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Abstract. In this paper, we study the problem of salient object detec-
tion (SOD) for RGB-D images using both color and depth information.
A major technical challenge in performing salient object detection from
RGB-D images is how to fully leverage the two complementary data
sources. Current works either simply distill prior knowledge from the
corresponding depth map for handling the RGB-image or blindly fuse
color and geometric information to generate the coarse depth-aware rep-
resentations, hindering the performance of RGB-D saliency detectors.
In this work, we introduce Cascade Graph Neural Networks (Cas-Gnn),
a unified framework which is capable of comprehensively distilling and
reasoning the mutual benefits between these two data sources through
a set of cascade graphs, to learn powerful representations for RGB-D
salient object detection. Cas-Gnn processes the two data sources indi-
vidually and employs a novel Cascade Graph Reasoning (CGR) module
to learn powerful dense feature embeddings, from which the saliency map
can be easily inferred. Contrast to the previous approaches, the explic-
itly modeling and reasoning of high-level relations between complemen-
tary data sources allows us to better overcome challenges such as oc-
clusions and ambiguities. Extensive experiments demonstrate that Cas-
Gnn achieves significantly better performance than all existing RGB-D
SOD approaches on several widely-used benchmarks. Code is available
at https://github.com/LA30/Cas-Gnn.

Keywords: Salient object detection, RGB-D perception, graph neural
networks

1 Introduction

Salient object detection is the crux to dozens of high-level AI tasks such as
object detection or classification [52,80,69], weakly-supervised semantic segmen-
tation [30,63], semantic correspondences [77] and others [35,72,71]. An ideal so-
lution should identify salient objects of varying shape and appearance, show
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robustness towards heavy occlusion, various illumination and background. With
the development of hardware (sensors and GPU), prediction accuracy of data-
driven methods that use deep networks [87,42,74,56,79,68,67,84,22,10,37] have
been improved significantly, compared to traditional methods based on hand-
crafted features [41,12,81,82]. However, these approaches only take the appear-
ance features from RGB data into consideration, making them unreliable when
handling the challenging cases, such as poorly-lighted environments and low-
contrast scenes, due to the lack of depth information.

The depth map captured by RGB-D camera preserves important geometry
information of the given scene, allowing 2D algorithms to be extend into 3D
space. Depth awareness has been proven to be crucial for many applications of
scene understanding, e.g., scene parsing [61,29], 6D object pose estimation [58,27]
and object detection [24,49], leading to a significant performance enhancement.
Recently, there have been a few attempts to take into account the 3D geometric
information for salient object detection in the given scene, e.g., by distilling prior
knowledge from the depth [51] or incorporating depth information into a SOD
framework [86,48,21]. These RGB-D models have achieved better performances
than RGB-only models in salient object detection when dealing with challenging
cases. However, as we demonstrate empirically, existing RGB-D salient object
detection models fall short under heavy occlusions and depth image noise. One
primary reason is that these models, which only focus on delivering or gathering
information, ignore modeling and reasoning over high-level relations between two
data sources. Therefore, it is hard for them to fully exploit the complementary
nature of 2D color and 3D depth information for overcoming the ambiguities
in complex scenes. These observations inspire us to think about: How to explic-
itly reason on high-level relations over 2D appearance (color) and 3D geometry
(depth) information for better inferring salient regions?

Graph neural network (GNN) has been shown to be an optimal way of re-
lation modeling and reasoning [54,11,88,73,62]. Generally, a GNN model prop-
agates messages over a graph, such that the node’s representation is not only
obtained from its own information but also conditioned on its relations to the
neighboring nodes. It has revolutionized deep representation learning and bene-
fitted many computer vision tasks, such as 3D pose estimation [5], action recog-
nition [87], zero-shot learning [70] and language grounding [1], by incorporating
graph computation into deep learning frameworks. However, how to design a
suitable GNN model for RGB-D based SOD is challenging and, to the best of
our knowledge, is still unexplored.

In this paper, we present the first attempt to build a GNN-based model,
namely Cascade Graph Neural Networks (Cas-Gnn), to explicitly reason about
the 2D appearance and 3D geometry information for RGB-D salient object de-
tection. Our proposed deep model including multiple graphs, where each graph
is used to handle a specific level of cross-modality reasoning. In each graph, two
basic types of nodes are contained, i.e., geometry nodes storing depth features
and appearance nodes storing RGB-related features, and they are linked to
each other by edges. Through message passing, the useful mutual information
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and high-level relations between two data sources can be gradually distilled for
learning the powerful dense feature embeddings, from which the saliency map
can be inferred. To further enhance the capability for reasoning over multiple
levels of features, we make our Cas-Gnn to have these multi-level graphs se-
quentially chained by coarsening the preceding graph into two domain-specific
guidance nodes for the following cascade graph. Consequently, each graph in
our Cas-Gnn (except for the first cascade graph) has three types of nodes in to-
tal, and they distill useful information from each other to build powerful feature
representations for RGB-D based salient object detection.

