

The first term is the multi-scale supervision loss Li
MS in Eq.(1) that represents

individual keypoint matching loss. The second term represents the structural
matching loss, where PSn and GSn are the combination of the heatmaps from
individual keypoint n and its neighbors in graph S. Hyperparameter α is a
weighing parameter balancing the two terms.

Fig. 2 (bottom left) shows a breakdown visualization of how our skeleton-
guided structure-aware loss is calculated in traversing the keypoints and their
relationships according to S. The top row in the sub-figure shows the inter-
mediate loss defined on individual keypoints (e.g., the right ankle, knee, hip,
pelvis, thorax, head, wrist, elbow) as used in [11,12]. The bottom row shows our
structure-aware loss defined for a set of connected keypoints.

We consider connected keypoints, e.g., head-thorax, shoulder-elbow, wrist-
elbow, hip-knee, hip-hip, knee-ankle, in the bottom sub-figure of Fig. 2. Because
that the elbows and knees has additional physical connections (to the shoulders
and wrists, and the hips and ankles, respectively), the structure-aware loss in
these two joints are three-way to include a triplet of connected keypoints, e.g.,
hip-knee-ankle, shoulder-elbow-wrist as in Fig. 2. In all cases, the list of struc-
turally connected keypoints is empirically determined according to the human
skeletal graph S, such that the loss can better capture the physical connectivity
of the keypoints in the human body to obtain structural priors.

The structure-aware loss is used at two places in our network: (1) in-between
the MSS-net stacks as a means of intermediate supervision to enforce structural
consistency while localizing keypoints; and (2) in the MSR-net to find a globally
consistent pose configuration.

3.4 Keypoint Masking Training

In the case of multi-person scenarios, more than one possible body keypoints can
co-exist in the view. In an occluded case, no keypoint can be visible observed.
To tackle these challenging scenarios, we develop a novel keypoint masking data
augmentation scheme to increase relevant training data to fine-tune our net-
works.

Specifically, occlusion of key points is an aspect that strongly affects the
performance of pose estimation methods. As shown in Fig. 5 (a), the left wrist
of the person is occluded by the mug, however the occluded wrist indeed can be



estimated by visible connected keypoint(left elbow) o r the libs connecting wrist
and elbow. Another difficult case is where there is another person nearby, e.g. in
Fig. 5 (c) that several people standing closely. In this case, the pose estimator
may easily take the nearby person’s keypoint as its own keypoint. One drawback
of training the network using the original training set is that there usually exists
insufficient amount of examples that contains the occlusion cases to train a
deep network for accurate keypoint detection/localization. Conventional data
augmentation method, such as the popular horizontally flipping, random crops
and color jittering in classification, are not helpful in this case.

We propose a keypoint masking method to address this problem by copying
and pasting body keypoint patches on the image for data augmentation. The
main idea is to generate keypoint occluded training samples as well as the ar-
tificially inserted keypoints, such that the network can effectively improve its
learning on these extreme cases. This data augmentation is easily doable from
the known ground-truth keypoint annotations.

Specifically, we introduce two types of keypoint/occlusion sample generation
methods: (1) As shown in Fig. 5 (b), we copy a background patch and put it
onto a keypoint to cover it, in order to simulate a keypoint occlusion. This kind
of sample is useful for the learning of occlusion recovery. (2) As shown in Fig. 5
(d), we copy a body keypoint patches and put it onto a nearby background, in
order to simulate the multiple existing keypoints, the case that mostly occurs in
multi-person scenarios. Since this data augmentation results in multiple identical
keypoint patches, the solution to a successful pose estimation must rely on some
sort of structural inference or knowledge. It is thus especially beneficial to fine-
tune to our global keypoint regression network.

Overall this keypoint masking strategy can effectively improve the focus
of learning on challenge cases, where important body keypoints are purposely
masked out or artificially placed at wrong locations. The effect of keypoint mask-
ing training in improving both (1) the detection and localization of occluded
keypoints and (2) global structure recognition will be evaluated in §4.3.