Our Cas-Gnn is easy to implement and end-to-end learnable. As opposed
to prior works which simply fuse features of the two data sources, Cas-Gnn is
capable of explicitly reasoning about the 2D appearance and 3D geometry infor-
mation over chained graphs, which is essential to handle heavy occlusions and
ambiguities. Extensive experiments show that our Cas-Gnn performs remark-
ably well on 7 widely-used datasets, outperforming state-of-the-art approaches
by a large margin. In summary, our major contributions are described below:

1) We are the first to use the graph-based techniques to design network architec-
tures for RGB-D salient object detection. This allows us to fully exploit the
mutual benefits between the 2D appearance and 3D geometry information
for better inferring salient object(s).

2) We propose a graph-based, end-to-end trainable model, called Cascade Graph
Neural Networks (Cas-Gnn), for RGB-D based SOD, and carefully design
Graph-based Reasoning (GR) module to distill useful knowledge from differ-
ent modalities for building powerful feature embeddings.

3) Different from most GNN-based approaches, our Cas-Gnn ensembles a set
of cascade graphs to reason about relations of the two data sources hierar-
chically. This cascade reasoning capability ensures the graph-based model to
exploit rich, complementary information from multi-level features, which is
useful in capturing object details and overcoming ambiguities.

4) We conduct extensive experiments on 7 widely-used datasets and show that
our Cas-Gnn sets new records, outperforming state-of-the-art approaches.

2 Related Work

This work is related to RGB-D based salient object detection, graph neural
network and network cascade. Here, we briefly review these three lines of works.
RGB-D Salient Object Detection. Unlike approaches for RGB-only salient ob-
ject detection methods [75,23,39,67,84,22,43,17,22,37,41,12,81,82] which only fo-
cus on 2D appearance feature learning, RGB-D based SOD approaches [86,48,21]
take two different data sources, i.e., 2D appearance (color) and 3D geome-
try (depth) information, into consideration. Classical approaches extract hand-
crafted features from the input RGB-D data and perform cross-modality feature
fusion by various strategies, such as random forest regressor [55] and minimum
barrier distance [57]. However, with handcrafting of features, classic RGB-D
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based approaches are limited in the expression ability. Recent works such as
CPFP [86] integrates deep feature learning and cross-modality fusion within a
unified, end-to-end framework. Piao et al. [48] futher enhance the cross-modality
feature fusion through a recurrent attention mechanism. Fan et al. [21] introduce
a depth-depurator to filter out noises in the depth map for better fusing cross-
modality features. These approaches, despite the success, are not able to fully
reason the high-order relations of cross-modality data, making them unreliable
when handling challenges such as occlusions and ambiguities. In comparison,
our Cas-Gnn considers a better way to distill the mutual benefit of the two
data sources by modeling and reasoning their relations over a set of cascade
graphs, and we show that such cross-modality reasoning boosts the performance
significantly.
Graph Neural Networks. In recent years, a wide variety of graph neural net-
work (GNN) based models [16,15,53,33] have been proposed for different appli-
cations [54,11,88,4,44]. Generally, a GNN can be viewed as a message passing
algorithm, where representations for nodes are iteratively computed conditioned
on their neighboring nodes through a differentiable aggregation function. Some
typical applications in computer vision include semantic segmentation [50], ac-
tion recognition [65], point cloud classification and segmentation [66], to name
a few. In the context of RGB-D based salient object detection – the task that
we study in this paper – a key challenge in applying GNNs comes from how
the graph model learns high-level relations and low-level details simultaneously.
To solve this problem, unlike existing graph models, we ensemble a set of se-
quentially chained graphs to form a unified, cascade graph reasoning model.
Therefore, our Cas-Gnn is able to reason about relations across multiple fea-
ture levels to capture important hierarchical information for RGB-D based SOD,
which is significantly different from all existing GNN based models.
Network Cascade. Network cascade is an effective scheme for a variety of high-
level vision applications. Popular examples of cascaded models include DeCaFA
for face alignment [14], BDCN for edge detection [26], Bidirectional FCN for
object skeleton extraction [76], and Cascade R-CNN for object detection [6], to
name a few. The core idea of network cascade is to ensemble a set of models to
handle challenging tasks in a coarse-to-fine or easy-to-hard manner. For salient
object detection in RGB-only images, only a few attempts employ the network
cascade scheme. Li et al. [36] use a cascade network for gradually integrating
saliency prior knowledge from coarse to fine. Wu et al. [67] design a cascaded
partial decoder to enhance the learned features for salient object detection. Dif-
ferent from these approaches, our Cas-Gnn propagates the knowledge learned
from a more global view to assist fine-grained reasoning by chaining multiple
graphs, which aids a structured understanding of complex scenes.