4 Experiments and Analysis

We train and test our model on a workstation with 4 NVIDIA GTX 1080Ti GPUs
and two public datasets – the MPII Human Pose Dataset and Challenge [16] and
FLIC dataset [5]. The MPII dataset consists of images taken from a wide range
of real-world activities with full-body pose annotations. It is considered as the
“de facto” benchmark for state-of-the-art pose estimation evaluation. The MPII
dataset includes around 25K images containing over 40K subjects with annotated
body joints, where 28K subjects are used for training, and the remaining 12k are
used for testing. The FLIC dataset consists of 5, 003 selected images obtained
from Hollywood movies. The images are annotated on the upper body, where the
subjects are mostly facing the camera, thus there exists less keypoint occlusions.

Since the testing annotations for MPII are not available to the public, in
our experiments, we perform training on a subset of the original training set,



and perform hyper-parameter selection on a separated validation set, which con-
tains around 3K subjects (that are in the original training set). We also report
evaluation results that are reported from the MPII benchmark 4.2.

4.1 Implementation

Training is conducted on the respective datasets (MPII, FLIC) using the SGD
optimizer for 300 epochs. In this work, we use 8 stacks of hourglass modules
for both training and testing. The training processes can be decided into three
stages: (1) MSS-Net training, (2) MSR-Net training, and (3) the joint training
of the MSS-Net and MSR-Net with keypoint masking. We use the same data
augmentation technique as in the original hourglass work [12] that includes rota-
tion (+/− 30 degrees), and scaling (.75 to 1.25) throughout the training process.
Due to GPU memory limitation, the input images were cropped and rescaled to
256x256 pixels. For the first stage we train the MSS-Net for 150 epochs, with the
initial learning rate to be 5e-4. The learn rate is reduced by a factor of 5 when
the performance dose not improve after 8 epochs. We then train the MSR-Net
for 75 epochs with the MSS-Net parameters fixed. Finally the whole network
pipeline is trained for 75 epoch with keypoint masking fine-tuning.

Testing is performed on both the MPII and FLIC datasets. Since this work fo-
cuses on single-person pose estimation, and there often exists multiple subjects
in the scene. We use a conditional testing method — We first test pose esti-
mation in the original scale assuming the subject appears at the image center.
We then check if the detected body keypoint confidence is lower then a specific
threshold. If so, no successful human pose is found. We then perturb the puta-
tive person location, and repeat the pose finding, to see if a refined pose can be
found. The keypoint confidence thresholds τ c can be keypoint-dependent, and
are empirically determined using the validation set. For the case multiple pose
estimation test trials are performed, only the results with scores higher than a
threshold τs are selected for the fusion of the pose output. The value of τs is
also empirically determined from the validation set. We note that this testing
refinement may reduce the testing performance of pose estimation, because the
variation of the input (person bounding box) is also considered in the process.

4.2 Evaluation Results

Evaluation is conducted using the standard Percentage of Correct Keypoints
(PCK) metric [22] which reports the percentage of keypoint detection falling
within a normalized distance of the ground truth. For the FLIC evaluation,
PCK is set to the percentage of disparities between the detected pose keypoints
w.r.t. the ground-truth after a normalization against a fraction of the torso size.
For the MPII evaluation, such disparities are normalized by a fraction of the
head size, which is denoted as PCKh.



Table 1. Results on the FLIC dataset (PCK = 0.2)

Elbow Wrist

Tompson et al. CVPR’15 [9] 93.1 92.4
Wei et al. CVPR’16 [11] 97.8 95.0
Newellet al. ECCV’16 [12] 99.0 97.0

Our model 99.2 97.3

Table 2. Evaluation results on the MPII pose dataset (PCKh = 0.5). Results were
retrieved on 03/15/2018.

Head Shoulder Elbow Wrist Hip Knee Ankle Total AUC

Our method 98.5 96.8 92.7 88.4 90.6 89.3 86.3 92.1 63.8

Chen et al. ICCV’17 [23] 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9 61.6
Chou et al. arXiv’17 [24] 98.2 96.8 92.2 88.0 91.3 89.1 84.9 91.8 63.9
Chu CVPR’17 [13] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5 63.8
Luvizon et al. arXiv’17 [25] 98.1 96.6 92.0 87.5 90.6 88.0 82.7 91.2 63.9
Ning et al. TMM’17 [26] 98.1 96.3 92.2 87.8 90.6 87.6 82.7 91.2 63.6
Newell ECCV’16 [12] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9 62.9
Bulat ECCV’16 [21] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7 59.6
Wei CVPR’16 [11] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5 61.4
Insafutdinov ECCV’16 [27] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5 60.8
Belagiannis FG’17 [28] 97.7 95.0 88.2 83.0 87.9 82.6 78.4 88.1 58.8

FLIC: Table 1 summarizes the FLIC results, where our PCK reaches 99.2%
for the elbow, and 97.3% for the wrist. Note that the elbows and wrists are the
most difficult parts to localize in the FLIC dataset. Comparison with Newell
et al. [12] demonstrates the improvement of our structure-aware design in the
MSS-net and MSR-net in our method.