3 Method

The key idea of Cas-Gnn is that it enables the fully harvesting of the 2D ap-
pearance and 3D geometric information by using a differentiable, cascade mod-
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Fig. 1. Overall of our simple cross-modality reasoning model. Our model is built upon
two VGG-16 based backbones, and uses a novel graph-based reasoning (GR) module
to reason about the high-level relations between the generated 2D appearance and
3D geometry nodes for building more powerful representations. The updated node
representations from two modalities are finally fused to infer the salient object regions.

ule to hierarchically reason about relations between the two data sources. In
this section, we elaborate on how to design a graph reasoning module and how
to further enhance the capability of graph-based reasoning using the network
cascade technique.

3.1 Problem Formulation

The task of RGB-D based salient object detection is to predict a saliency map
z ∈ Z given an input image x ∈ X and its corresponding depth image y ∈
Y. The input space X and Y correspond to the space of images and depths
respectively, and the target space Z consists of only one class. A regression
problem is characterized by a continuous target space. In our approach, a graph-
based model is defined as a function fΘ : {X ,Y} 7→ Z, parameterized by Θ,
which maps an input pair, i.e., x ∈ X and y ∈ Y, to an output fΘ(x, y) ∈ Z.
The key challenging is to design a suitable model Θ that can fully exploit useful
information from the two data sources (color and depth image) to learn powerful
representations so that it can make the mapping more accurately.

3.2 Cross-modality Reasoning with Graph Neural Networks

We start out with a simple GNN model, which reasons over the cross-modality
relations between 2D appearance (color) and 3D geometric (depth) information
across multiple scales, for salient object detection, as shown in Fig. 1.
Overview. For RGB-D salient object detection, the key challenge is to fully
mine useful information from the two complementary data sources, i.e., the color
image x ∈ X and the depth y ∈ Y, and learn the mapping function fΘ(x, y) which
can infer the saliency regions z ∈ Z. Aiming to achieve this goal, we represent
the extracted multi-scale color features C = {c1, · · · , cn} and depth features
D = {d1, · · · , dn} with a directed graph G = (V, E), where V means a finite set
of nodes and E stands for the edges among them. The nodes in the GNN model



6 A. Luo, et al.

h×w×C

Pool

h1×w1×C

h2×w2×C

hn×wn×C

h2×w2×c

h1×w1×c

hn×wn×c

*

*

*

h×w×c

h×w×c

h×w×c

upsample

upsample

upsample

w

c

h
Sigmoid

Sigmoid

𝒗𝒌

w

c

h

w

c

h h

w

c

w

c

h*

*
~

(b)

𝒗𝒍

𝑔!"(𝑣# ; 𝑣$) 𝒆𝒌,𝒍

𝒆𝒍,𝒌

𝒎𝒌,𝒍

𝒎𝒍,𝒌

Element-wise Multiply

* Convolution

~ Negation

C Concatenation

Minus

… … …

(a)

Fig. 2. Detailed illustration of our designs for (a) node embedding and (b) edge em-
bedding. Zoom in for details.

are naturally grouped into two types: the geometry nodes V1 = {c1, · · · , cn}
and the appearance nodes V2 = {d1, · · · , dn}, where V = V1 ∪ V2. The edges
E connect i) the nodes from the same modality (V1 or V2), and ii) the nodes of
the same scale from different modalities, i.e., ci ↔ di where i ∈ {1, · · · , n}. For

each node, ci or di, we learn its updated representation, namely c
(t)
i or d

(t)
i , by

aggregating the representations of its neighbors. In the end, the updated features
are fused to produce the final representations for salient object detection.

Feature Backbones. Before reasoning the cross-modality relations, we first ex-
tract the 2D appearance feature C and 3D geometry feature D through the
appearance backbone network cα and geometry backbone network dβ , respec-
tively. Following most of the previous approaches [48,7,9,25,89], we take two
VGG-16 networks as the backbones, and use the dilated network technique [78]
to ensure that the last two groups of VGG-16 have the same resolution. For the
input RGB image x and the corresponding depth image y, we can map them
to semantically powerful 2D appearance representations C = cα(x) ∈ Rh×w×C
and 3D geometry representations D = dβ(y) ∈ Rh×w×C . Rather than directly
fusing the extracted features C and D to form the final representations for RGB-
D salient object detection, we introduce a Graph-based Reasoning (GR) module
to reason about the cross-modality, high-order relations between them to build
more powerful embeddings, from which the saliency map can be inferred more
easily and accurately.

Graph-based Reasoning Module. The Graph-based Reasoning (GR) module
gχ takes the underlying 2D appearance features C and 3D geometry features D
as inputs, and outputs powerful embeddings C and D after performing cross-
modality reasoning: {C,D} = gχ(C,D). We formulate gχ(·, ·) in a graph-based,
end-to-end differentiable way as follows:

1) Graph Construction : Given the 2D appearance features C and 3D geome-
try features D, we build a graph G = (V, E) which has two types of nodes: the
geometry nodes V1 = {c1, · · · , cn} and the appearance nodes V2 = {d1, · · · , dn},
where V = V1 ∪ V2. Each node ci or di is a feature map for a predefined scale
si and edges link i) the nodes from the same modality but different scales, i.e.,
ci ↔ cj or di ↔ dj , and ii) the nodes of the same scale from different modalities,
i.e., ci ↔ di. Next, we show how to parameterize the nodes V, edges E , and
message passing functions M of the graph G with neural networks.
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2) Multi-scale Node Embeddings V: Given the 2D appearance features C and
3D geometry features D, as shown in Fig. 2(a), we leverage the pyramid pooling
module (PPM) [85] followed by a convolution layer and an interpolation layer to
extract multi-scale features of the two modalities (n scales) as the initial node
representations, resulting in N = 2 · n nodes in total. For the appearance node

ci and geometry node di, their initial node representations c
(0)
i ∈ Rh×w×c and

d
(0)
i ∈ Rh×w×c can be computed as:

c
(0)
i = Rh×w(Conv(P(C; si))); d

(0)
i = Rh×w(Conv(P(D; si))), (1)

where P(· ; si) means the pyramid pooling operation, which pools the given
feature maps to the scale of si, and R(·) is the interpolation operation which
ensures multi-scale feature maps to have the same size h× w.
3) Edge Embeddings E: The nodes are linked by edges for information propa-
gation. As mentioned above, in our constructed graph, edges link i) the nodes
from the same modality but different scales, and ii) the nodes of the same scale
from different modalities. For simplification, we use vk and vl, where vk, vl ∈ V,
to represent two nodes linked by the edge1. As shown in Fig. 2(b), the edge
embedding ek,l is used to represent the high-level relation on the two sides of
the edge from vk to vl through a relation function frel(· ; ·):

ek,l = frel(vk;vl) = Conv(gcb(vk;vl)) ∈ Rh×w×c, (2)

where vk and vl are node embeddings for nodes vk and vl respectively, gcb(· ; ·)
is a function that combines the node embeddings vk and vl, and Conv(·) is the
convolution operation which learns the relations in an end-to-end manner. For
the combination function gcb(· ; ·), we follows [66] and model it as: gcb(vk;vl) =
vl−vk. The resulting edge embedding ek,l for node vk to vl is also a c-dimensional
feature map with the size of h×w, in which each feature reflects the pixel-wise
relationship between linked nodes.
4) Message Passing M: In our GNN model, each node aggregates feature mes-
sages from all its neighboring nodes. For the message mk,l passed from all neigh-
boring nodes vk to vl, we define the following message passing functionM(· ; ·):

m
(t)
k,l =

∑
k∈N (l)

M(v
(t−1)
k , e

(t−1)
k,l ) =

∑
k∈N (l)

sigmoid(e
(t−1)
k,l ) · v(t−1)

k ∈ Rh×w×c

(3)
where sigmoid(·) is the sigmoid function which maps the edge embedding to link
weight. Since our GNN model is designed for a pixel-wise task, the link weight
between node is represented by a 2D map.
5)Node-state Updating Fupdate: After the t th message passing step, each node
vl in our GNN model aggregates information from its neighboring nodes to up-
date its orginal feature representations. Here, we model the node-state updating

1 In our formulation, the edges, message passing function and node-state updating
function have no concern with the node types, therefore we simply ignore the node
type for more clearly describing the 3) edge embeddings, 4) message passing
and 5) node-state updating.
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process with Gated Recurrent Unit [2],

v
(t)
l =

∑
k∈N (l)

Fupdate(v(t−1)
l ,m

(t−1)
k,l ) =

∑
k∈N (l)

UGRU (v
(t−1)
l ,m

(t−1)
k,l ), (4)

where UGRU (· ; ·) stands for the gated recurrent unit.
6)Saliency Readout O: After T message passing iterations, we upsample all
updated node embeddings of each modality to the same size through the in-

terpolation layer R(·), and merge them, i.e., V1 = {R(c
(T )
i )}ni=1 and V2 =

{R(d
(T )
i )}ni=1, to form the embeddings:

C = Fmerge(V1); D = Fmerge(V2), (5)

where Fmerge(·) denotes the merge function which is implemented with a con-
catenation layer followed by a 3×3 convolution layer. The learned embeddings of
each modality can be further fused to form the final representations for RGB-D
salient object detection by the following operation:

S = RH×W (O(C,D)), (6)

where O(·) is the readout function that maps the learned representations to the
saliency scores. Here, we implement it with a concatenation layer followed by
two 1× 1 convolution layers; RH×W (·) is used to resize the generated results to
the same size of input image H ×W through the interpolation operation.

Overall, all components in our GNN model are formulated in a differentiable
manner, and thus can be trained end-to-end. Next, we show how to further
enhance the capability of GNN model through network cascade techniques.