MPII: Table 2 summarizes the MPII evaluation results. Observe that our
method achieves the highest total score (92.1) and state-of-the-art results across
all keypoints on the MPII benchmark as well as the AUC score. In Fig. 6 we
show several pose estimation results on the MPII dataset. In Fig. 7 we show
some highly challenging examples with crowded scenes and severe occlusions.
In this case, we run our pose estimation on the bounding box of each person,
which is provided in the MPII dataset. Our method can extract complex poses
for each targeted person, without confusing with other person’s poses and in the
presence of occlusions.

4.3 Component Analysis

We performed a series of ablation experiments to investigate the effect of in-
dividual components in our method. The ablation study is conducted on the
validation set [20] of the MPII dataset. Note that our method can be reduced
to the original hourglass model of Newell et al. [12] after all newly proposed
features are taken out. Thus, we analysis each proposed network design, i.e., the
MSS-net, MSR-net, structure-aware loss, and keypoint masking, by comparing
against Newell et al. with a baseline score of 87.1% at PCKh = 0.5.

Multi-scale supervision (MSS-net without structure-aware loss): We first
evaluate the effect of the multi-scale supervision along. By adding the multi-



Fig. 6. Example of pose estimation results on the MPII dataset using our method. (row
1) Examples with significant scale variations for keypoints. (row 2,3) Examples with
multiple persons. (row 4,5) Examples with severe keypoint occlusions.

scale supervision at the deconv layers of hourglass model [12], the PCKh score
improve from 87.1% to 87.6% and also with a significant computation reduction.
This is because the original hourglass method [12] is tested with input images of
multiple scales (6 scales in our experiment), while the evaluation of our multi-
scale supervision network only need to be tested once in the original scale input.
Our method does not require repeated runs and fusion of different scales as
post-processing.

Multi-scale regression (MSS-net and MSR-net without structure-aware
loss): To justify the contribution of multi-scale regression, we evaluate the effect
of the second stage of our training pipeline (i.e. the training of the MSR-net
after the MSS-net is trained, without keypoint masking fine-tuning). The PCKh

score here is 88.1% score, which is 0.4% improvement brought by the multi-scale
regression.

Structure-aware loss (MSS-net and MSR-net with structure-aware loss):
The next in our ablation pipeline is to use structure-aware loss in the training of



Fig. 7. Pose estimation results with our method on two very challenging images from
the MPII dataset with crowded scene and severe occlusions. Our method can reliably
recover complex poses for each targeted person.

MSS-net and MSR-net, in comparison to the original loss defined in Eq.(1). The
PCKh score we obtained here is 88.3%, which is a 0.3% improvement brought
by the use of structure-aware loss for training.

Keypoint masking: After 75 epochs keypoint masking fine-tuning in the
MSS-net and MSR-net pipeline with structure-aware loss, we achieve a 88.4%
PCKh score. The keypoint masking contributes 0.1% PCKh improvement in this
ablation study.

5 Conclusion

We describe an improved multi-scale structure-aware network for human pose es-
timation. The proposed multi-scale approach (multi-scale supervision and multi-
scale regression) works hand-in-hand with the structure-aware loss design, to
infer high-order structural matching of detected body keypoints, that can im-
prove pose estimation in challenging cases of complex activities, heavy occlusions,
multiple subjects and cluttered backgrounds. The proposed keypoint masking
training can focus the learning of the network on difficult samples. Our method
achieve the leading position in the MPII challenge leaderboard among the state-
of-the-art methods. Ablation study shows the contribution and advantage of
each proposed components.

Future work includes the combination of inception kernels and RoI-align
methods to better localize the subjects who might be performing further compli-
cated activities as well as heavily-occluded multi-person scenarios. Person detec-
tion as an input to the current method can be solved as a joint problem together
with the pose estimation within a unified framework.
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