3.3 Cascade Graph Neural Networks

In this part, we further enhance our GNN model for RGB-D salient object de-
tection by using the network cascade technique. As observed by many existing
works [28,40,59,20], the deep-layer and shallow-layer features are complementary
to each other: the deep layer features encode high-level semantic knowledge while
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the shallow-layer features capture rich spatial information. Ideally, a powerful
deep saliency model should be able to fully explore these multi-level features.
Aiming to achieve this, we extend our GNN model to a hierarchical GNN model
which is able to perform the reasoning across multiple levels for better inferring
the salient object regions.
Hierarchical Reasoning via Multi-level Graphs. A straightforward scheme is to
ensemble a set of graphs across multiple levels {Gw}Ww=1 to learn the embeddngs
individually, and then fuse the learned representations to build the final represen-
tations. Formally, given the VGG-16 based appearance backbone cα for RGB im-
age X and geometry backbone dβ for depth image Y, we follow [28] to map the in-
puts to W levels of side-output features, i.e., the multi-level appearance features
Ṽ1 = {C1, · · · , CW } and the multi-level geometry features Ṽ2 = {D1, · · · ,DW }.
For the features of each level w ∈ [1,W ], we build a graph Gw and use our
proposed Graph-based Reasoning (GR) module gχ(Cw,Dw) to map them to the
corresponding embeddings {Cw,Dw}Wi=1. Then, these multi-level embeddings of
each modality, Ṽ1 = {C1, · · · ,CW } and Ṽ2 = {D1, · · · ,DW }, can be easily in-
terpolated to have the same resolution through the interpolation layer R(·), i.e.,
Ṽ1 = {R(C1), · · · , R(CW )} and Ṽ2 = {R(D1), · · · , R(DW )}, and merged by
the following function:

C̃ =Mcl(Ṽ1); D̃ =Mcl(Ṽ2) (7)

where Mcl(·) is a merge function, which can be either element-wise addition or
channel-wise concatenation. Then, the readout function O(C̃, D̃) can be used to
generate the final results.

Generally, this simply hierarchical approach enables the model to perform
reasoning across multiple levels. However, as it treats the multi-level reasoning
process independently, the mutual benefits are hard to be fully explored.
Cascade Graph Reasoning. To overcome the drawbacks of independent multi-
level (graph-based) reasoning, we propose the Cascade Graph Reasoning (CGR)
module by chaining these graphs {Gw}Ww=1 for joint reasoning. The resulting
model is called Cascade Graph Neural Networks (Cas-Gnn), as shown in Fig. 3.
Specifically, our Cas-Gnn includes multi-level graphs {Gw}Ww=1 which are linked
in a top-down manner by coarsening the preceding graph into two domain-
specific guidance nodes for the following cascade graph to perform the joint
reasoning.



10 A. Luo, et al.

1) Guidance Node: Unlike geometry nodes and appearance nodes, guidance
nodes only deliver the guidance information, and will stay fixed during the mes-
sage passing process. In our formulation, for reasoning the cross-modality rela-
tions of the w th cascade stage, its preceding graph (from the deeper side-output
level) is mapped into guidance node embeddings by the following functions:

gwc = F(V
(w−1)
1 ); gwd = F(V

(w−1)
2 ), (8)

where gwc and gwd are the guidance node embeddings of cascade stage w, and F(·)
is the graph merging operator, which coarsens the set of learned node embeddings

(V
(w−1)
1 = {c(w−1)(T )

i }ni=1 or V
(w−1)
2 = {d(w−1)(T )

i }ni=1) of the preceding graph
G(w−1) by firstly concatenating them and then performing the fusion via a 3× 3
convolution layer (See Fig. 4(a)).
2) Cascade Message Propagation : Each guidance node, gwc or gwd , propagates
the guidance information to other nodes of the same domain in the graph G(w)

through the attention mechanism:

v̆w(t)
c = vw(t)

c �A(gwc ); v̆
w(t)
d = v

w(t)
d �A(gwd ) (9)

where v̆
w(t)
c and v̆

w(t)
d denote the updated appearance node embeddings and

geometry node embeddings for the cascade stage w after t th message passing
step respectively; � means the channel-wise multiplication. A(·) is the attention
function, which can be formulated as:

A(gwc ) = sigmoid(P(gwc )); A(gwd ) = sigmoid(P(gwd )); (10)

where P(·) is the global average pooling operation, and the sigmoid is used
to map the guidance embeddings of each modality to the channel-wise atten-
tion vectors (See Fig. 4(b)). Therefore, the geometry and appearance node em-
beddings can incorporate important guidance information from previous graph
G(w−1) during performing the joint reasoning over Gw to create more powerful
embeddings.
3) Multi-level Feature Fusion : Through the cascade message propagation, the
Cascade Graph Reasoning (CGR) learns the embeddings of multi-level features
under the guidance information provided by the guidance nodes. Here, we denote
these learned multi-level embeddings as {C̆1, · · · , C̆W } and {D̆1, · · · , D̆W }. To
fuse them, we rewrite Eq. 7 to create the representations:

C̆ =Mcl(R(C̆1), · · · , R(C̆W )); D̆ =Mcl(R(D̆1), · · · , R(D̆W )); (11)

where C̆ and D̆ denote the merged representations for the appearance and ge-
ometry domain, respectively. Finally, the saliency readout operation (Eq. 6) is
used to produce the final saliency map.

4 Experiments

In this section, we first provide the implementation details of our Cas-Gnn.
Then, we perform ablation studies to evaluate the effectiveness of each core
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Fig. 5. Quantitative comparisons. The PR curves (Top) and weighted F-measures (Bot-
tom) of the proposed method and state-of-the-art approaches on four datasets.

component of graph-based model. Finally, Cas-Gnn is compared with several
state-of-the-art RGB-D SOD methods on six widely-used datasets.
Datasets: We conduct our experiments on 7 widely-used datasets: NJUD [31],
STEREO [46], NLPR [47], LFSD [34], RGBD135 [13], and SSD [90]. For fair
comparison, we follow most SOTAs [7,9,25] to randomly select 1,400 samples
from the NJU2K dataset and 650 samples from the NLPR dataset for training,
and use all remaining images for evaluation.
Evaluation Metrics: We adopt 5 most-widely used evaluation metrics to com-
prehensively evaluate the performance of our model, including the mean absolute
error (MAE), the precision-recall curve (PR Curve), F-measure (Fβ), S-measure
(Sα) [18] and E-measure(Eξ) [19]. Following previous SOTAs [7,9,25], we set β
in Fβ to 0.3 and α in Sα to 0.5 for fair comparison.

4.1 Implementation Details

Following [21,7,9,25], we utilize two VGG-16 networks as the backbones, where
one is used for extracting the 2D appearance (RGB) features and the other for
extracting 3D geometric (depth) features. We employ the dilated convolutions
to ensure that the last two groups of backbones have the same resolution. In the
Graph-based Reasoning (GR) module gχ, three nodes are used in each modality
for capturing information of multiple scales, resulting in a graph G with six
nodes in total. G links all nodes of the same modality. For the nodes of different
modalities, the edge only connects those nodes with the same scale. During
the construction of the Cascade Graph Reasoning (CGR) module, the features
from outputs of the second, third and fifth group of each backbone (different
resolutions) are used as inputs for performing cascade graph reasoning. Similar
to existing approaches [7,9,25], BCE loss is used to train our model.
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Table 1. Ablation analysis for
different graph-related settings.

Methods
Settings NJUD RGBD135

N T Fβ MAE Fβ MAE

Cas-Gnn 2 3 0.887 0.039 0.890 0.033
Cas-Gnn 6 3 0.903 0.035 0.906 0.028
Cas-Gnn 10 3 0.905 0.035 0.909 0.028
Cas-Gnn 6 1 0.881 0.038 0.885 0.031
Cas-Gnn 6 3 0.903 0.035 0.906 0.028
Cas-Gnn 6 5 0.907 0.034 0.908 0.028

Table 2. Ablation analysis on three widely-used
datasets.

Methods Param. FLOPs
NJUD [31] STEREO [46] RGBD135 [13]
Fβ MAE Fβ MAE Fβ MAE

Baseline 40.66M 65.64G 0.801 0.073 0.813 0.071 0.759 0.052
Baseline + IL 40.91M 66.21G 0.838 0.065 0.841 0.064 0.788 0.046
Baseline + NL 40.98M 66.86G 0.851 0.059 0.852 0.060 0.807 0.043

Baseline + GR (ours) 41.27M 68.91G 0.874 0.051 0.864 0.048 0.854 0.031

Baseline + CMFS 41.88M 72.63G 0.820 0.068 0.822 0.067 0.780 0.047

Baseline + HR (ours) 42.03M 73.19G 0.886 0.041 0.871 0.045 0.890 0.033

Baseline + CGR (ours) 42.28M 73.62G 0.903 0.035 0.901 0.039 0.906 0.028

We implement our Cas-Gnn using the Pytorch toolbox. The fully equipped
model is trained on a PC with GTX 1080Ti GPU for 40 epochs with the mini-
batch size of 8. The input RGB images and depth images are all resized to
256 × 256. To avoid overfitting, we perform the following data augmentation
techniques: random horizontal flip, random rotate and random brightness. We
adopt the Adam with a weight decay of 0.0001 to optimize the network param-
eters. The initial learning rate is set to 0.0001 and the ‘poly’ policy with the
power of 0.9 is used as a mean of adjustment.

4.2 Ablation Analysis

In this section, we perform a series of ablations to evaluate each component in
our proposed network.
Conventional Feature Fusion vs. Graph-based Reasoning. To show the effec-
tiveness of graph-based reasoning, we implement a simple baseline model that
directly fuses features from the same multi-modality backbones by first perform-
ing the concatenate operation and then learning to fuse the learned features for
RGB-D based SOD by two 1×1 convolutions. Clearly, our graph-based reasoning
approach (GR module) achieves much more reliable and accurate results.

In addition, we further provide two strong baselines to show the superiority of
our proposed graph-based reasoning approach. The first one is designed by using
the one-shot induced learner (IL) [3,45] to adapt the learned 3D geometric fea-
tures to 2D appearance space, making the cross-modality features can be better
fused for RGB-D based SOD. The second one uses non-local (NL) module [64] to
enable 2D appearance feature map to selectively incorporate useful information
from 3D geometric features for building powerful representations. As shown in
Tab. 2, our GR module significantly outperforms these strong baselines. This is
because our GR module is capable of explicitly distilling complementary infor-
mation from 2D appearance (color) and 3D geometry (depth) features while the
existing feature fusion approaches fail to reason out high-level relations between
them.
The Effectiveness of Cascade Graph Reasoning. A key design of our Cas-Gnn
is the novel Cascade Graph Reasoning module (CGR). To verify the effective-
ness of CGR, we use the a common multi-level fusion strategy described in [48]
(CMFS) for comparison. As shown in Tab. 2, our CGR consistently

outperforms CMFS across all datasets. Moreover, our CGR is also superior
to the hierarchical reasoning (HR) approach without the guidance nodes which
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Table 3. Quantitative comparisons with state-of-the-art methods by S-measure (Sα),
F-measure (Fβ), E-measure (Eξ) and MAE (M) on 7 widely-used RGB-D datasets.

2014-2017 2018-2020
Metric LHM CDB CDCP MDSF CTMF AFNet MMCI PCF TANet CPFP D3Net DMRA UCNet ASIF Ours

[47] [38] [91] [55] [25] [60] [9] [7] [8] [86] [21] [48] [83] [32]
N

J
U

D

Sα ↑ 0.514 0.624 0.669 0.748 0.849 0.772 0.858 0.877 0.878 0.879 0.895 0.886 0.897 0.888 0.911
Fβ ↑ 0.632 0.648 0.621 0.775 0.845 0.775 0.852 0.872 0.874 0.877 0.889 0.872 0.889 0.900 0.903
Eξ ↑ 0.724 0.742 0.741 0.838 0.913 0.853 0.915 0.924 0.925 0.926 0.932 0.908 0.903 - 0.933
M ↓ 0.205 0.203 0.180 0.157 0.085 0.100 0.079 0.059 0.060 0.053 0.051 0.051 0.043 0.047 0.035

S
T

E
R

E
O Sα ↑ 0.562 0.615 0.713 0.728 0.848 0.825 0.873 0.875 0.871 0.879 0.891 0.886 0.903 0.868 0.899

Fβ ↑ 0.683 0.717 0.664 0.719 0.831 0.823 0.863 0.860 0.861 0.874 0.881 0.868 0.885 0.893 0.901
Eξ ↑ 0.771 0.823 0.786 0.809 0.912 0.887 0.927 0.925 0.923 0.925 0.930 0.920 0.922 - 0.930
M ↓ 0.172 0.166 0.149 0.176 0.086 0.075 0.068 0.064 0.060 0.051 0.054 0.047 0.040 0.049 0.039

R
G

B
D

1
3
5 Sα ↑ 0.578 0.645 0.709 0.741 0.863 0.770 0.848 0.842 0.858 0.872 0.904 0.901 - - 0.905

Fβ ↑ 0.511 0.723 0.631 0.746 0.844 0.728 0.822 0.804 0.827 0.846 0.885 0.857 - - 0.906
Eξ ↑ 0.653 0.830 0.811 0.851 0.932 0.881 0.928 0.893 0.910 0.923 0.946 0.945 - - 0.947
M ↓ 0.114 0.100 0.115 0.122 0.055 0.068 0.065 0.049 0.046 0.038 0.030 0.029 - - 0.028

N
L

P
R

Sα ↑ 0.630 0.629 0.727 0.805 0.860 0.799 0.856 0.874 0.886 0.888 0.906 0.899 0.918 0.884 0.919
Fβ ↑ 0.622 0.618 0.645 0.793 0.825 0.771 0.815 0.841 0.863 0.867 0.885 0.855 0.890 0.900 0.904
Eξ ↑ 0.766 0.791 0.820 0.885 0.929 0.879 0.913 0.925 0.941 0.932 0.946 0.942 0.951 - 0.952
M ↓ 0.108 0.114 0.112 0.095 0.056 0.058 0.059 0.044 0.041 0.036 0.034 0.031 0.025 0.030 0.025

S
S

D

Sα ↑ 0.566 0.562 0.603 0.673 0.776 0.714 0.813 0.841 0.839 0.807 0.866 0.857 - - 0.872
Fβ ↑ 0.568 0.592 0.535 0.703 0.729 0.687 0.781 0.807 0.810 0.766 0.847 0.821 - - 0.862
Eξ ↑ 0.717 0.698 0.700 0.779 0.865 0.807 0.882 0.894 0.897 0.852 0.910 0.892 - - 0.915
M ↓ 0.195 0.196 0.214 0.192 0.099 0.118 0.082 0.062 0.063 0.082 0.058 0.058 - - 0.047

L
F

S
D

Sα ↑ 0.553 0.515 0.712 0.694 0.788 0.738 0.787 0.786 0.801 0.828 0.832 0.847 0.860 0.814 0.849
Fβ ↑ 0.708 0.677 0.702 0.779 0.787 0.744 0.771 0.775 0.796 0.826 0.819 0.849 0.859 0.858 0.864
Eξ ↑ 0.763 0.766 0.780 0.819 0.857 0.815 0.839 0.827 0.847 0.863 0.864 0.899 0.897 - 0.877
M ↓ 0.218 0.225 0.172 0.197 0.127 0.133 0.132 0.119 0.111 0.088 0.099 0.075 0.069 0.089 0.073

D
U

T
-R

G
B

D Sα ↑ 0.568 - 0.687 - 0.834 - 0.791 0.801 - - - 0.888 - - 0.891
Fβ ↑ 0.659 - 0.633 - 0.792 - 0.753 0.760 - - - 0.883 - - 0.912
Eξ ↑ 0.767 - 0.794 - 0.884 - 0.855 0.858 - - - 0.927 - - 0.932
M ↓ 0.174 - 0.159 - 0.097 - 0.113 0.100 - - - 0.048 - - 0.042

is described in Sec.3.3. This indicates that CGR (with the cascade techniques)
can better distill and leverage multi-level information than existing strategies.
Node Numbers N . To investigate the impact of node numbers N in the GR
module, we report the results of our GR module with different N = 2 · n in
Tab. 1. We observe that when more nodes (n = 1 7→ 3) in each modality are
used, the performance of our model improves accordingly. However, when more
nodes are included in each modality (n = 3 7→ 5), the performance improvements
are rather limited. This is caused by the redundant information from generated
nodes. Therefore, we believe that setting 3 nodes in each modality (N = 6)
should be a good balance of the speed and accuracy.
Message Passing Iterations T . We also evaluate the impact of message passing
iterations T . As can be seen in Tab. 1, when more than three message passing
iterations are used for graph reasoning, the model can achieve the best perfor-
mance. Therefore, we set T = 3 in our GR module to guarantee a good speed
and performance tradeoff.

4.3 Comparison with SOTAs

Quantitative Comparisons. We compare our Cas-Gnn with 14 SOTA mod-
els on 7 widely-used datasets in Tab. 3. In general, our Cas-Gnn consistently
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Inputs Depth CPFP MMCI CDCP PCF TANet D3Net Ours GT

Fig. 6. Qualitative comparisons with state-of-the-art CNNs-based methods.

achieves the remarkable performance on all datasets with four evaluation met-
rics. Clearly, the results demonstrate that explicitly reason and distill mutual
beneficial information can help to infer the salient object regions from the clut-
ter images. In addition, we also show the results of widely-used PR curves and
weighted F-measure in Fig. 5. As can be seen, our Cas-Gnn achieves the best
performance on all datasets. All the comparisons with recent SOTAs indicate
that mining the high-level relations of multi-modality data sources and perform
joint reasoning across multiple feature levels are important, and will largely im-
prove the reliability of deep model for handling cross-modality information.
Qualitative Comparisons. Fig. 6 shows some visual samples of results compar-
ing the proposed Cas-Gnn with state-of-the-art methods. We observe that our
Cas-Gnn is good at capturing both of the overall salient object regions and lo-
cal object/region details. This is because our proposed cascade graph reasoning
module is able to take both high-level semantics and low-level local details into
consideration to build more powerful embeddings for inferring SOD regions.

5 Conclusion

In this paper, we introduce a novel deep model based on graph-based techniques
for RGB-D salient object detection. Besides, we further propose to use cascade
structure to enhance our GNN model to make it better take advantages of rich,
complementary information from multi-level features. According to our experi-
ments, the proposed Cas-Gnn successfully distills useful information from both
the 2D (color) appearance and 3D geometry (depth) information, and sets new
state-of-the-art records on multiple datasets. We believe the novel designs in this
paper is important, and can be used to other cross-modality applications, such
as RGB-D based object discover or cross-modality medical image analyse.
Acknowledgement: This research was funded in part by the National Key
R&D Progrqam of China (2017YFB1302300) and the NSFC (U1613223).
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